JPS62223246A - Highly thermally conductive resin composition for use in sealing semiconductor - Google Patents
Highly thermally conductive resin composition for use in sealing semiconductorInfo
- Publication number
- JPS62223246A JPS62223246A JP61069065A JP6906586A JPS62223246A JP S62223246 A JPS62223246 A JP S62223246A JP 61069065 A JP61069065 A JP 61069065A JP 6906586 A JP6906586 A JP 6906586A JP S62223246 A JPS62223246 A JP S62223246A
- Authority
- JP
- Japan
- Prior art keywords
- resin composition
- resin
- thermally conductive
- filler
- highly thermally
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 33
- 239000011342 resin composition Substances 0.000 title claims description 35
- 238000007789 sealing Methods 0.000 title abstract description 4
- 239000000945 filler Substances 0.000 claims abstract description 18
- 229910052582 BN Inorganic materials 0.000 claims abstract description 8
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims abstract description 8
- 238000005538 encapsulation Methods 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 9
- 239000000843 powder Substances 0.000 abstract description 24
- 229920005989 resin Polymers 0.000 abstract description 13
- 239000011347 resin Substances 0.000 abstract description 13
- 239000004593 Epoxy Substances 0.000 abstract description 7
- 238000001721 transfer moulding Methods 0.000 abstract description 6
- 239000003822 epoxy resin Substances 0.000 abstract description 4
- 229920000647 polyepoxide Polymers 0.000 abstract description 4
- 229920002050 silicone resin Polymers 0.000 abstract description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 11
- 239000010453 quartz Substances 0.000 description 9
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 230000017525 heat dissipation Effects 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 239000000395 magnesium oxide Substances 0.000 description 4
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- -1 gold-aluminum Chemical compound 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
Abstract
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体封止用高熱伝導性樹脂組成物に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a highly thermally conductive resin composition for semiconductor encapsulation.
さらに詳しくは低圧トランスファー成形用エポキシモー
ルド樹脂組成物などに好適に使用しつる半導体封止用高
熱伝導性樹脂組成物に関する。More specifically, the present invention relates to a highly thermally conductive resin composition for encapsulating a semiconductor, which is suitably used as an epoxy mold resin composition for low-pressure transfer molding.
[従来の技術およびその問題点]
近年LSIやVLSIなどの高集積化メモリーや電力用
半導体あるいはECLnAH,ビデオRAMなど、半導
体素子の高集積化あるいは高速動作化や高電流処理化の
ニーズに対応し、動作時に高電力を消費する半導体素子
の生産mが増大している。しかるに、コストメリットの
観点からこれらの素子を樹脂封止したばあい、該半導体
素子は高電力を消費する結果、多量の熱を発生するので
熱の放散が充分に行なわれなければ素子の温度が上昇し
、半導体素子のジャンクション(接合)部や金とアルミ
ニウムの合金のワイヤーボンド接合部の動作安定性や寿
命特性などの基本性能が低下し、製品の信頼性に大きな
問題を生起する。そのため従来より、半導体素子から発
生する熱を放散させるためにヒートシンクや放熱板を設
置するという対応がなされているが、上記の処置では熱
は充分に放散されず、またヒートシンクや放熱板を設置
することにより製品の構造が複雑となるので耐湿特性の
低下などの新たな問題が発生することになり、製品の信
頼性を低下させるという欠点がある。[Conventional technology and its problems] In recent years, the needs for higher integration, higher speed operation, and higher current processing of semiconductor devices such as highly integrated memories such as LSI and VLSI, power semiconductors, ECLnAH, and video RAM have been met. , the production of semiconductor devices that consume high power during operation is increasing. However, if these elements are sealed with resin from the viewpoint of cost benefits, the semiconductor elements consume high power and generate a large amount of heat, so if heat is not dissipated sufficiently, the temperature of the element will rise. As a result, basic performance such as operational stability and life characteristics of semiconductor device junctions and gold-aluminum alloy wire bond joints deteriorates, causing major problems in product reliability. For this reason, conventional measures have been taken to install heat sinks and heat sinks to dissipate the heat generated from semiconductor elements, but the heat is not dissipated sufficiently with the above measures, and it is necessary to install heat sinks and heat sinks. This complicates the structure of the product, leading to new problems such as deterioration of moisture resistance, which has the disadvantage of reducing product reliability.
そこでヒートシンクや放熱板を設置しないばあいでも多
量の熱を発生する半導体素子を樹脂封止することのでき
る高熱伝導性の半導体封止用樹脂組成物が求められてい
る。Therefore, there is a need for a resin composition for semiconductor encapsulation with high thermal conductivity that can encapsulate a semiconductor element that generates a large amount of heat with a resin even when a heat sink or a heat sink is not installed.
従来の半導体封止用樹脂組成物、とくに低圧トランスフ
ァー成形用エポキシモールド樹脂組成物などのエポキシ
モールド樹脂組成物には、耐熱性、機械的強度、熱収縮
率、コストなどを改善する目的で、充填材としておもに
非晶質の石英粉末が配合されているが、該石英粉末の、
モールド樹脂組成物への熱伝導性の向上に対する寄与は
認められるものの、該石英粉末自体の熱伝導率がそれほ
ど大きくないため、モールド樹脂組成物自体の熱伝導性
の向上にはあまり効果がない。たとえば、通常半導体封
止用エポキシモールド樹脂組成物においては、熱硬化後
の硬化物の熱伝導率がlX10−4〜5×1O−4Ca
1/cI+l−5eC・℃程度である樹脂母材に熱伝導
率が0.006〜0.008Ca1/cm−8eC・℃
程度である非晶質の石英粉末を組成物中に約50体積%
配合してなる従来の低圧トランスファー成型用エポキシ
モールド樹脂組成物の硬化物の熱伝導率は、約0.5x
10−3〜1.Ox 10−’ ca1/cm−se
Ce ’c程度であり熱伝導率は充分に改善されていな
い。Conventional resin compositions for semiconductor encapsulation, especially epoxy mold resin compositions such as epoxy mold resin compositions for low-pressure transfer molding, are filled with fillers for the purpose of improving heat resistance, mechanical strength, heat shrinkage rate, cost, etc. Amorphous quartz powder is mainly blended as a material, but the quartz powder,
Although it is recognized that the quartz powder contributes to improving the thermal conductivity of the molding resin composition, it is not very effective in improving the thermal conductivity of the molding resin composition itself because the thermal conductivity of the quartz powder itself is not so high. For example, in a typical epoxy mold resin composition for semiconductor encapsulation, the thermal conductivity of the cured product after thermosetting is lX10-4 to 5x1O-4Ca.
The resin base material has a thermal conductivity of 0.006 to 0.008Ca1/cm-8eC・℃, which is about 1/cI+l−5eC・℃.
Approximately 50% by volume of amorphous quartz powder in the composition
The thermal conductivity of the cured product of the conventional low-pressure transfer molding epoxy mold resin composition is approximately 0.5x.
10-3~1. Ox 10-'ca1/cm-se
The thermal conductivity was about Ce'c and the thermal conductivity was not sufficiently improved.
そこでさらに該モールド樹脂組成物の熱伝導率を高める
目的で充填材として石英粉末の中でも熱伝導率の高い結
晶性の石英粉末やマグネシア粉末を配合したモールド樹
脂組成物の開発がなされているが、満足しつる熱伝導率
を持つモールド樹脂組成物はこれまでのところえられて
いない。さらにはマグネシア粉末はそれ自身吸湿性が大
きいので、樹脂封止半導体素子の重要な性能である耐湿
信頼性に著しく劣ったものとなるという大きな問題点を
有している。Therefore, in order to further increase the thermal conductivity of the molding resin composition, molding resin compositions have been developed that contain crystalline quartz powder and magnesia powder, which have high thermal conductivity among quartz powders, as fillers. No molding resin composition with satisfactory thermal conductivity has been found so far. Furthermore, since magnesia powder itself is highly hygroscopic, it has a major problem in that the moisture resistance reliability, which is an important performance of resin-sealed semiconductor devices, is significantly inferior.
そこで本発明者らは、上記のような問題点を解決するべ
く鋭意研究を重ねた結果、半導体封止用樹脂組成物の主
要成分である充填材としてボロンナイトライド粉末を配
合したばあい、石英粉末、マグネシア粉末を配合したば
あいに比べて該樹脂組成物で封止された半導体素子の熱
放散性が大幅に向上し、かつ樹脂封止後の半導体素子の
耐湿特性などの信頼性にも何ら問題を生起しないことを
見出し、本発明を完成するに至った。As a result of extensive research to solve the above-mentioned problems, the present inventors found that when boron nitride powder is blended as a filler, which is the main component of a resin composition for semiconductor encapsulation, quartz The heat dissipation properties of semiconductor elements encapsulated with this resin composition are greatly improved compared to cases where powder or magnesia powder is blended, and the reliability such as moisture resistance of semiconductor elements after resin encapsulation is also improved. It was discovered that no problem occurred, and the present invention was completed.
すなわち本発明は低圧トランスファー成型用モールド樹
脂組成物などの半導体封止用樹脂組成物の熱伝導性を高
めることにより、該樹脂組成物で封止された半導体素子
の放熱性を高めて該半導体素子の動作安定性、寿命特性
などの製品性能を向上させることを目的とするものであ
る。That is, the present invention improves the thermal conductivity of a semiconductor encapsulating resin composition such as a molding resin composition for low-pressure transfer molding, thereby increasing the heat dissipation of a semiconductor element encapsulated with the resin composition. The purpose is to improve product performance such as operational stability and life characteristics.
[問題点を解決するための手段]
本発明はボロンナイトライドを主成分とする充填材およ
び母材からなることを特徴とする半導体封止用高熱伝導
性樹脂組成物に関する。[Means for Solving the Problems] The present invention relates to a highly thermally conductive resin composition for semiconductor encapsulation characterized by comprising a filler containing boron nitride as a main component and a base material.
[作 用]
本発明の半導体封止用高熱伝導性樹脂組成物には、該樹
脂組成物の主要成分の充填材成分として、ボロンナイト
ライド粉末が配合されているので、該樹脂組成物で封止
された高電力を消費する半導体装置の熱放散性が大幅に
向上し、上述の石英粉末やマグネシア粉末よりも大幅に
熱放散性が向上することは勿論、樹脂封止後の半導体装
置の耐湿特性などの信頼性にも優れているのである。[Function] The highly thermally conductive resin composition for semiconductor encapsulation of the present invention contains boron nitride powder as a main filler component of the resin composition. The heat dissipation properties of semiconductor devices that consume high power are significantly improved, and the heat dissipation properties are significantly improved compared to the above-mentioned quartz powder and magnesia powder. It also has excellent characteristics and reliability.
[実施例]
本発明において充填材の主成分としてはボロンナイトラ
イド(以下、BNという)粉末が用いられる。かかるB
N粉末の形状は破砕状、球状あるいはこれらの混合形状
のいずれであってもよいが、その粒径および粒度分布は
従来の石英粉末と同様に、平均粒径が約10〜20ρ前
後、最大粒径が約200ρ以下であるのが好ましい。最
大粒径が約200uInよりも大きいばあい金型の入口
であるゲートの開きが200〜30〇−程度なので詰っ
てしまうことがある。前記BN粉末の充填材中にしめる
比率は好ましくは80% (体積%、以下同様)以上、
さらに好ましくは95%以上である。[Example] In the present invention, boron nitride (hereinafter referred to as BN) powder is used as the main component of the filler. B
The shape of the N powder may be crushed, spherical, or a mixture thereof, but its particle size and particle size distribution are similar to conventional quartz powder, with an average particle size of about 10 to 20 ρ, and a maximum particle size of about 10 to 20 ρ. Preferably, the diameter is less than about 200ρ. If the maximum grain size is larger than about 200 uIn, the opening of the gate, which is the entrance to the mold, is about 200 to 300 mm, which may cause it to become clogged. The ratio of the BN powder in the filler is preferably 80% (volume %, the same applies hereinafter) or more,
More preferably, it is 95% or more.
本発明の半導体封止用高熱伝導性樹脂組成物を構成する
他の主要成分である樹脂母材としては、これまで用いら
れているエポキシ樹脂やシリコーン樹脂母材をそのまま
適用できる。As the resin base material, which is the other main component constituting the highly thermally conductive resin composition for semiconductor encapsulation of the present invention, the epoxy resin or silicone resin base material used so far can be used as is.
前記BN粉末を主成分とする充填材のエポキシ樹脂やシ
リコーン母材に対する充填率は30〜80%の範囲内で
あるのが好ましい。とくに充填材の形状は球状であるば
あい樹脂封止時の金型の摩耗や流動性が大幅に改善され
るので、金型の摩耗防止や成型性向上の点でとくに好ま
しい。The filling rate of the filler containing the BN powder as a main component with respect to the epoxy resin or silicone base material is preferably within the range of 30 to 80%. In particular, when the shape of the filler is spherical, mold wear and fluidity during resin sealing are greatly improved, which is particularly preferable in terms of preventing mold wear and improving moldability.
以下、本発明の作用効果を実施例および比較例を用いて
さらに具体的に説明するが、本発明はこれまでの詳細な
説明あるいは以下の実施例に限定されるものではなく、
とくに樹脂母材としてはPPS (ポリフェニレンス
ルファイド)などの熱可塑性樹脂なども適用できること
は明白である。Hereinafter, the effects of the present invention will be explained in more detail using Examples and Comparative Examples, but the present invention is not limited to the detailed explanations given so far or the Examples below.
In particular, it is obvious that thermoplastic resins such as PPS (polyphenylene sulfide) can also be used as the resin base material.
実施例1および比較例1
クレゾールノボラック型エポキシ樹脂を用いた低圧トラ
ンスファー成型用エポキシモールド樹脂母材に充填材と
して結晶性石英粉末を配合した従来仕様の半導体封止用
樹脂組成物を比較例1とし、ならびに充填材としてBN
粉末を配合した本発明の半導体封止用高熱伝導性樹脂組
成物を実施例1として半導体封止用樹脂組成物をvA$
1した。各充填材の平均粒径はいずれも約15〜20虜
、充填率は約50%である。Example 1 and Comparative Example 1 Comparative Example 1 is a resin composition for semiconductor encapsulation of conventional specifications in which crystalline quartz powder is blended as a filler into an epoxy mold resin base material for low-pressure transfer molding using a cresol novolac type epoxy resin. , as well as BN as filler
The highly thermally conductive resin composition for semiconductor encapsulation of the present invention containing the powder was prepared as Example 1, and the resin composition for semiconductor encapsulation was vA$
I did 1. The average particle size of each filler is about 15 to 20 particles, and the filling rate is about 50%.
えられた各樹脂組成物を用い、熱抵抗測定用の評価用ダ
イオードチップ(1,7n+n+x 1.7mm)を
モールドして、該モールドパッケージの熱抵抗を所定の
測定方法に従い測定した。その結果を第1表に示す。Using each of the obtained resin compositions, an evaluation diode chip (1.7n+n+x 1.7 mm) for measuring thermal resistance was molded, and the thermal resistance of the molded package was measured according to a predetermined measuring method. The results are shown in Table 1.
第 1 表 (注)θ :ダイオードのジャンクションと−A パッケージ周囲環境間の熱抵抗 を示し、θ の値が小さい程 −A 樹脂組成物の熱放散性がよいこ とを示す。Table 1 (Note) θ: Diode junction and -A Thermal resistance between package and surrounding environment , and the smaller the value of θ, the -A The resin composition has good heat dissipation properties. and
実施例2および比較例2
実施例1および比較例1でえた樹脂組成物を用い、64
×4にbitビデオRAMのモールドパッケージを作製
し、実施例2および比較例2とした。これらの175℃
における高温動作寿命時間(不良率が50%になるまで
の時間)を比較したところ、本発明の実施例1でえた樹
脂組成物を用いた方が比較例1でえた樹脂組成物を用い
た方に比べて2倍以上寿命時間が長く、かつ耐湿特性な
ど各種の信頼性特性項目においても何ら問題なかった。Example 2 and Comparative Example 2 Using the resin compositions obtained in Example 1 and Comparative Example 1, 64
A mold package of a bit video RAM was produced in a size 4×4, and a mold package was prepared as Example 2 and Comparative Example 2. These 175℃
When comparing the high temperature operation life time (time until the defective rate reaches 50%) in , it was found that using the resin composition obtained in Example 1 of the present invention was better than using the resin composition obtained in Comparative Example 1. It had a lifespan more than twice as long as that of the previous model, and there were no problems with various reliability characteristics such as moisture resistance.
[発明の効果1
以上の実施例および比較例より、本発明の半導体封止用
高熱伝導性樹脂組成物は熱放散性がよく半導体装置の動
作安定性、寿命特性にすぐれかつ耐湿性などの信頼性や
成型性にもすぐれたものであることがわかる。[Effect of the invention 1] From the above Examples and Comparative Examples, the highly thermally conductive resin composition for semiconductor encapsulation of the present invention has good heat dissipation properties, excellent operational stability and life characteristics of semiconductor devices, and reliable moisture resistance. It can be seen that it has excellent properties in terms of properties and moldability.
Claims (2)
母材からなることを特徴とする半導体封止用高熱伝導性
樹脂組成物。(1) A highly thermally conductive resin composition for semiconductor encapsulation, comprising a filler containing boron nitride as a main component and a base material.
、球状のものである特許請求の範囲第(1)項記載の半
導体封止用高熱伝導性樹脂組成物。(2) The highly thermally conductive resin composition for semiconductor encapsulation according to claim (1), wherein the filler containing boron nitride as a main component is spherical.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61069065A JPS62223246A (en) | 1986-03-25 | 1986-03-25 | Highly thermally conductive resin composition for use in sealing semiconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61069065A JPS62223246A (en) | 1986-03-25 | 1986-03-25 | Highly thermally conductive resin composition for use in sealing semiconductor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62223246A true JPS62223246A (en) | 1987-10-01 |
Family
ID=13391796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61069065A Pending JPS62223246A (en) | 1986-03-25 | 1986-03-25 | Highly thermally conductive resin composition for use in sealing semiconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62223246A (en) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55102636A (en) * | 1979-01-31 | 1980-08-06 | Hitachi Cable Ltd | Highly heat-conductive resin composition |
JPS56837A (en) * | 1979-06-15 | 1981-01-07 | Denki Kagaku Kogyo Kk | Heat-radiating sheet |
JPS57115853A (en) * | 1981-01-12 | 1982-07-19 | Hitachi Ltd | Resin-sealed semiconductor device |
JPS57137356A (en) * | 1981-02-19 | 1982-08-24 | Hitachi Cable Ltd | Heat conductive and electrical insulating composition |
JPS5913610A (en) * | 1982-07-15 | 1984-01-24 | Kaoru Umeya | Spherical granule of nitride ceramics and its manufacture |
JPS59145547A (en) * | 1984-01-26 | 1984-08-21 | Denki Kagaku Kogyo Kk | Manufacture of heat radiating sheet |
JPS6065041A (en) * | 1983-09-20 | 1985-04-13 | Denki Kagaku Kogyo Kk | Inorganic sphere and composition thereof |
JPS6084362A (en) * | 1983-10-15 | 1985-05-13 | Matsushita Electric Works Ltd | Resin composition |
JPS6084361A (en) * | 1983-10-15 | 1985-05-13 | Matsushita Electric Works Ltd | Resin composition |
JPS60219222A (en) * | 1984-03-28 | 1985-11-01 | シーメンス、アクチエンゲゼルシヤフト | Forming and coating material |
JPS6126654A (en) * | 1984-07-13 | 1986-02-05 | Matsushita Electric Works Ltd | Sealing epoxy resin molding material |
JPS61101523A (en) * | 1984-10-25 | 1986-05-20 | Toshiba Chem Corp | Sealing resin composition |
-
1986
- 1986-03-25 JP JP61069065A patent/JPS62223246A/en active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55102636A (en) * | 1979-01-31 | 1980-08-06 | Hitachi Cable Ltd | Highly heat-conductive resin composition |
JPS56837A (en) * | 1979-06-15 | 1981-01-07 | Denki Kagaku Kogyo Kk | Heat-radiating sheet |
JPS57115853A (en) * | 1981-01-12 | 1982-07-19 | Hitachi Ltd | Resin-sealed semiconductor device |
JPS57137356A (en) * | 1981-02-19 | 1982-08-24 | Hitachi Cable Ltd | Heat conductive and electrical insulating composition |
JPS5913610A (en) * | 1982-07-15 | 1984-01-24 | Kaoru Umeya | Spherical granule of nitride ceramics and its manufacture |
JPS6065041A (en) * | 1983-09-20 | 1985-04-13 | Denki Kagaku Kogyo Kk | Inorganic sphere and composition thereof |
JPS6084362A (en) * | 1983-10-15 | 1985-05-13 | Matsushita Electric Works Ltd | Resin composition |
JPS6084361A (en) * | 1983-10-15 | 1985-05-13 | Matsushita Electric Works Ltd | Resin composition |
JPS59145547A (en) * | 1984-01-26 | 1984-08-21 | Denki Kagaku Kogyo Kk | Manufacture of heat radiating sheet |
JPS60219222A (en) * | 1984-03-28 | 1985-11-01 | シーメンス、アクチエンゲゼルシヤフト | Forming and coating material |
JPS6126654A (en) * | 1984-07-13 | 1986-02-05 | Matsushita Electric Works Ltd | Sealing epoxy resin molding material |
JPS61101523A (en) * | 1984-10-25 | 1986-05-20 | Toshiba Chem Corp | Sealing resin composition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5742723B2 (en) | Mold for measuring fluid characteristics, method for measuring fluid characteristics, resin composition for semiconductor encapsulation, and method for manufacturing semiconductor device | |
JP2008163138A (en) | Semiconductor-sealing epoxy resin composition and semiconductor device | |
JPH04192446A (en) | Resin-sealed semiconductor device | |
JPS62240313A (en) | Resin for use in semiconductor sealing | |
JPS62223246A (en) | Highly thermally conductive resin composition for use in sealing semiconductor | |
JP2005200533A (en) | Epoxy resin composition for sealing semiconductor and resin-sealed semiconductor device | |
JPH11269350A (en) | Semiconductor device | |
JPS6191243A (en) | Resin composition for semiconductor sealing | |
TW202225244A (en) | Resin composition for encapsulating semiconductor and semiconductor device | |
JP4950010B2 (en) | Manufacturing method of epoxy resin composition for semiconductor encapsulation and manufacturing method of semiconductor device | |
JP2003213089A (en) | Epoxy resin composition for semiconductor sealing use and semiconductor device | |
JPH10173103A (en) | Epoxy resin compsn. for sealing semiconductor | |
JP2004115747A (en) | Resin composition for forming heat sink and device for encapsulating electronic part | |
JP2633856B2 (en) | Resin-sealed semiconductor device | |
JP3880211B2 (en) | Resin composition for sealing and semiconductor device | |
JPS62261161A (en) | Resin sealed semiconductor device | |
JPH1180509A (en) | Epoxy resin composition and semiconductor device | |
JP3973137B2 (en) | Epoxy resin composition and semiconductor device | |
JP2970184B2 (en) | Semiconductor encapsulant | |
JPH0260944A (en) | Molding resin composition | |
Tsuchida et al. | Aluminum Nitride Filler for Thermally Conductive Resin Materials | |
JP2002179763A (en) | Epoxy resin composition | |
JP2004027004A (en) | Semiconductor-sealing epoxy resin composition and semiconductor device | |
JP2000186214A (en) | Resin composition for encapsulation and semiconductor system | |
JP4380237B2 (en) | Thermosetting resin composition epoxy resin composition and semiconductor device |