JPS63310161A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS63310161A
JPS63310161A JP14535387A JP14535387A JPS63310161A JP S63310161 A JPS63310161 A JP S63310161A JP 14535387 A JP14535387 A JP 14535387A JP 14535387 A JP14535387 A JP 14535387A JP S63310161 A JPS63310161 A JP S63310161A
Authority
JP
Japan
Prior art keywords
layer
conductivity type
base
buried
buried layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14535387A
Other languages
Japanese (ja)
Inventor
Tatsuo Tanaka
達夫 田中
Kazushige Kojika
小鹿 和繁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tosbac Computer System Co Ltd
Toshiba Electronic Device Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Microelectronics Corp
Tosbac Computer System Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Microelectronics Corp, Tosbac Computer System Co Ltd filed Critical Toshiba Corp
Priority to JP14535387A priority Critical patent/JPS63310161A/en
Publication of JPS63310161A publication Critical patent/JPS63310161A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To realize a desired characteristic by the use of a small area so as to suppress an increase in a chip size, by forming a buried layer and a third layer, which penetrates through a base region of a transistor and reaches the buried layer, so as to compose a capacity (large capacity). CONSTITUTION:A P<+> layer (large in its concentration) 21 is first formed by diffusion in a region 15, where a base P<+> (small in its concentration) of an NPN transistor Q0 is originally formed by diffusion, as shown in hatching, until it reaches a buried layer 14. This P<+> layer 21 is formed together with an element isolation P<+> layer 13, and so consequently a capacitance (junction capacitance can be formed of the P<+> layer 21 and the N<+> buried layer 14. Afterwards a base layer P<+> layer 15 and the like are formed. Accordingly a desired characteristic can be realized by the use of a small area, and also an increase in a chip size can be suppressed.

Description

【発明の詳細な説明】 [発明の目、的コ (産業上の利用分野) 本発明は複合素子からなる半導体装置に関する。[Detailed description of the invention] [Aim of invention, target (Industrial application field) The present invention relates to a semiconductor device comprising a composite element.

(従来の技術) この種の複合素子を用いた一応用回路例を第2図に示す
。この回路は、定電流源I、によりトランジスタQCs
・・・Q8.・・・にベース電流を供給するが、この場
合ベース電流”1211113 t・・・に工りトラン
ジスタQ、のコレクタ電流ICQ1が小となって、出力
電流”l * xss・・・も小となり(ミラー特性)
誤差が生じるので、これを防ぐためトランジスタQ0を
設け、このQoの発振防止のために容量Cと抵抗R0を
設けたものである。第2図の例で上記複合素子は点線の
部分1つまりトランジスタQ0及び容量Cである。
(Prior Art) An example of an applied circuit using this type of composite element is shown in FIG. This circuit consists of a constant current source I, a transistor QCs
...Q8. ..., but in this case, the base current "1211113t..." makes the collector current ICQ1 of the transistor Q small, and the output current "l*xss..." also becomes small ( mirror characteristics)
Since errors occur, a transistor Q0 is provided to prevent this, and a capacitor C and a resistor R0 are provided to prevent Qo from oscillating. In the example of FIG. 2, the composite element is the dotted line portion 1, that is, the transistor Q0 and the capacitor C.

第3図(a)は上記複合素子部のパターン平面図、同図
(日は同断面図、同図(C)は同等価回路図であり、1
1はP型基板、12はN型エピタヤシャル層、13はP
型素子分離用拡散層、14はN型埋め込み層、15はP
型拡散層、16はN型拡散層、17は電極取り出し部で
ある。ここで容量「c = c、1+CCB」である。
FIG. 3(a) is a pattern plan view of the above-mentioned composite element part;
1 is a P-type substrate, 12 is an N-type epitaxial layer, and 13 is a P-type substrate.
14 is an N type buried layer, 15 is a P type element isolation diffusion layer.
16 is an N-type diffusion layer, and 17 is an electrode extraction portion. Here, the capacity is "c=c, 1+CCB".

(発明が解決しようとする問題点) 上記従来の複合素子の欠点は、 (イ) 2素子(QOとC)が別々に構成されるため、
素子に占める面積が広くなってチップサイズが大となり
、コストアップにつながる。
(Problems to be Solved by the Invention) The disadvantages of the above-mentioned conventional composite elements are: (a) Since the two elements (QO and C) are configured separately,
This increases the area occupied by the device and increases the chip size, leading to an increase in cost.

(ロ) トランジスタQoのコレクタ・ペース間寄生容
量でCを得る場合は、単位面積当りの容量が比較的小さ
いので、容量を増大させる場合には、Cを別構成とせず
に1素子構成とすると、ベースP+領域15を広くとる
必要があり、素子の面積が広くなってしまう。
(b) When obtaining C from the collector-pace parasitic capacitance of the transistor Qo, the capacitance per unit area is relatively small, so if you want to increase the capacitance, use a single element configuration instead of using a separate configuration for C. , it is necessary to make the base P+ region 15 wide, and the area of the element becomes large.

そこで本発明の目的とするところは、モノリシック集積
回路において、所望の特性を小さい面積で実現し、チッ
プサイズの増大?抑える半導体装[(複合素子)を提供
することにある。
Therefore, it is an object of the present invention to realize desired characteristics in a small area in a monolithic integrated circuit, thereby increasing the chip size. Our objective is to provide a semiconductor device (composite element) that can reduce

[発明の構成] (問題点を解決するための手段と作用)本発明は、第1
導電型基体と、この基体の上に形成された第2導電型の
第1の層と、前記基体と第1の1との間に形成された第
2導電型埋め込み層と、前記第1の層に形成された第1
導電型の第2の層と、この層を貫通して前記埋め込み層
に達する高α度の第1導電型の第3の層と、前記第2の
層内にあって前記第3の層以外の部分に形成された第2
導電型の第4の層と、前記第1の層内にあって前記第2
の層以外の部分に形成された第2導電塑の第5の層とを
具備し、前記埋め込み層と第3の層との間に容量を形成
したことを特徴とする。即ち本発明はトランジスタのベ
ース領域全貫通して埋め込み層に達する8g3の層と埋
め込み層とで容it(容量大)を構成することにエリ、
従来技術の寄生容t(容量小)によらず、2素子別別構
成とする必要がなく、所望の特性を小さな面積で実現で
きるようにしたものである。
[Structure of the invention] (Means and effects for solving the problems) The present invention has the following features:
a conductivity type base, a second conductivity type first layer formed on the base, a second conductivity type buried layer formed between the base and the first layer; The first formed in the layer
a second layer of conductivity type, a third layer of first conductivity type with a high α degree that penetrates this layer and reaches the buried layer, and a layer other than the third layer within the second layer. The second part formed in
a fourth layer of conductivity type;
and a fifth layer of second conductive plastic formed on a portion other than the layer, and a capacitor is formed between the buried layer and the third layer. That is, the present invention has an advantage in that the capacity (large capacity) is formed by the 8g3 layer that penetrates the entire base region of the transistor and reaches the buried layer, and the buried layer.
This does not require the parasitic capacitance t (small capacitance) of the prior art, and there is no need to configure two separate elements, making it possible to achieve desired characteristics in a small area.

(実施例) 以下図面を参照して本発明の一実施例を説明する。第1
図(−は同実施例の)々ターン平面図、同図(b)は同
断面図、同図(dは同等価回路図であるが、これらは第
3図のものと対応するので、対応個所には同一符号を付
して説明を省略し、特徴とする点の説明を行なう。本実
施例の特徴は、従来(第3図(b) ) NPN )ラ
ンジスタQ0のベースP”(濃度小で例えばρ8幸20
0Ω/口)を拡散形成していた領域15に、第1図にノ
・ツチングで示す如くP+層(濃度大で例えばρ8中1
0Ω/口)2z1ks先に埋め込み層14に達するまで
拡散形成する。このP+層21は素子分離用P+層13
といっしょに形成すればよい。これでP+層21とN+
埋め込み層14による容f(接合容f)C=Ccllが
形成できた。その後ベースP+層15等を形成すればよ
い。
(Example) An example of the present invention will be described below with reference to the drawings. 1st
The figure (- indicates the same embodiment) is a turn plan view, the figure (b) is the same sectional view, and the figure (d is the equivalent circuit diagram), but these correspond to those in Figure 3, so there is no correspondence between them. The same reference numerals are used to omit the explanation, and the characteristic points will be explained.The characteristic of this embodiment is that the base P'' (low concentration) of the conventional (FIG. 3(b)) For example, ρ8 Ko20
In the region 15 where a P+ layer (with a high concentration, e.g. 1 in ρ8) was formed by diffusion, as shown by
0Ω/portion) 2z1ks before reaching the buried layer 14. This P+ layer 21 is the P+ layer 13 for element isolation.
It can be formed together with Now P+ layer 21 and N+
A capacitance f (junction capacitance f) C=Ccll was formed by the buried layer 14. After that, the base P+ layer 15 and the like may be formed.

また第1図(b)の点線で囲まれた領域にディープ(D
eep) N+を打ち込むことで、コレクタを極取り出
し用N+層と埋め込み層14間の抵抗r。を小さくする
ことができる。このディージN十層22は、使用目的に
よっては不要であるが、抵抗r(は高周波特性に悪影替
を与えるものである。
Also, in the area surrounded by the dotted line in Fig. 1(b),
eep) By implanting N+, the resistance r between the N+ layer for extracting the collector pole and the buried layer 14 is increased. can be made smaller. Although this DigiN layer 22 is unnecessary depending on the purpose of use, the resistor r (gives a negative impact on the high frequency characteristics).

第1図のようにNPN )ランゾスタQ0のベース領域
15に、P+層21を埋め込み層14に達するまで拡散
形成することにエリ、従来技術(第3図)のトランジス
タQ0のベース・コレクタ間寄生容量(容量小)が、第
1図ではC==C,′c(容量大)となって、第3図の
如き2累子構成をする必要がなくなり、所望の特性を小
さな面積で実現できた。
As shown in FIG. 1, the P+ layer 21 is diffused into the base region 15 of the NPN (NPN) Lanzoster Q0 until it reaches the buried layer 14, and the parasitic capacitance between the base and collector of the transistor Q0 of the prior art (FIG. 3) is formed. (small capacitance) becomes C==C,'c (large capacitance) in Fig. 1, eliminating the need for a two-regulator configuration as shown in Fig. 3, and achieving the desired characteristics in a small area. .

[発明の効果] 以上説明した如く本発明によれば、モノリシック集積回
路において、所望の特性を小さい面積で実現し、チップ
サイズの増大を抑える半導体装!(複合素子)を提供す
ることができる。
[Effects of the Invention] As explained above, the present invention provides a semiconductor device that achieves desired characteristics in a small area in a monolithic integrated circuit and suppresses increase in chip size! (composite element).

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) 、 (b) 、 (clはそれぞれ本発
明の一実施例の)J?ターン平面図、断面図、等価回路
図、第2図は複合素子を使用した一応用回路図、第3図
(ml。 (b)、(c)はそれぞれ従来装置の・母ターン平面図
、断面図、等価回路図である。 1・・・複合素子、11・・・P型基板、12・・・N
型工eタキシャル層、13・・・P型素子分離用拡牧層
、14・・・N型埋め込み層、15・・・P型拡散層、
16・・・N型拡欣層(エミッタ)、17・・・電極取
り出し部、21・・・P堰高濃度拡散層、22・・・デ
ィーグN型層、Qo・・・NPN トランジスタ、C・
・・容量、rc・・・寄生抵抗。 出願人代理人  片理士 鈴 江 武 彦(a) (b) 第1図 第2図 (a) (b) 第3図
FIG. 1 (a), (b), (each cl is an embodiment of the present invention) J? Turn plan view, cross-sectional view, and equivalent circuit diagram; Figure 2 is an application circuit diagram using a composite element; Figure 3 (ml.) (b) and (c) are the mother turn plan view and cross-section of a conventional device, respectively. 1 is an equivalent circuit diagram. 1... Composite element, 11... P-type substrate, 12... N
Mold work e taxial layer, 13... P-type element isolation expansion layer, 14... N-type buried layer, 15... P-type diffusion layer,
16... N type expansion layer (emitter), 17... Electrode extraction part, 21... P weir high concentration diffusion layer, 22... Deag N type layer, Qo... NPN transistor, C.
...capacitance, rc...parasitic resistance. Applicant's agent Takehiko Suzue (a) (b) Figure 1 Figure 2 (a) (b) Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)第1導電型基体と、この基体の上に形成された第
2導電型の第1の層と、前記基体と第1の層との間に形
成された第2導電型埋め込み層と、前記第1の層に形成
された第1導電型の第2の層と、この層を貫通して前記
埋め込み層に達する高濃度の第1導電型の第3の層と、
前記第2の層内にあって前記第3の層以外の部分に形成
された第2導電型の第4の層と、前記第1の層内にあっ
て前記第2の層以外の部分に形成された第2導電型の第
5の層とを具備し、前記埋め込み層と第3の層との間に
容量を形成したことを特徴とする半導体装置。
(1) a first conductivity type base, a second conductivity type first layer formed on the base, and a second conductivity type buried layer formed between the base and the first layer; , a second layer of the first conductivity type formed on the first layer, and a third layer of the first conductivity type with a high concentration penetrating this layer and reaching the buried layer;
a fourth layer of a second conductivity type formed in a portion of the second layer other than the third layer; and a fourth layer of a second conductivity type formed in a portion of the first layer other than the second layer. a fifth layer of a second conductivity type, and a capacitor is formed between the buried layer and the third layer.
(2)前記第5の層と埋め込み層とをつなぐ第2導電型
のディープ層を形成したことを特徴とする特許請求の範
囲第1項に記載の半導体装置。
(2) The semiconductor device according to claim 1, further comprising a deep layer of a second conductivity type that connects the fifth layer and the buried layer.
(3)前記第3の層は素子分離用の第1導電型の高濃度
層といっしょに形成したものであることを特徴とする特
許請求の範囲第1項に記載の半導体装置。
(3) The semiconductor device according to claim 1, wherein the third layer is formed together with a first conductivity type high concentration layer for element isolation.
JP14535387A 1987-06-12 1987-06-12 Semiconductor device Pending JPS63310161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14535387A JPS63310161A (en) 1987-06-12 1987-06-12 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14535387A JPS63310161A (en) 1987-06-12 1987-06-12 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS63310161A true JPS63310161A (en) 1988-12-19

Family

ID=15383231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14535387A Pending JPS63310161A (en) 1987-06-12 1987-06-12 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS63310161A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4975281A (en) * 1972-11-24 1974-07-19
JPS55143064A (en) * 1979-04-24 1980-11-08 Nec Corp Semiconductor device
JPS5771161A (en) * 1980-10-22 1982-05-01 Hitachi Ltd Semiconductor junction capacity device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4975281A (en) * 1972-11-24 1974-07-19
JPS55143064A (en) * 1979-04-24 1980-11-08 Nec Corp Semiconductor device
JPS5771161A (en) * 1980-10-22 1982-05-01 Hitachi Ltd Semiconductor junction capacity device

Similar Documents

Publication Publication Date Title
JPH022664A (en) Semiconductor device and its manufacture
US3584266A (en) Depletion layer capacitor in particular for monolithic integrated circuits
JPH01146352A (en) Integrated structure which contains active and passive devices in insulatng pocket and operates at voltage higher than breakdown strength between respective devices and pocket containing them power semiconductor device
JP2000277621A (en) Semiconductor device
JP3145455B2 (en) Semiconductor integrated circuit device
JPS63310161A (en) Semiconductor device
JPH0797553B2 (en) NPN equivalent structure having a breakdown voltage greater than the intrinsic breakdown voltage of the NPN transistor
JP2587424B2 (en) Method for manufacturing semiconductor integrated circuit device
JPS5940298B2 (en) bipolar transistor
JP3041908B2 (en) Semiconductor device
JPS6118344B2 (en)
JPH01194452A (en) Integrated circuit device
JPS5916414B2 (en) semiconductor equipment
JPS6140062A (en) Semiconductor device
JPS648924B2 (en)
JPS63300552A (en) Semiconductor integrated circuit device
JPS62202567A (en) Optical sensor and manufacture of the same
JPH04112564A (en) Semiconductor device
JPS6225264B2 (en)
JPS5914670A (en) Transistor
JPS6132823B2 (en)
JPS61135159A (en) Semiconductor integrated circuit
JPS6030106B2 (en) complementary integrated circuit
JPS5922363A (en) Darlington connected transistor
JPH01286356A (en) Semiconductor integrated circuit