JPS63310562A - Manufacture of paste type cadmium negative electrode - Google Patents

Manufacture of paste type cadmium negative electrode

Info

Publication number
JPS63310562A
JPS63310562A JP62147578A JP14757887A JPS63310562A JP S63310562 A JPS63310562 A JP S63310562A JP 62147578 A JP62147578 A JP 62147578A JP 14757887 A JP14757887 A JP 14757887A JP S63310562 A JPS63310562 A JP S63310562A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode
type cadmium
conductive layer
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62147578A
Other languages
Japanese (ja)
Other versions
JP2506777B2 (en
Inventor
Masako Kusaka
草鹿 雅子
Hideo Kaiya
英男 海谷
Katsumi Yamashita
勝己 山下
Yoshimasa Inaba
稲葉 吉尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62147578A priority Critical patent/JP2506777B2/en
Publication of JPS63310562A publication Critical patent/JPS63310562A/en
Application granted granted Critical
Publication of JP2506777B2 publication Critical patent/JP2506777B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/246Cadmium electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To uniformly form an alkali metal resistant conductive layer to increase the cycle life and high rate discharge performance by forming an organic polymer layer having a specified composition on the surface of the active material of a paste type cadmium electrode, then forming a conductive layer comprising alkali resistant metal on the surface by electroplating. CONSTITUTION:An organic polymer layer is formed on the surface of a paste type cadmium negative electrode, then a conductive layer comprising alkali resistant metal is formed on the surface by electroplating. The organic polymer consists of at least one organic material having at least one of allyl ring, substituted allyl ring, alkylene chain, -OH, -ONa, -O-Ni-O-, -NH2=NH, -H, -R (organic acid), and having at least one substituted group selected from C=O, C=C, CidenticalC, C=N, CidenticalN, N-CidenticalS, and N=N.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アルカリ蓄電池に用いられるペースト式カド
ミウム負極の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing a paste-type cadmium negative electrode for use in alkaline storage batteries.

従来の技術 近年、ペースト式カドミウム負極は、製造工程が簡単で
あり、製造コストが安く、高エネル、ギー密度が得られ
る等の理由から、アルカリ蓄電池に多く用いられるよう
になってきた。
BACKGROUND OF THE INVENTION In recent years, paste-type cadmium negative electrodes have been widely used in alkaline storage batteries because of their simple manufacturing process, low manufacturing cost, and high energy and energy density.

このようなペースト式カドミウム負極は、焼結式のもの
と異なり、活物質を保持する導電性骨格を持たないため
、電池充電時に生成する金属カドミウムの成長が芯材近
傍で起こり、極板表面層まで達しにくい。このため過充
電時に正極から発生する酸素ガスとの反応が効率的に行
われず、密閉形電池に用いた場合電池の内圧が高くなる
という欠点を有する。また、充放電サイクルの繰り返し
によシ、カドミウムの溶解析出が繰り返され、負極の変
形が起こり、短寿命になりやすいという欠点を有してい
た。
Unlike sintered type cadmium negative electrodes, these paste-type cadmium negative electrodes do not have a conductive skeleton that holds the active material, so the growth of metallic cadmium produced during battery charging occurs near the core material, causing the electrode plate surface layer to grow. difficult to reach. For this reason, the reaction with oxygen gas generated from the positive electrode during overcharging does not occur efficiently, and when used in a sealed battery, the internal pressure of the battery increases. Further, due to repeated charging and discharging cycles, cadmium is repeatedly dissolved and deposited, resulting in deformation of the negative electrode, which tends to shorten its lifespan.

発明が解決しようとする問題点 このような問題を解決するために、特公昭61−612
27号公報に見られるように、電極表面に電解ニッケル
めっきを施す方法が提案されているが、電極に直接ニッ
ケルめっきを行う為、表面のニッケルが均一になりにく
く、充分な効果が得られないという欠点を有していた。
Problems to be Solved by the Invention In order to solve these problems, the
As seen in Publication No. 27, a method of applying electrolytic nickel plating to the electrode surface has been proposed, but since nickel plating is performed directly on the electrode, it is difficult to make the nickel on the surface uniform, making it difficult to obtain sufficient effects. It had the following drawback.

また、特開昭60−63875号公報に見られるように
、電極表面に炭素粉末よりなる導電層を設ける方法も提
案されているが、めっきのような均一な導電層を設ける
のが困難であり、これも充分な効果が得られないという
欠点を有していた。
Furthermore, as seen in JP-A-60-63875, a method of providing a conductive layer made of carbon powder on the electrode surface has been proposed, but it is difficult to provide a uniform conductive layer like plating. , this also had the drawback that sufficient effects could not be obtained.

本発明は、以上のような従来の欠点を解消し、高性能の
ペースト式カドミウム負極を得ることを目的とする。
The present invention aims to eliminate the above-mentioned conventional drawbacks and to obtain a high-performance paste-type cadmium negative electrode.

問題点を解決するための手段 本発明のペースト式カドミウム負極の製造法は、電極の
活物質表面に有機ポリマー層を形成した後、電解めっき
を行い表面に耐アルカリ性金属による導電層を設けるも
のである。
Means for Solving the Problems The method for producing a paste-type cadmium negative electrode of the present invention is to form an organic polymer layer on the surface of the active material of the electrode, and then perform electrolytic plating to provide a conductive layer made of an alkali-resistant metal on the surface. be.

作  用 本発明によるペースト式カドミウム負極は、電極の活物
質表面に有機ポリマー層が形成させであるため、電解め
っきを行う際電極表面が滑かになり均一な層が形成され
やすくなる。さらに、特許請求の範囲第2項に掲げであ
る置換基を持つ有機物は、めっきの均一電着性、平滑性
を良くする光沢剤として一般に知られており、より滑か
なめつき層を形成することを可能とする。
Function: Since the paste type cadmium negative electrode according to the present invention has an organic polymer layer formed on the surface of the active material of the electrode, the electrode surface becomes smooth and a uniform layer is easily formed during electrolytic plating. Furthermore, the organic substance having a substituent listed in claim 2 is generally known as a brightening agent that improves uniform electrodeposition and smoothness of plating, and forms a smoother plated layer. is possible.

このように、本発明によるペースト式カドミウム負極は
、電極表面に、均一な耐アルカリ性金属による導電層を
形成させであるため、極板表面付近に金属カドミウムが
生成しやすく、過充電時に正極から発生する酸素ガスと
の反応がすみやかに行われ、電池内部圧力の上昇を防ぐ
ことが可能となる。
As described above, since the paste-type cadmium negative electrode according to the present invention has a uniform conductive layer made of alkali-resistant metal formed on the electrode surface, metal cadmium is likely to be generated near the electrode plate surface and generated from the positive electrode during overcharging. The reaction with oxygen gas occurs quickly, making it possible to prevent the internal pressure of the battery from increasing.

また、放電生成物の溶解、拡散を防止することも可能と
なシ、電池の充放電サイクル寿命が向上する。
Furthermore, it is also possible to prevent dissolution and diffusion of discharge products, thereby improving the charge/discharge cycle life of the battery.

実施例 以下実施例により本発明を詳述する。Example The present invention will be explained in detail with reference to Examples below.

平均粒径約1μの酸化カドミウム粉末に、ポリビニルア
ルコールのエチレンクリコール溶液ヲ加え、混練してペ
ースト状にする。このペーストを導電性支持体である厚
さ0.1mのニッケルメッキした開孔鋼板に塗着し、約
140℃で30分間乾燥し、厚さ約0.5簡の電極を得
た。
An ethylene glycol solution of polyvinyl alcohol is added to cadmium oxide powder with an average particle size of about 1 μm, and the mixture is kneaded to form a paste. This paste was applied to a nickel-plated perforated steel plate with a thickness of 0.1 m as a conductive support and dried at about 140° C. for 30 minutes to obtain an electrode with a thickness of about 0.5 m.

次に、ポリスチレンを重量比で0.5%含むキシレン窓
液にこの電極を約10秒間浸漬した後、80’Cで乾燥
させ、電極表面にポリスチレン層を形成させた。さらに
この電極を、硫酸ニッケル2aoy/l、塩化ニッケル
4st/l、*り酸3゜9/lを含むめっき浴中で、温
度20℃、電流密度o 、 sA/drf?で3o秒間
電解めっきを行ない、表面にニッケルめっき層を形成さ
せた。
Next, this electrode was immersed in a xylene window solution containing 0.5% polystyrene by weight for about 10 seconds, and then dried at 80'C to form a polystyrene layer on the electrode surface. Further, this electrode was placed in a plating bath containing 2 aoy/l of nickel sulfate, 4 st/l of nickel chloride, and 3°9/l of phosphoric acid at a temperature of 20°C, a current density of o, and sA/drf? Electrolytic plating was performed for 30 seconds to form a nickel plating layer on the surface.

次にこの電極をアルカリ溶液中で理論容量の約40%充
電し、水洗、乾燥後ペースト式カドミウム負極を得た。
Next, this electrode was charged to about 40% of its theoretical capacity in an alkaline solution, washed with water, and dried to obtain a paste-type cadmium negative electrode.

この負極をaとする。Let this negative electrode be a.

一方、有機ポリマーであるポリスチレンの層を形成させ
ずに、ニッケルめっきを直接電極に施した、他は同様の
構成による比較例のカドミウム負極を用意した。これを
bとする。
On the other hand, a cadmium negative electrode was prepared as a comparative example with the same structure except that the electrode was directly plated with nickel without forming a layer of polystyrene, which is an organic polymer. Let this be b.

さらに、上記の方法により表面に層を形成させない他は
同様の構成による比較例のカドミウム負極を用意した。
Furthermore, a cadmium negative electrode of a comparative example having the same structure except that no layer was formed on the surface by the above method was prepared.

これをCとする。Let this be C.

上記、a、  b、  a3種類のカドミウム負極を、
焼結式ニッケル正極と組み合せて、密閉形蓄電池を試作
し、サイクル寿命試験と、放電率特性試験および過充電
時の電池内圧試験を行なった。
Above, three types of cadmium negative electrodes a, b, a,
In combination with a sintered nickel positive electrode, a sealed storage battery was prototyped, and cycle life tests, discharge rate characteristics tests, and battery internal pressure tests during overcharging were conducted.

サイクル寿命特性は、so’cで%C相当の電流で4.
6時間充電し、1C相当の抵抗負荷で完全放電をする充
放電をくり返し、サイクルによる容量低下で評価した。
The cycle life characteristics are 4.0 at a current equivalent to %C at so'c.
The battery was charged for 6 hours and then completely discharged under a resistive load equivalent to 1 C. The battery was then repeatedly charged and discharged, and the capacity drop due to the cycles was evaluated.

放電率特性は、電池を20Cで0.10相当の電流で1
6時間充電し、1〜6C相当の電流で放電したときの放
電容量と、0.20相当の電流で放電したときの放電容
量との比率で評価した。また過充電時の電池内圧特性は
、20℃で54C〜3C相当の電流で過充電したときの
電池内圧のピーク値で評価した。
The discharge rate characteristics are as follows: the battery is discharged at 20C with a current equivalent to 0.10
The battery was charged for 6 hours and evaluated by the ratio of the discharge capacity when discharging at a current equivalent to 1 to 6 C and the discharge capacity when discharging at a current equivalent to 0.20. Further, the battery internal pressure characteristics during overcharging were evaluated by the peak value of the battery internal pressure when overcharging at 20° C. with a current equivalent to 54C to 3C.

第1図は、1サイクル目の容量を100とした場合の容
量維持率と、充放電サイクル数との関係を示す。aは本
発明の負極を用いた電池、b、  Cは比較のための負
極を用いた電池を示す。この結果から明らかなように、
電極表面にニツケルメッキ層を持つaおよびbは、電極
表面に層が形成されていない負極Cを用いた電池に比ベ
サイクル寿命が向上している。
FIG. 1 shows the relationship between the capacity retention rate and the number of charge/discharge cycles, assuming that the capacity at the first cycle is 100. A shows a battery using the negative electrode of the present invention, and b and C show batteries using negative electrodes for comparison. As is clear from this result,
Batteries a and b, which have a nickel plating layer on the electrode surface, have improved cycle life compared to batteries using negative electrode C, in which no layer is formed on the electrode surface.

各々の電池について、500サイクル経過後内部インピ
ーダンスを測定したところ、負極Cを用いた電池につい
ては著しく低下していたが、他はサイクル開始前とほと
んど差はなかった。またJ、Cの電池で、サイクル充放
電を繰り返すうちに放電不可能となったものを分解して
調べたところ、負極の著しい変形がみとめられたが、1
00oサイクル充放電を繰り返した後のaの電池を分解
したところ、サイクル開始前とほぼ変わりがなかった。
When the internal impedance of each battery was measured after 500 cycles, the internal impedance of the battery using negative electrode C was significantly lowered, but the other values were almost the same as before the start of the cycle. In addition, when we disassembled and examined the J and C batteries that could no longer be discharged after repeated charging and discharging cycles, we found that the negative electrode had significantly deformed.
When the battery a was disassembled after repeated charging and discharging at 00o cycles, it was almost the same as before the cycle started.

これらのことから、電極表面にめっきの層を持たない負
極Cは充放電を繰り返すうちに、負極活物質の溶解−析
出が繰り返され変形し、それによって電池内短絡がおこ
ったと考えられるが、負極a。
From these facts, it is thought that the negative electrode C, which does not have a plating layer on the electrode surface, deforms due to repeated dissolution and precipitation of the negative electrode active material during repeated charging and discharging, which caused a short circuit within the battery. a.

bではめっきの層により抑制されたと推定される。In case b, it is presumed that this was suppressed by the plating layer.

しかし、負極すは、負極aに比べてめっきの層が充分に
均一でないため、さらに充放電を繰り返すと、負極の変
形を防止することができなくなると思われる。
However, since the plating layer of the negative electrode A is not sufficiently uniform compared to that of the negative electrode A, it seems that if charging and discharging are repeated further, it will not be possible to prevent the negative electrode from deforming.

また、負極aに形成された有機ポリマー層が、負極の変
形を防止する役目を持つということも考えられる。
It is also conceivable that the organic polymer layer formed on the negative electrode a has a role of preventing deformation of the negative electrode.

第2図は、放電容量比と放電レートとの関係を示す図で
ある。図から明らかなように、めっきにより、放電レー
ト特性が向上している。これは、表面にめっきによる導
電層があるため、すみやかに電子の受は渡しが行われる
ので、高率による放電がしやすくなると思われる。また
、この傾向は、めっきが密で均一についた負極aのほう
に、より効果が現われると考えられる。
FIG. 2 is a diagram showing the relationship between discharge capacity ratio and discharge rate. As is clear from the figure, the plating improves the discharge rate characteristics. This is because there is a conductive layer formed by plating on the surface, so electrons can be quickly received and transferred, making it easier to discharge at a high rate. Moreover, this tendency is considered to be more effective on the negative electrode a, which is densely and uniformly plated.

第3図は、電池内ピーク圧力と充電レートとの関係を示
す図である。図から、めっきの層を持つaおよびbは、
Cに比べ特性が良くなっていることがわかる。これは、
極板表面に導電性の層があるため、表面付近に金属カド
ミウムの層が生成しゃすくなシ、正極から発生する酸素
ガスとの反応が効率的に行われるものと思われる。また
、このガス吸収能力についても、めっきの状態が均一で
あるほうが、より効果が大きいと思われる。
FIG. 3 is a diagram showing the relationship between the peak pressure inside the battery and the charging rate. From the figure, a and b with a plating layer are
It can be seen that the characteristics are better than that of C. this is,
Since there is a conductive layer on the surface of the electrode plate, it is thought that a metal cadmium layer is not formed near the surface and that the reaction with oxygen gas generated from the positive electrode takes place efficiently. Also, regarding this gas absorption ability, it seems that the more uniform the plating is, the more effective it is.

なお、実施例では有機ポリマー層にポリスチレンを用い
たが、他の耐アルカリ性有機ポリマーでも同様の効果が
得られる場合がある。一般に、めっきを均一としかつも
ろくなるのを防ぐために、めっき浴に光沢剤と呼ばれる
有機物を添加するが、この光沢剤として働くもののうち
、ポリマー層を形成するものであればいずれを使用して
も良い。
Although polystyrene was used for the organic polymer layer in the examples, similar effects may be obtained with other alkali-resistant organic polymers. Generally, an organic substance called a brightener is added to the plating bath in order to make the plating uniform and prevent it from becoming brittle. Among the brighteners, any one that forms a polymer layer can be used. good.

この光沢剤のポリマー層が電極表面を滑らかにし、さら
に光沢めっきを形成させる働きを持つ。
This polymer layer of brightener smoothes the electrode surface and creates a glossy plating.

また、実施例ではニッケルめっきについて述べたが、銅
めっきなど他の耐アルカリ性金属めっきを用いても同様
の効果が得られる。
Furthermore, although nickel plating has been described in the examples, similar effects can be obtained by using other alkali-resistant metal platings such as copper plating.

発明の効果 以上のように、本発明によれば、アルカリ蓄電池のサイ
クル寿命特性、高率放電特性、酸素ガス吸収特性を向上
させる効果が得られる。
Effects of the Invention As described above, according to the present invention, the effect of improving the cycle life characteristics, high rate discharge characteristics, and oxygen gas absorption characteristics of an alkaline storage battery can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はニッケルーカドミウム蓄電池の容量維持率と充
放電サイクル数との関係を示す図、第2図は放電容量比
率と放電レートとの関係を示す図、第3図は電池内ピー
ク圧力と充電レートとの関係を示す図でちる。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名C″
−#   0    ◆ Oどゆ    歳ν    600&ν    I火シ
充方丈電サイクル数 第2図 放電レートCCへす 第3図 充電レート (C帆A)
Figure 1 shows the relationship between the capacity retention rate and the number of charge/discharge cycles of a nickel-cadmium storage battery, Figure 2 shows the relationship between the discharge capacity ratio and the discharge rate, and Figure 3 shows the relationship between the peak pressure inside the battery and the number of charge/discharge cycles. A diagram showing the relationship with the charging rate. Name of agent: Patent attorney Toshio Nakao and 1 other person C''
-# 0 ◆ O Doyu Years ν 600 & ν I Fire Charging Hojo Electric Cycle Number Figure 2 Discharging Rate CC Figure 3 Charging Rate (C Sailing A)

Claims (2)

【特許請求の範囲】[Claims] (1)電極の活物質表面に、有機ポリマー層を形成した
後、電解めっきを行い表面に耐アルカリ性金属による導
電層を設けることを特徴とするペースト式カドミウム負
極の製造法。
(1) A method for producing a paste-type cadmium negative electrode, which comprises forming an organic polymer layer on the surface of the active material of the electrode, and then performing electrolytic plating to provide a conductive layer made of an alkali-resistant metal on the surface.
(2)有機ポリマーが、アリル環、置換アリル環、アル
キレン鎖、−OH、−ONa、▲数式、化学式、表等が
あります▼、−NH_2、>NH、−H、−R(有機酸
)のうち少なくとも一つおよびC=O、C=C、C≡C
、C=N、C≡N、N−C≡S、N=Nのうちの少なく
とも一つの置換基を有する一種あるいはそれ以上の有機
物を主体とする特許請求の範囲第1項記載のペースト式
カドミウム負極の製造法。
(2) Organic polymers include allyl rings, substituted allyl rings, alkylene chains, -OH, -ONa, ▲mathematical formulas, chemical formulas, tables, etc.▼, -NH_2, >NH, -H, -R (organic acids). at least one of them and C=O, C=C, C≡C
, C=N, C≡N, N-C≡S, and N=N, the paste type cadmium according to claim 1, which is mainly composed of one or more organic substances having at least one substituent group. Manufacturing method of negative electrode.
JP62147578A 1987-06-12 1987-06-12 Method for producing paste type cadmium negative electrode Expired - Lifetime JP2506777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62147578A JP2506777B2 (en) 1987-06-12 1987-06-12 Method for producing paste type cadmium negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62147578A JP2506777B2 (en) 1987-06-12 1987-06-12 Method for producing paste type cadmium negative electrode

Publications (2)

Publication Number Publication Date
JPS63310562A true JPS63310562A (en) 1988-12-19
JP2506777B2 JP2506777B2 (en) 1996-06-12

Family

ID=15433526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62147578A Expired - Lifetime JP2506777B2 (en) 1987-06-12 1987-06-12 Method for producing paste type cadmium negative electrode

Country Status (1)

Country Link
JP (1) JP2506777B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0290461A (en) * 1988-09-27 1990-03-29 Matsushita Electric Ind Co Ltd Paste type cadmium negative electrode and its manufacture

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63105464A (en) * 1986-10-22 1988-05-10 Matsushita Electric Ind Co Ltd Manufacture of cadmium electrode for battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63105464A (en) * 1986-10-22 1988-05-10 Matsushita Electric Ind Co Ltd Manufacture of cadmium electrode for battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0290461A (en) * 1988-09-27 1990-03-29 Matsushita Electric Ind Co Ltd Paste type cadmium negative electrode and its manufacture
JP2684707B2 (en) * 1988-09-27 1997-12-03 松下電器産業株式会社 Paste type cadmium negative electrode

Also Published As

Publication number Publication date
JP2506777B2 (en) 1996-06-12

Similar Documents

Publication Publication Date Title
US3642539A (en) Secondary battery with indate ion in the electrolyte
US4938780A (en) Paste type cadmium anode and method for making same
JP2506777B2 (en) Method for producing paste type cadmium negative electrode
JP3644427B2 (en) Cadmium negative electrode and nickel cadmium storage battery containing the same
JPS63310563A (en) Manufacture of paste type cadmium negative electrode
JPS63310561A (en) Manufacture of paste type cadmium negative electrode
US3258362A (en) Method of producing a silver oxide electrode structure
JP3764978B2 (en) Manufacturing method of lead acid battery
JPS6161227B2 (en)
JPS63170851A (en) Cadmium electrode for alkaline storage battery
JPS5814465A (en) Manufacture of cadmium negative electrode
JPS6164078A (en) Alkaline zinc storage battery
JP2913482B2 (en) Lead storage battery
JPS63146352A (en) Paste type cadmium negative electrode
JPS5832363A (en) Manufacture of negative cadmium electrode for alkaline storage battery
JP2925578B2 (en) Method for manufacturing electrode plate for storage battery
JPH07107844B2 (en) Manufacturing method of cadmium electrode for battery
JP2810460B2 (en) Positive plate for alkaline storage battery
JPS6215994B2 (en)
JPS63310565A (en) Manufacture of paste type cadmium negative electrode
JPS6334852A (en) Cadmium electrode for cell
JPS6329446A (en) Fmanufacture of cadmium electrode for cell
JPS60258854A (en) Method of manufacturing paste type cadmium negative pole
JPS63158746A (en) Paste type cadmium negative electrode
JP2000277105A (en) Manufacture of sintered nickel electrode for alkaline storage battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 12