JPS6331103B2 - - Google Patents

Info

Publication number
JPS6331103B2
JPS6331103B2 JP56002094A JP209481A JPS6331103B2 JP S6331103 B2 JPS6331103 B2 JP S6331103B2 JP 56002094 A JP56002094 A JP 56002094A JP 209481 A JP209481 A JP 209481A JP S6331103 B2 JPS6331103 B2 JP S6331103B2
Authority
JP
Japan
Prior art keywords
weight
powder
filler
silicon carbide
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56002094A
Other languages
Japanese (ja)
Other versions
JPS57115853A (en
Inventor
Masahiro Kitamura
Hiroshi Suzuki
Kosuke Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56002094A priority Critical patent/JPS57115853A/en
Publication of JPS57115853A publication Critical patent/JPS57115853A/en
Publication of JPS6331103B2 publication Critical patent/JPS6331103B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は炭化ケイ素系焼結体粉末を充填剤とす
るエポキシ樹脂組成物によつて封止された半導体
装置に係り、特にか酷な高湿条件に耐え、高温動
作寿命にすぐれた樹脂封止半導体装置に関する。 近年、半導体素子、抵抗体、コンデンサやコイ
ルなどの電子回路部品を、熱硬化性樹脂成形材料
を用いて封止する樹脂封止法が広く採用され、生
産効率、経済面に大きく寄与している。その材料
としては、低圧成形用エポキシ樹脂成形材料が賞
用されている。 さて、これらの樹脂封止された例えばTRS、
IC、LSI等の半導体装置は、ガラス、セラミツ
ク、金属などを用いたハーメチツクシール品に比
べ安価ではあるが、信頼性、耐湿性、高温動作特
性などの信頼性に若干劣る点がある。それ故、こ
れらの信頼性を向上させるために各種の検討がな
されている。また、最近では出力の大きなTRS、
IC、LSI等が要求されており、そのためにモール
ドレジンの熱伝導性を高めることが特に必要にな
つてきた。 そこで、本発明者らは、特に出力の大きい
TRS、IC、LSI等に適用可能な高熱伝導性を有
し、しかも耐湿性等の信頼性の要求に応じられる
封止用樹脂を見出すべく、検討してきた。封止用
樹脂を高熱伝導化するには、熱伝導率の大きな無
機質充填剤を配合する方法が、一般に採られてい
る。そのような充填剤としては、結晶性シリカ、
アルミナ、ケイ酸ジルコニウム、酸化ベリリウ
ム、酸化マグネシウム、ムライト、炭化ケイ素等
の粉末が挙げられる。しかし、それらにはそれぞ
れ実用面で一長一短がある。すなわち、結晶性シ
リカは大きな熱膨張率を有し、アルミナ、ケイ酸
ジルコニウム等は経験的にエポキシ樹脂の硬化を
遅らせる傾向を示し、また、酸化マグネシウムは
吸湿性であることなどである。このような理由か
ら、高熱伝導性と称する封止用樹脂の市販製品
は、一般に結晶性シリカ粉と線膨張率の小さい非
晶性シリカ粉、いわゆる石英ガラス粉とを併用し
て、熱伝導性と熱膨張率とに折衷をはかつている
ようである。 本発明者らは、高熱伝導性を有し線膨張率の小
さい封止用樹脂を見出すことによつて、前述の要
求に応じ耐湿性、高温動作特性など信頼性にすぐ
れた樹脂封止半導体装置を製作できるとの考の下
に、検討を進めた。そして炭化ケイ素に着目した
が、このものは、比抵抗が10Ω−cmであるため
に、封止用樹脂の充填剤としては不適であつた。
しかし、炭化ケイ素に、酸化ベリリウムおよび窒
化ホウ素のうちの少なくとも1種を配合してなる
焼結体が、比抵抗1010Ω−cm以上の絶縁体である
ことを別の研究において見出した。そして、この
焼結体を粉砕して得た粉末を、エポキシ樹脂組成
物に充填剤として加えた結果、予期した特性を得
られることが判明した。 本発明は、上述の経過に基づいて達せられたも
ので、信頼性の高い樹脂封止半導体装置を提供す
ることをその目的としている。その特徴は、炭化
ケイ素を主成分とし、酸化ベリリウムおよび窒化
ホウ素のうちの少なくとも1種を含有する焼結体
の粉末を、充填剤として配合したエポキシ樹脂組
成物によつて封止されていることである。 前記充填剤における組成は、要求される比抵抗
値に関係し、1010Ω−cm以上の値を与えるように
定められる。具体的には、炭化ケイ素100重量部
に対し、酸化ベリリウムおよび窒化ホウ素のうち
の少なくとも1種を2重量部以上含まれることが
望ましい。それらの化合物は十分に混合されたの
ち、真空下約2000℃で加圧焼結され、次いで粉砕
されて、エポキシ樹脂組成物に充填される。 本発明においてエポキシ樹脂組成物は、エポキ
シ樹脂とその硬化剤を主成分とし、さらに必要に
応じ硬化促進剤その他を含有してよい。エポキシ
樹脂は、特に限定されることなく公知のエポキシ
化合物が広く使用できる。例えば、ビスフエノー
ルA、ビスフエノールF、レゾルシノール、フエ
ノールノボラツク、クレゾールノボラツクなどの
フエノール類のグリシジルエーテル、ブタンジオ
ール、ポリエチレングリコール、ポリプロピレン
グリコールなどのアルコール類のグリシジルエー
テル、フタル酸、イソフタル酸、テトラヒドロフ
タル酸などのカルボン酸類のグリシジルエステ
ル、アニリン、イソシアヌール酸などの窒素原子
に結合した活性水素をグリシジル基で置換したも
のなどのグリシジル型(メチルグリシジル型も含
む)エポキシ樹脂、分子内のオレフイン結合を過
酸等でエポキシ化して得られるビニルシクロヘキ
センジエポキシド、3・4−エポキシシクロヘキ
シルメチル−3・4−エポキシシクロヘキサンカ
ルボキシレート、2−(3・4−エポキシ)シク
ロヘキシル−5・5−スピロ(3・4−エポキ
シ)シクロヘキサン−m−ジオキサンなどのいわ
ゆる脂環型エポキシドなどが用いられる。また、
硬化剤としては公知のエポキシ樹脂用硬化剤を用
いることができる。幾つか例示すると、例えば、
無水マレイン酸、無水フタル酸、無水テトラヒド
ロフタル酸、無水ヘキサヒドロフタル酸、無水エ
ンドメチレンテトラヒドロフタル酸、無水メチル
エンドメチレンテトラヒドロフタル酸、無水メチ
ルテトラヒドロフタル酸、テトラクロル無水フタ
ル酸、無水エンドジクロロメチレンテトラクロル
フタル酸、テトラブロム無水フタル酸、無水トリ
メリツト酸、シクロペンタンテトラカルボン酸二
無水物、ベンゾフエノンテトラカルボン酸二無水
物、ピロメリツト酸二無水物などのいわゆる酸無
水物硬化剤、ジアミノジフエニルメタン、ジアミ
ノジフエニルエーテル、ジアミノジフエニルスル
ホン、ベンジジン、ジアニシジン、フエニレンジ
アミン、メチレンビス(o−クロロアニリン)、
3・3′−ジカルボキシルベンジジン、3・3′−ジ
カルボキシルジアミノジフエニルメタンなどの芳
香族アミン、フエノールノボラツク、クレゾール
ノボラツクや、フエノール、クレゾール等とパラ
キシリレンジメトキサイドとの縮合物、フエノー
ル、クレゾール等とジフエニルエーテル、ホルム
アルデヒドとの縮合物などのフエノール性水酸基
を有するいわゆる多価フエノール系硬化剤などが
ある。さらに、エポキシ樹脂と反応してオキサド
リドン環を生成して硬化するとともに、それ自身
が3量化してポリマー化するイソシアネート類、
例えばトリレンジイソシアネート、ジフエニルメ
タンジイソシアネート、水素化ジフエニルメタン
ジイソシアネート、ヘキサン−1・6−ジイソシ
アネート、ナフタレンジイソシアネート、ポリメ
チレンポリフエニレンポリイソシアネート、およ
び上記イソシアネートの2量化ないし3量化した
ものなどがある。また、ジアミノジフエニルメタ
ン、ポリメチレンポリフエニレンポリアミンなど
のアミンと無水マレイン酸から合成されるマレイ
ミド類も、それ自身重合することは勿論、分子中
に残存するアミド酸がエポキシ樹脂が反応して硬
化するものであり、エポキシ樹脂の硬化剤として
用いることができる。また、上記マレイミド類と
ポリアミンの付加物も、エポキシ樹脂の硬化剤と
して用いることができる。 硬化促進剤としては、エポキシ樹脂用として有
用な公知のものは全て使用できる。特に、潜在性
の優れたものとしてテトラ置換ホスホニウム・テ
トラ置換ボレート、テトラ置換アルソニウム・テ
トラ置換ボレート、テトラ置換アンモニウム・テ
トラ置換ボレート、各種イミダゾール化合物のボ
レート化合物及びジメチルアミノエタノールと無
水酸との反応生成物を使用するのが好ましい。そ
の他に各種イミダゾール化合物とその誘導体など
も有効である。また、これらの硬化促進剤を2種
以上併用してもかまわない。また、本発明のエポ
キシ樹脂組成物には、トランジスタ、IC、LSI等
の半導体装置をトランスフアモールドするため
に、前記充填剤とともに他の無機質充填剤を用い
ることができ、例えば炭酸カルシウム、シリカ
粉、ケイ酸ジルコニウム、ケイ酸カルシウム、石
英ガラス粉、タルク、クレー、マイカ、ガラス繊
維粉などが有用であり、これらは、必要に応じて
2種以上併用してもかまわない。また、その他の
添加剤として、離型剤、着色剤、表面カツプリン
グ剤、難燃助剤などを配合してもよい。 前記炭化ケイ素を主成分とする充填剤を配合し
たエポキシ樹脂組成物の半導体装置封止用成形材
料を調製するに当つては、固状の成分材料をそれ
ぞれ粉砕し、ついで所望の割合で十分に混合す
る。混合にはミキシングロール機、ニーダ、リボ
ンミキサ、ボールミルなどの慣用の混合装置を使
用できる。得られた混合物をそのままトランスフ
ア成形に適用することによつて、信頼性の高い樹
脂封止半導体装置を製作できる。 次に実施例を記して本発明を説明する。 実施例 1 充填剤の調製。純度98%の炭化ケイ素粉末(平
均粒径2μm)100重量部を酸化ベリリウム粉末
(平均粒径2μm)3重量部とを、入念に混合した
のち、直径50mmの円板に仮成形した。この仮成形
品を黒鉛治具に入れ、真空ホツトプレス装置を用
い、10-3〜10-5Torrの減圧下、圧力200Kg/cm2
温度2000℃において焼結させた。該焼結体を粗粉
砕後、アルミナ製ボールミルを用いて微粉砕(平
均粒径10μm)した。 実施例 2 フエノールノボラツクエポキシ樹脂(エポキシ
当量225)、硬化剤として無水テトラヒドロフタル
酸、フエノールノボラツク(分子量約800)また
はジアミノジフエニルメタン、硬化促進剤として
2−ウンデシルイミダゾール、離型剤にステアリ
ン酸またはモンタナワツクス、着色剤にカーボン
ブラツク、充填剤として実施例1記載の炭化ケイ
素系焼結体粉末、結晶性シリカ、非晶性シリカ、
アルミナ、またはケイ酸ジルコニウム粉末を、第
1表に示す組成(重量部で表示)に従つて配合
し、熱ロール(70〜80℃)で混練した。冷却後混
練物を粉砕して、成形材料に調製した。 該成形材料について、180℃、70Kg/cm2圧、2.5
分の条件で成形性(スパイラルフロー)を測ると
ともに、試験片を成形して熱時硬度(バーコルNo.
935、2.5分値)、線膨張率、熱伝導率を測定した。
それらの値は第1表の如くである。 前記実施例試料No.2、4および5と、比較例試
料1、4の組成物を用いて、MOS、LSIを前述
の成形条件に従いトランスフア成形法によつて封
止した。そして該封止品の耐湿および高温動作特
性を、次の方法によつて検討した。 耐湿試験 120℃、2気圧の水蒸気中に1000時間
放置後、素子のアルミニウム配線の腐食状況を
調べ、腐食発生率により評価する。 高温動作特性 温度180℃に1000時間放置後動作
試験を行い、該放置したことにより発生した動
作不良素子の率をもつて評価する。 その結果は第2表に記した。 第1、2表から明らかなように、実施例のエポ
キシ樹脂組成物の硬化物は、大きな熱伝導率と小
さな線熱膨張率とを有し、これを用いて封止され
たMOS、LSI製品が信頼性にすぐれている。
The present invention relates to a semiconductor device encapsulated with an epoxy resin composition containing silicon carbide-based sintered body powder as a filler. Related to semiconductor devices. In recent years, resin encapsulation methods, which use thermosetting resin molding materials to encapsulate semiconductor elements, resistors, capacitors, coils, and other electronic circuit components, have been widely adopted, contributing greatly to production efficiency and economy. . As the material, epoxy resin molding materials for low-pressure molding are widely used. Now, for example, these resin-sealed TRS,
Semiconductor devices such as ICs and LSIs are cheaper than hermetically sealed products made of glass, ceramics, metals, etc., but they are slightly inferior in reliability, moisture resistance, high-temperature operation characteristics, etc. Therefore, various studies have been made to improve their reliability. In addition, recently, large output TRS,
As ICs, LSIs, etc. are in demand, it has become especially necessary to improve the thermal conductivity of mold resins. Therefore, the present inventors developed a method with particularly high output.
We have been conducting research to find a sealing resin that has high thermal conductivity and can be applied to TRS, IC, LSI, etc., and also meets the requirements for reliability such as moisture resistance. In order to make the sealing resin highly thermally conductive, a method of blending an inorganic filler with high thermal conductivity is generally adopted. Such fillers include crystalline silica,
Examples include powders of alumina, zirconium silicate, beryllium oxide, magnesium oxide, mullite, silicon carbide, and the like. However, each of them has advantages and disadvantages in practical terms. That is, crystalline silica has a large coefficient of thermal expansion, alumina, zirconium silicate, etc. have empirically shown a tendency to delay the curing of epoxy resins, and magnesium oxide is hygroscopic. For this reason, commercially available sealing resin products that are said to have high thermal conductivity generally use a combination of crystalline silica powder and amorphous silica powder with a small coefficient of linear expansion, so-called quartz glass powder, to achieve thermal conductivity. It seems that a compromise has been made between this and the coefficient of thermal expansion. By discovering a sealing resin with high thermal conductivity and a small coefficient of linear expansion, the present inventors have discovered a resin-sealed semiconductor device that meets the above-mentioned requirements and has excellent moisture resistance and high-temperature operating characteristics. We proceeded with the study with the idea that it would be possible to produce a They focused on silicon carbide, but this material had a resistivity of 10 Ω-cm and was therefore unsuitable as a filler for sealing resins.
However, in another study, it was discovered that a sintered body made of silicon carbide mixed with at least one of beryllium oxide and boron nitride is an insulator with a specific resistance of 10 10 Ω-cm or more. It was found that the expected properties could be obtained by adding the powder obtained by crushing this sintered body to an epoxy resin composition as a filler. The present invention has been achieved based on the above-mentioned progress, and an object of the present invention is to provide a highly reliable resin-sealed semiconductor device. Its feature is that it is sealed with an epoxy resin composition containing silicon carbide as a main component and sintered powder containing at least one of beryllium oxide and boron nitride as a filler. It is. The composition of the filler is related to the required specific resistance value and is determined to provide a value of 10 10 Ω-cm or more. Specifically, it is desirable that at least 2 parts by weight of at least one of beryllium oxide and boron nitride be contained per 100 parts by weight of silicon carbide. After the compounds are thoroughly mixed, they are pressure sintered under vacuum at about 2000° C., then ground and filled into an epoxy resin composition. In the present invention, the epoxy resin composition contains an epoxy resin and its curing agent as main components, and may further contain a curing accelerator and others as necessary. The epoxy resin is not particularly limited, and a wide variety of known epoxy compounds can be used. For example, glycidyl ethers of phenols such as bisphenol A, bisphenol F, resorcinol, phenol novolak, and cresol novolak, glycidyl ethers of alcohols such as butanediol, polyethylene glycol, and polypropylene glycol, phthalic acid, isophthalic acid, and tetrahydrocarbon. Glycidyl-type (including methylglycidyl-type) epoxy resins such as glycidyl esters of carboxylic acids such as phthalic acid, aniline, isocyanuric acid, etc. in which the active hydrogen bonded to the nitrogen atom is replaced with a glycidyl group, and olefin bonds within the molecule. vinylcyclohexene diepoxide obtained by epoxidizing with peracid etc., 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 2-(3,4-epoxy)cyclohexyl-5,5-spiro(3 - So-called alicyclic epoxides such as 4-epoxy) cyclohexane-m-dioxane are used. Also,
As the curing agent, a known curing agent for epoxy resins can be used. To give some examples, for example,
Maleic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, methylendomethylenetetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, tetrachlorophthalic anhydride, endodichloromethylenetetraanhydride So-called acid anhydride curing agents such as chlorophthalic acid, tetrabromophthalic anhydride, trimellitic anhydride, cyclopentanetetracarboxylic dianhydride, benzophenonetetracarboxylic dianhydride, pyromellitic dianhydride, diaminodiphenylmethane , diaminodiphenyl ether, diaminodiphenyl sulfone, benzidine, dianisidine, phenylenediamine, methylenebis(o-chloroaniline),
Aromatic amines such as 3,3'-dicarboxylbenzidine, 3,3'-dicarboxyldiaminodiphenylmethane, phenol novolak, cresol novolak, condensates of phenol, cresol, etc., and paraxylylene dimethoxide, There are so-called polyhydric phenol curing agents having a phenolic hydroxyl group, such as condensates of phenol, cresol, etc., and diphenyl ether, formaldehyde, and the like. Furthermore, isocyanates that react with epoxy resins to produce oxadoridone rings and harden, and also trimerize and polymerize themselves;
Examples include tolylene diisocyanate, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, hexane-1,6-diisocyanate, naphthalene diisocyanate, polymethylene polyphenylene polyisocyanate, and dimerized or trimerized products of the above isocyanates. . In addition, maleimides synthesized from amines such as diaminodiphenylmethane and polymethylene polyphenylene polyamine and maleic anhydride not only polymerize themselves, but also react with the amic acid remaining in the molecule with the epoxy resin. It hardens and can be used as a curing agent for epoxy resins. Furthermore, adducts of the above maleimides and polyamines can also be used as curing agents for epoxy resins. As the curing accelerator, all known ones useful for epoxy resins can be used. In particular, compounds with excellent latent properties include tetra-substituted phosphonium/tetra-substituted borate, tetra-substituted arsonium/tetra-substituted borate, tetra-substituted ammonium/tetra-substituted borate, borate compounds of various imidazole compounds, and reaction products of dimethylaminoethanol and anhydride. It is preferable to use In addition, various imidazole compounds and their derivatives are also effective. Furthermore, two or more of these curing accelerators may be used in combination. Furthermore, in order to transfer mold semiconductor devices such as transistors, ICs, and LSIs, other inorganic fillers can be used in the epoxy resin composition of the present invention, such as calcium carbonate and silica powder. , zirconium silicate, calcium silicate, quartz glass powder, talc, clay, mica, glass fiber powder, etc. are useful, and two or more of these may be used in combination as necessary. Further, as other additives, a mold release agent, a coloring agent, a surface coupling agent, a flame retardant aid, etc. may be added. In preparing a molding material for encapsulating a semiconductor device made of an epoxy resin composition containing a filler containing silicon carbide as a main component, each of the solid component materials is pulverized and then sufficiently mixed in the desired ratio. Mix. For mixing, conventional mixing equipment such as a mixing roll machine, kneader, ribbon mixer, ball mill, etc. can be used. By directly applying the obtained mixture to transfer molding, a highly reliable resin-sealed semiconductor device can be manufactured. Next, the present invention will be explained with reference to Examples. Example 1 Preparation of filler. 100 parts by weight of 98% pure silicon carbide powder (average particle size 2 μm) and 3 parts by weight beryllium oxide powder (average particle size 2 μm) were carefully mixed and then temporarily formed into a disk with a diameter of 50 mm. This temporary molded product was placed in a graphite jig, and using a vacuum hot press device, it was heated under a reduced pressure of 10 -3 to 10 -5 Torr and at a pressure of 200 Kg/cm 2 .
It was sintered at a temperature of 2000℃. The sintered body was coarsely pulverized and then finely pulverized (average particle size: 10 μm) using an alumina ball mill. Example 2 Phenol novolac epoxy resin (epoxy equivalent weight 225), tetrahydrophthalic anhydride as a curing agent, phenol novolac (molecular weight approximately 800) or diaminodiphenylmethane, 2-undecylimidazole as a curing accelerator, mold release agent as Stearic acid or Montana wax, carbon black as a colorant, silicon carbide-based sintered body powder described in Example 1 as a filler, crystalline silica, amorphous silica,
Alumina or zirconium silicate powder was blended according to the composition shown in Table 1 (expressed in parts by weight) and kneaded using hot rolls (70 to 80°C). After cooling, the kneaded material was pulverized to prepare a molding material. Regarding the molding material, 180℃, 70Kg/cm 2 pressure, 2.5
In addition to measuring the formability (spiral flow) under the conditions of 10 minutes, the test piece was molded and the hardness at the time of heating (Barcol No.
935, 2.5 minute value), linear expansion coefficient, and thermal conductivity were measured.
Their values are shown in Table 1. Using the compositions of Example Samples No. 2, 4, and 5 and Comparative Example Samples 1 and 4, MOS and LSI were sealed by transfer molding according to the molding conditions described above. The moisture resistance and high temperature operating characteristics of the sealed product were examined using the following method. Moisture resistance test After being left in water vapor at 120°C and 2 atm for 1000 hours, the corrosion status of the aluminum wiring of the element is examined and evaluated based on the corrosion incidence rate. High-temperature operating characteristics A performance test is performed after being left at a temperature of 180°C for 1000 hours, and the rate of malfunctioning elements that occur due to the leaving is evaluated. The results are shown in Table 2. As is clear from Tables 1 and 2, the cured products of the epoxy resin compositions of Examples have high thermal conductivity and low coefficient of linear thermal expansion, and MOS and LSI products sealed using the cured products have high thermal conductivity and low coefficient of linear thermal expansion. has excellent reliability.

【表】【table】

【表】【table】

【表】 回
実施例 6 (1) 充填剤の調製。純度98%の炭化ケイ素粉末
(平均粒径2μm)100重量部と純度95%の窒素
ホウ素粉末(平均粒径0.5μm)3重量部を入念
に混合した後、直径50mmの円板状に仮成形し
た。この仮成形品を黒鉛治具に入れ、10-3
10-5Torrの減圧下、圧力200Kg/cm2、温度約
2000℃で焼結させた。該焼結体を冷却後粗粉砕
し、さらに、アルミナ製ボールミルを用いて微
粉砕(平均粒径16μm)した。 (2) 成形材料の調整。実施例2、4及び5と同様
にフエノールノボラツク樹脂(エポキシ当量
225)100重量部に硬化剤としてフエノールノボ
ラツク樹脂(分子量約800)55重量部、硬化促
進剤として2−ウンデシルイミダゾール3重量
部、離型剤としてステアリン酸及びモンタナワ
ツクスをそれぞれ2重量部、着色剤としてカー
ボンブラツク1重量部を用い、充填剤としては
上記の炭化ケイ素焼結体粉末430重量部を用い、
各素材を予備混合した後、さらに熱ロール(70
〜80℃)で混練した。冷却後該混練物を粉砕し
て成形材料を調整した。 (3) 成形材料の特性。上記成形材料について、金
型温度180℃、成形圧力70Kg/cm2、硬化時間2.5
分の条件で、成形性(スパイラルフロー)を測
るとともに、成形品の熱時硬度(バーコルNo.
935)、線膨張率、熱伝導率を測定した。 (4) 封止品の特性。上記成形材料を用いて、
MOSLSIを上記と同じ条件でトランスフア成
形法によつて封止し、封止品の耐湿及び高温動
作特性を実施例2と同様の方法で評価した。 その結果を第3表に示す。
[Table] Example 6 (1) Preparation of filler. After carefully mixing 100 parts by weight of 98% pure silicon carbide powder (average particle size 2 μm) and 3 parts by weight of 95% pure nitrogen boron powder (average particle size 0.5 μm), they were temporarily formed into a disk shape with a diameter of 50 mm. did. Place this temporary molded product in a graphite jig and heat it to 10 -3 ~
Under reduced pressure of 10 -5 Torr, pressure 200Kg/cm 2 , temperature approx.
Sintered at 2000℃. After cooling, the sintered body was coarsely pulverized, and further finely pulverized (average particle size: 16 μm) using an alumina ball mill. (2) Adjustment of molding materials. Similar to Examples 2, 4 and 5, phenol novolak resin (epoxy equivalent
225) 100 parts by weight, 55 parts by weight of phenol novolac resin (molecular weight approximately 800) as a curing agent, 3 parts by weight of 2-undecylimidazole as a curing accelerator, and 2 parts by weight each of stearic acid and Montana wax as mold release agents. , using 1 part by weight of carbon black as a coloring agent and 430 parts by weight of the above silicon carbide sintered body powder as a filler,
After premixing each material, further heat roll (70
~80°C). After cooling, the kneaded material was pulverized to prepare a molding material. (3) Characteristics of molding materials. Regarding the above molding material, mold temperature 180℃, molding pressure 70Kg/cm 2 , curing time 2.5
In addition to measuring the moldability (spiral flow) under the conditions of 30 minutes, we also measured the hot hardness of the molded product (Barcol No.
935), linear expansion coefficient, and thermal conductivity were measured. (4) Characteristics of sealed products. Using the above molding material,
MOSLSI was sealed by transfer molding under the same conditions as above, and the moisture resistance and high temperature operating characteristics of the sealed product were evaluated in the same manner as in Example 2. The results are shown in Table 3.

【表】 第3表から明らかなように、本発明のエポキシ
樹脂組成物を用いることにより、信頼性の優れた
樹脂封止半導体装置を提供することができる。
[Table] As is clear from Table 3, by using the epoxy resin composition of the present invention, a resin-sealed semiconductor device with excellent reliability can be provided.

Claims (1)

【特許請求の範囲】 1 炭化ケイ素を主成分とし、酸化ベリリウムお
よび窒化ホウ素のうちの少なくとも1種を含有す
る焼結体の粉末を充填剤として配合したエポキシ
樹脂組成物を用いて封止したことを特徴とする樹
脂封止半導体装置。 2 該充填剤が炭化ケイ素100重量部に対し酸化
ベリリウムおよび窒化ホウ素のうちの少なくとも
1種を2重量部以上含有してなる焼結体の粉末で
ある特許請求の範囲第1項の半導体装置。
[Scope of Claims] 1. Sealing using an epoxy resin composition containing silicon carbide as a main component and containing powder of a sintered body containing at least one of beryllium oxide and boron nitride as a filler. A resin-sealed semiconductor device characterized by: 2. The semiconductor device according to claim 1, wherein the filler is a sintered powder containing at least 2 parts by weight of at least one of beryllium oxide and boron nitride based on 100 parts by weight of silicon carbide.
JP56002094A 1981-01-12 1981-01-12 Resin-sealed semiconductor device Granted JPS57115853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56002094A JPS57115853A (en) 1981-01-12 1981-01-12 Resin-sealed semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56002094A JPS57115853A (en) 1981-01-12 1981-01-12 Resin-sealed semiconductor device

Publications (2)

Publication Number Publication Date
JPS57115853A JPS57115853A (en) 1982-07-19
JPS6331103B2 true JPS6331103B2 (en) 1988-06-22

Family

ID=11519756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56002094A Granted JPS57115853A (en) 1981-01-12 1981-01-12 Resin-sealed semiconductor device

Country Status (1)

Country Link
JP (1) JPS57115853A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH081279U (en) * 1991-07-29 1996-08-13 株式会社ホクコン Tank pit

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101523A (en) * 1984-10-25 1986-05-20 Toshiba Chem Corp Sealing resin composition
JPS62223246A (en) * 1986-03-25 1987-10-01 Mitsubishi Electric Corp Highly thermally conductive resin composition for use in sealing semiconductor
JPS63142025A (en) * 1986-12-05 1988-06-14 Toshiba Chem Corp Resin composition for sealing use

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH081279U (en) * 1991-07-29 1996-08-13 株式会社ホクコン Tank pit

Also Published As

Publication number Publication date
JPS57115853A (en) 1982-07-19

Similar Documents

Publication Publication Date Title
JPH0450223A (en) Epoxy resin composition and semiconductor device
JPS58121653A (en) Epoxy resin composition for sealing semiconductor device and manufacture thereof
JPS6331103B2 (en)
JP7142233B2 (en) EPOXY RESIN COMPOSITION FOR ENCAPSULATION, CURED PRODUCT AND SEMICONDUCTOR DEVICE
KR102665491B1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated using the same
JP3989349B2 (en) Electronic component sealing device
JP2000007894A (en) Epoxy resin composition and semiconductor device
JPS59181037A (en) Semiconductor device
JPH02219814A (en) Epoxy resin composition
JPH093169A (en) Sealing resin composition and device for sealing electronic part
JPH06184272A (en) Epoxy resin composition
JP2744499B2 (en) Epoxy resin composition
JPH0577688B2 (en)
JP2703733B2 (en) Semiconductor device
JP2690992B2 (en) Epoxy resin composition
JPS5943062B2 (en) Epoxy resin composition for encapsulating semiconductor devices
JPH02173033A (en) Epoxy resin composition for semiconductor sealing
JPH07173255A (en) Epoxy resin composition
JPH05206328A (en) Resin composition
JP3004454B2 (en) Resin composition
JPH08176278A (en) Resin composition
JPS626572B2 (en)
JPH0277419A (en) Liquid epoxy resin composition for sealing semiconductor
CN112143177A (en) Epoxy molding compound and preparation method and application thereof
JPH09188802A (en) Sealing resin composition and device comprising sealed electronic component