JPS63308956A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63308956A
JPS63308956A JP14658987A JP14658987A JPS63308956A JP S63308956 A JPS63308956 A JP S63308956A JP 14658987 A JP14658987 A JP 14658987A JP 14658987 A JP14658987 A JP 14658987A JP S63308956 A JPS63308956 A JP S63308956A
Authority
JP
Japan
Prior art keywords
well
containing glass
phosphorus
insulating film
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14658987A
Other languages
Japanese (ja)
Other versions
JPH0671075B2 (en
Inventor
Tokujiro Watanabe
渡辺 徳二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62146589A priority Critical patent/JPH0671075B2/en
Publication of JPS63308956A publication Critical patent/JPS63308956A/en
Publication of JPH0671075B2 publication Critical patent/JPH0671075B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent disconnection in a metallic interconnecting layer due to difference of levels, by performing a two-step etching process for forming an opening for Schottky barrier diode in a phosphorus-containing glass film, such that the glass film is isotropically etched until the thickness thereof is halved approximately in the first step and then the rest is etched anisotropically in the second step. CONSTITUTION:A semiconductor substrate 1 of one conductivity type is provided with a well 2 of the opposite conductivity type on a principal face thereof. A field oxide film 4 is formed selectively on the surface of the well 2 so as to isolate an element forming region from a contact region, and a first insulating film 3 is provided on the surface of the well 2 surrounded by the field oxide film 4. Then, a phosphorus- containing glass layer 8 is deposited all over the field oxide film 4 and the first insulating film 3. The phorophorus-containing glass layer 8 located on the element forming region is etched isotropically until its thickness is reduced to about a half. Subsequently, the rest of the phosphorus-containing glass layer 8 is removed by anisotropic etching to form an opening having a crateriform cross section. The first insulating film 3 exposed on the element forming region is removed by isotropic etching. In this manner, disconnection of a metallic interconnecting layer can be prevented effectively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特に集積回路に
ショットキー・バリア・ダイオードの回路を有する半導
体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of manufacturing a semiconductor device having a Schottky barrier diode circuit in an integrated circuit.

〔従来の技術〕[Conventional technology]

最近ICカード等の応用発展に伴いLSIチ、ツブに外
部直流′rに源を直接に接続しないでIC動作電力を供
給する方法が1重々検討されている。
Recently, with the development of applications such as IC cards, methods of supplying IC operating power to LSI chips and chips without directly connecting an external direct current source to an external DC source have been extensively studied.

例えば、高集積化・多機能化に有利な5v系のシリコン
ゲート開O8形LSI等に、内蔵するダイオードブリッ
ジで交流電力を整流する方法である。
For example, there is a method of rectifying AC power using a built-in diode bridge in a 5V silicon gate open O8 type LSI, which is advantageous for high integration and multifunctionality.

この場合、整流能率の良いダイオード特性として、低い
順方向立上り電圧および浸れた逆方向特性が要求される
In this case, low forward rising voltage and steep reverse characteristics are required as diode characteristics with good rectification efficiency.

そこでショットキー・バリヤ・ダイオード(以下SBD
と云う)が注目され、シリコンゲーFMO8形LSIに
5Bi)回路を付加させる製造技術が必要となってきた
Therefore, Schottky barrier diode (SBD)
5Bi) has attracted attention, and a manufacturing technology has become necessary to add a 5Bi) circuit to a silicon game FMO8 type LSI.

第2図(a)〜(d)は従来の半導体装置の製造方法の
一例を説明するだめの工程順に示した半導体チ。
FIGS. 2(a) to 2(d) are semiconductor chips shown in the order of steps to explain an example of a conventional method for manufacturing a semiconductor device.

ブの断面図である。FIG.

第2図(a)に示すように%p形半導体基板1の表面に
リンイオンを注入し、1200℃の高温の窒素ガス中で
熱処理しnウェル2を形成し、周知のLOCO8技iに
よりコンタクト形成領域とSBD形成領域とを区画する
厚さが約1μmのフィールド酸化膜4を形成し、かつこ
のフィールド酸化膜4に四重れたnウェル2の表面に厚
さが約20nmの第1の酸化膜3を形成する。
As shown in FIG. 2(a), phosphorus ions are implanted into the surface of a p-type semiconductor substrate 1, heat treated in nitrogen gas at a high temperature of 1200°C to form an n-well 2, and contacts are formed using the well-known LOCO8 technique. A field oxide film 4 with a thickness of about 1 μm is formed to partition the region and the SBD formation region, and a first oxide film with a thickness of about 20 nm is formed on the surface of the n-well 2 quadrupled on this field oxide film 4. A film 3 is formed.

次に、ヒ素イオンを加速電圧70 keV 、ドーズ量
1.0X1016/crAで注入し、nウェル電源とな
るn十拡散層5を形成し、SBD形成領域にはホウ素イ
オン注入を加速電圧50keV、ドーズ量1.0×10
137cmで行ない、低不純物濃度のp−膨拡散層6お
よび高不純物濃度のp十形拡散層7を形成する。
Next, arsenic ions are implanted at an accelerating voltage of 70 keV and a dose of 1.0×1016/crA to form an n-well diffusion layer 5 that serves as an n-well power supply, and boron ions are implanted into the SBD formation region at an accelerating voltage of 50 keV and a dose of 1.0×1016/crA. Amount 1.0×10
A p-swelling diffusion layer 6 with a low impurity concentration and a p-domain diffusion layer 7 with a high impurity concentration are formed.

次に、全面にCVD法により膜厚1.2μm程度のホウ
リン珪酸ガラス(以下npsoと云う)層8を堆積させ
た後、900℃程度のスチーム処理によりBPSG膜8
の段差部の表面を平坦化する。
Next, a borophosphosilicate glass (NPSO) layer 8 with a thickness of about 1.2 μm is deposited on the entire surface by the CVD method, and then a BPSG film 8 is formed by steam treatment at about 900°C.
Flatten the surface of the stepped portion.

第2図(b)に示すように、n+i敗層5等の接続のた
めに、BPSG暎8のコンタクト部形成領域に異方性エ
ツチングにより開孔してコンタクト開孔部9′を形成す
る。
As shown in FIG. 2(b), in order to connect the n+i failure layer 5, etc., a contact opening 9' is formed by anisotropic etching in the contact forming region of the BPSG layer 8. As shown in FIG.

次に、全表面に多結晶シリコン層13を薄く成長させる
Next, a thin polycrystalline silicon layer 13 is grown over the entire surface.

第2図(C)Vこ示すように、SBD形成形成領域長結
晶シリコン層13を除去したのち、フッ酸系溶液を用い
て等方性エツチングすることにより底部がp+十形拡散
層の約半分を露出するような皿形のSBD用開孔開孔部
15成する。
As shown in FIG. 2(C)V, after removing the long crystal silicon layer 13 of the SBD formation region, isotropic etching is performed using a hydrofluoric acid solution so that the bottom portion is approximately half of the p+ dec-shaped diffusion layer. A dish-shaped SBD aperture 15 is formed to expose the SBD.

第2図(d)に示すように、半導体チップの全表面にア
ルミニウム蒸着を行ない、金属配線層12.12’を形
成した後水素ガス中でアルミニウム・シリコンの合金処
理を行い、金14配線層12とnウェル2との間にショ
ットキー・バリヤ接合19を形成する。
As shown in FIG. 2(d), aluminum is deposited on the entire surface of the semiconductor chip to form metal wiring layers 12 and 12', and then aluminum-silicon alloy treatment is performed in hydrogen gas to form a gold 14 wiring layer. A Schottky barrier junction 19 is formed between 12 and n-well 2.

第3図は第2図(d)に対応する平面図である。FIG. 3 is a plan view corresponding to FIG. 2(d).

第2図(diは、第3図の半導体チップのA−A’線断
面図に相当する。金属配線層12は、溝部18からBP
SG膜8の開孔部端の傾斜部に沿って堆積され、その角
部16の上で厚さが一部薄くなるくびれ部17を有して
いる。
2 (di corresponds to the AA' line cross-sectional view of the semiconductor chip in FIG. 3. The metal wiring layer 12 is
The SG film 8 is deposited along the slope of the end of the opening, and has a constricted portion 17 where the thickness partially decreases above the corner portion 16 .

SBDの逆耐圧は、p十形拡散層7とp膨拡散層6とロ
ウエル2の接合部で決定され、低耐圧用SBDではp膨
拡散層6は不要である。
The reverse breakdown voltage of the SBD is determined by the junction between the p-decade diffusion layer 7, the p-swell diffusion layer 6, and the row well 2, and the p-swell diffusion layer 6 is not necessary in the SBD for low breakdown voltage.

ここで、SBD用開孔開孔部15成に異方性のドライエ
ツチングを用いない理由は、もし異方性エツチングを行
うとその後に開孔部の周縁の角部をなだらかにするだめ
の熱処理が必要となり、そのだめに角部が内側に庇状に
垂れるおそれがあり、指。
Here, the reason why anisotropic dry etching is not used to form the opening 15 for SBD is that if anisotropic etching is performed, then heat treatment is required to smooth the edges of the opening. This may cause the corners to sag inward like an eave, causing the fingers to sag.

かえって金属配線層の段萌i要囚となるためであり、ま
だ、ドライエツチング後の高温の熱処理あるいは酸化処
理を行わないと、SBD形成領域のnウェル2の表面が
損傷を受けたままで残シ、SBDの逆漏れ電流が増大す
るという問題があるからである。
This is because the layer growth of the metal wiring layer becomes more critical, and if high-temperature heat treatment or oxidation treatment is not performed after dry etching, the surface of the n-well 2 in the SBD formation region will remain damaged and the remaining silicon will remain. This is because there is a problem that the reverse leakage current of the SBD increases.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の半導体装置の製造方法は、リン含有ガラ
ス層に5iJD用開孔部を形成する際に、等方性エツチ
ングのみを用いて周縁部に角部16が形成されるのでそ
の表面に形成される金属配線層に広くくびれ部17が生
じ1段切れが発生し易いという問題があった。
In the conventional semiconductor device manufacturing method described above, when forming the 5iJD opening in the phosphorus-containing glass layer, the corner 16 is formed at the peripheral edge using only isotropic etching. There was a problem in that a wide constriction 17 was formed in the metal wiring layer, and one-stage breakage was likely to occur.

また等方性エプチングによるサイドエツチングのために
p十形拡散層を大きくとるので、微細化し難いという問
題があった。
Furthermore, since the p-type diffusion layer is made large due to side etching by isotropic etching, there is a problem in that it is difficult to miniaturize the structure.

本発明の目的は、段切れが発生しない信頼性のよい金属
配線層を有し、かつ微細化の可能な半導体装置の製造方
法を提供するものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor device that has a highly reliable metal wiring layer that does not cause disconnection and that can be miniaturized.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置の製造方法は、 (A)一導電形の半導体基板の一主面に逆導電形のウェ
ルを形成し、該ウェルの表面に選択的に素子形成領域と
コンタクト部を区画するフィールド酸化膜を形成し、か
つ該フィールド酸化膜に囲まれた前記ウェルの表面に第
1の絶縁膜を形成する工程、 (B)  前記フィールド酸化膜と第1の絶縁膜に全面
にリン含有ガラス層を堆積する工程、(C) 前記素子
形成領域上の前記リン含有ガラス層をその厚さが半分程
度になるまで等方性エツチングし、続いて残シのリン含
有ガラス層を異方性エツチング除去して、断面が盃状の
開孔部を形成する工程、 (I))前記素子形成領域上に露出した前記第1の絶縁
膜を等方性エツチングして除去する工程、(匂 前記素
子形成領域上に露出した前記逆導電形のウェルの表面を
、乾燥酸素ガスによる酸化処理をして第2の絶縁膜を形
成する工程、仲)前記リン含有ガラス層を窒素ガス中で
熱処理しリフローして、前記開孔部の周縁をなだらかに
する工程、 (Q 前記素子形成領域の表面の第2絶、縁膜を等方性
エツチングして除去する工程、 を含んで構成されている。
The method for manufacturing a semiconductor device of the present invention includes: (A) forming a well of an opposite conductivity type on one main surface of a semiconductor substrate of one conductivity type, and selectively dividing the surface of the well into an element formation region and a contact portion; forming a field oxide film and forming a first insulating film on the surface of the well surrounded by the field oxide film; (B) coating the entire surface of the field oxide film and the first insulating film with phosphorus-containing glass; (C) isotropically etching the phosphorus-containing glass layer on the element formation region until its thickness is reduced to about half, and then anisotropically etching the remaining phosphorus-containing glass layer; (I) removing the first insulating film exposed on the element formation region by isotropic etching; a step of oxidizing the surface of the well of the opposite conductivity type exposed on the formation region with dry oxygen gas to form a second insulating film; middle) heat-treating the phosphorus-containing glass layer in nitrogen gas and reflowing; and (Q) a step of isotropically etching and removing a second insulating film on the surface of the element forming region.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図(a)〜(f)は本発明の一実施例を説明するだ
めの工程順に示しだ半導体チップの断面図である。
FIGS. 1(a) to 1(f) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining one embodiment of the present invention.

第1図(a)に示す半導体チップの製造方法は、第2図
(a)に示しだ従来の半導体チップの製造方法と同一で
ある。
The method for manufacturing the semiconductor chip shown in FIG. 1(a) is the same as the method for manufacturing the conventional semiconductor chip shown in FIG. 2(a).

第1図(b)に示すように、コンタクト形成領域と8B
D形成領域に対応して喪BpsGJJ8を膜厚の約半分
程度まで等方性エツチングを行ない断面を円弧形に形成
する。
As shown in FIG. 1(b), the contact formation area and 8B
Corresponding to the D forming region, the blanking BpsGJJ8 is isotropically etched to approximately half the film thickness to form an arcuate cross section.

次に、残りのBPSG膜8をたとえばCF4−N2系の
ガスで異方性のドライエ、チングを行ない、さらに残シ
の薄い酸化膜3を79酸系の溶液で等方性エツチングし
、断面に歪形部10を有するSBD用開孔開孔部9ンタ
クト開孔部9′を同時に形成する。
Next, the remaining BPSG film 8 is anisotropically etched using, for example, a CF4-N2 gas, and the remaining thin oxide film 3 is isotropically etched using a 79-acid solution to form a cross-section. An SBD aperture part 9 and a contact aperture part 9' having a distorted part 10 are formed at the same time.

第1図(C)に示すように、たとえば900℃程度の高
温炉でドライ酸化を行ない、8BD用開孔開孔とコンタ
クト開孔部9′に第2の酸化膜12を形成する。
As shown in FIG. 1C, dry oxidation is performed in a high-temperature furnace at, for example, about 900° C. to form a second oxide film 12 in the 8BD opening and the contact opening 9'.

引き続き同じ温度で窒素ガス中で熱処理して開孔部9及
び9′の周縁部をなだらかにする。
Subsequently, heat treatment is performed in nitrogen gas at the same temperature to smoothen the peripheral edges of the openings 9 and 9'.

次に、第1図(d)に示すように、SBD用開孔開孔部
9上2の酸化膜12を残し、他のコンタクト開孔部9′
の第2の酸化膜12を等方性の工、ンチングにより除去
したのち、全表面に減圧CVD法によシ膜厚が5Qnm
程度の多結晶シリコン層13を成長させる。
Next, as shown in FIG. 1(d), the oxide film 12 on the SBD aperture 9 is left and the other contact aperture 9' is
After removing the second oxide film 12 by isotropic etching, a film thickness of 5 Qnm is deposited on the entire surface by low pressure CVD.
A polycrystalline silicon layer 13 of about 100 mL is grown.

次に、第1図(e)に示すように、SBD用開孔開孔部
92の酸化膜12およびその周囲のBPSG膜8の表面
の多結晶シリコン層13をCF4−O2系のガスで異方
性エツチングして除去する。
Next, as shown in FIG. 1(e), the oxide film 12 of the SBD aperture 92 and the polycrystalline silicon layer 13 on the surface of the BPSG film 8 around it are treated with a CF4-O2 gas. Remove by directional etching.

次に第1図(f)に示すように、SBD用開孔開孔部9
2の酸化膜12を等方性エツチングして除去したのち、
全面にスパッタ法で膜厚1,0μm程度のアルミニウム
を蒸着する。
Next, as shown in FIG. 1(f), the SBD aperture part 9
After removing the oxide film 12 of No. 2 by isotropic etching,
Aluminum is deposited to a thickness of about 1.0 μm over the entire surface by sputtering.

次に、周知のホ) IJングラフィ技術により所定のレ
ジストのバターニングを行ないたとえばCC44−CF
4−BC43系のガスでアルミニウムを異方性のドライ
エツチングを行ない金属配線14.14’を形成する。
Next, the predetermined resist is patterned using the well-known IJ printing technique, for example, CC44-CF.
4-Aluminum is anisotropically dry etched using a BC43 gas to form metal interconnections 14 and 14'.

次に、450℃程度の温度でN2−1−(2の雰囲気に
よる合金処理を行ない、アルミニウム層とnウェル間に
シミツトキーバリャ接合19を形成する。
Next, an alloying process is performed in an atmosphere of N2-1-(2) at a temperature of about 450 DEG C. to form a symmetry barrier junction 19 between the aluminum layer and the n-well.

本実施例において、SBD用開孔開孔部9成に異方性の
ドライエツチングを使用できる理由は、まず、8BD用
開孔開孔の)師区盃形部を形成して、BPSG膜8の熱
処理でゆるやがな傾斜部11を形成しだので、金属配線
層14VCくびれ部が発生せず、段切れのおそれがない
からである。
In this example, the reason why anisotropic dry etching can be used to form the SBD aperture part 9 is that the BPSG film 8 This is because the gentle slope 11 is formed by the heat treatment, so no constriction occurs in the metal wiring layer 14VC, and there is no risk of breakage.

また、たとえ、ドライエツチングが過剰でnウェル2の
表面に損傷を与えても、後工程の900℃程度のドライ
酸化および窒素ガス中の加熱処理により損傷層が第2の
酸化膜12に入シ、その部分が工、チングで除去される
Furthermore, even if the surface of the n-well 2 is damaged due to excessive dry etching, the damaged layer will be transferred to the second oxide film 12 by dry oxidation at about 900° C. and heat treatment in nitrogen gas in the post-process. , that part is removed by machining or ching.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、リン含有ガラス膜にSB
D用開孔開孔部成するエツチング方法に、半分程度まで
の等方性と続いて残部に異方性2段階のエツチング工程
を用いることにより、開孔部の周碌の断面が盃形部を成
し、後の熱処理により段差の上半分を非常になだらかに
するので、金属配線層に段切れが生じない信頼性の高い
、また等方性エッチのみによるよりも微細化ができる8
BD回路を有する半導体装置を製造できる効果がある。
As explained above, the present invention provides phosphorus-containing glass film with SB.
By using a two-step etching process to form the opening for D, isotropic for about half and then anisotropic for the remaining part, the cross section of the periphery of the opening becomes a cup-shaped part. The upper half of the step is made very smooth by subsequent heat treatment, so the metal wiring layer is highly reliable and has no step breakage, and can be made finer than by isotropic etching alone8.
There is an effect that a semiconductor device having a BD circuit can be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(f)は本発明の一実施例を説明するた
めの工程順に示した半導体チップの断面図、第2図(a
)〜(d)は従来の半導体装置の製造方法の一例を説明
するだめの工程順に示した半導体チップの断面図、第3
図は第2図(d)に対応する平面図である。 1・・・・・・半導体基板、2・・・・・・nウェル、
3・・・・・・第1の酸化膜、4・・・・・・フィール
ド酸化膜、5・・・・・・n+形形成散層6・・・・・
・p−形波散層、7・・・・”p+形形成散層8・・・
・・・BPSG膜、9・・・・・・SBD用開孔開孔部
′・・・・・・コンタクト開孔部、10・・・・・・盃
形部、11・・・・・・傾斜部、12・・・・・・第2
の酸化膜。 代理人 弁理士  内 原   口 笛1! 第7図
1(a) to 1(f) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining one embodiment of the present invention, and FIG. 2(a)
) to (d) are cross-sectional views of a semiconductor chip shown in the order of steps to explain an example of a conventional method for manufacturing a semiconductor device;
The figure is a plan view corresponding to FIG. 2(d). 1... Semiconductor substrate, 2... N well,
3...First oxide film, 4...Field oxide film, 5...N+ type formation diffused layer 6...
・P- type scattering layer, 7..."p+ type scattering layer 8...
...BPSG film, 9... SBD aperture opening section'... Contact opening section, 10... Cup-shaped section, 11... Inclined part, 12...2nd
oxide film. Agent Patent Attorney Uchihara Whistle 1! Figure 7

Claims (1)

【特許請求の範囲】 (A)一導電形の半導体基板の一主面に逆導電形のウェ
ルを形成し、該ウェルの表面に選択的に素子形成領域と
コンタクト部を区画するフィールド酸化膜を形成し、か
つ該フィールド酸化膜に囲まれた前記ウェルの表面に第
1の絶縁膜を形成する工程、 (B)前記フィールド酸化膜と第1の絶縁膜の全面にリ
ン含有ガラス層を堆積する工程、(C)前記素子形成領
域上の前記リン含有ガラス層をその厚さが半分程度にな
るまで等方性エッチングし、続いて残りのリン含有ガラ
ス層を異方性エッチング除去して、断面が盃状の開孔部
を形成する工程、 (D)前記素子形成領域上に露出した前記第1の絶縁膜
を等方性エッチングして除去する工程、 (E)前記素子形成領域上に露出した前記逆導電形のウ
ェルの表面を、乾燥酸素ガスによる酸化処理をして第2
の絶縁膜を形成する工程、 (F)前記リン含有ガラス層を窒素ガス中で熱処理しリ
フローして、前記開孔部の周縁をなだらかにする工程、 (G)前記素子形成領域の表面の第2の絶縁膜を等方性
エッチングして除去する工程、 を含むことを特徴とする半導体装置の製造方法。
[Claims] (A) A well of an opposite conductivity type is formed on one principal surface of a semiconductor substrate of one conductivity type, and a field oxide film is selectively formed on the surface of the well to partition an element formation region and a contact portion. forming a first insulating film on the surface of the well surrounded by the field oxide film; (B) depositing a phosphorus-containing glass layer on the entire surface of the field oxide film and the first insulating film; Step (C) Isotropically etching the phosphorus-containing glass layer on the element forming region until its thickness is reduced to about half, and then removing the remaining phosphorus-containing glass layer by anisotropic etching to form a cross-section. (D) isotropically etching and removing the first insulating film exposed on the element formation region; (E) exposed on the element formation region; The surface of the well of the opposite conductivity type was oxidized with dry oxygen gas to form a second well.
(F) heat-treating the phosphorus-containing glass layer in nitrogen gas and reflowing it to smooth the periphery of the opening; (G) forming an insulating film on the surface of the element formation region; 2. A method for manufacturing a semiconductor device, comprising: removing the insulating film by isotropic etching.
JP62146589A 1987-06-11 1987-06-11 Method for manufacturing semiconductor device Expired - Lifetime JPH0671075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62146589A JPH0671075B2 (en) 1987-06-11 1987-06-11 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62146589A JPH0671075B2 (en) 1987-06-11 1987-06-11 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS63308956A true JPS63308956A (en) 1988-12-16
JPH0671075B2 JPH0671075B2 (en) 1994-09-07

Family

ID=15411130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62146589A Expired - Lifetime JPH0671075B2 (en) 1987-06-11 1987-06-11 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0671075B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5143857A (en) * 1988-11-07 1992-09-01 Triquint Semiconductor, Inc. Method of fabricating an electronic device with reduced susceptiblity to backgating effects
JP2005303025A (en) 2004-04-13 2005-10-27 Nissan Motor Co Ltd Semiconductor device
JP2009238982A (en) * 2008-03-27 2009-10-15 Renesas Technology Corp Semiconductor integrated circuit device and method of manufacturing the same
JP2013153170A (en) * 2013-02-12 2013-08-08 Renesas Electronics Corp Semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212065A (en) * 1975-07-15 1977-01-29 Hamasawa Kogyo:Kk Outer blade for electric shaver
JPS5885529A (en) * 1981-11-18 1983-05-21 Nec Corp Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212065A (en) * 1975-07-15 1977-01-29 Hamasawa Kogyo:Kk Outer blade for electric shaver
JPS5885529A (en) * 1981-11-18 1983-05-21 Nec Corp Manufacture of semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5143857A (en) * 1988-11-07 1992-09-01 Triquint Semiconductor, Inc. Method of fabricating an electronic device with reduced susceptiblity to backgating effects
JP2005303025A (en) 2004-04-13 2005-10-27 Nissan Motor Co Ltd Semiconductor device
JP2009238982A (en) * 2008-03-27 2009-10-15 Renesas Technology Corp Semiconductor integrated circuit device and method of manufacturing the same
US8546905B2 (en) 2008-03-27 2013-10-01 Renesas Electronics Corporation Semiconductor integrated circuit device and a method of manufacturing the same
JP2013153170A (en) * 2013-02-12 2013-08-08 Renesas Electronics Corp Semiconductor device

Also Published As

Publication number Publication date
JPH0671075B2 (en) 1994-09-07

Similar Documents

Publication Publication Date Title
JPS63308387A (en) Manufacture of semiconductor device
JPH0391930A (en) Method of manufacturing semiconductor device
US20040025932A1 (en) Variegated, high efficiency solar cell and method for making same
US4597166A (en) Semiconductor substrate and method for manufacturing semiconductor device using the same
JPS60202965A (en) Method of producing improved oxide defined transistor and structure obtained as its result
JPS58202560A (en) Semiconductor device and its manufacture
JPS63308956A (en) Manufacture of semiconductor device
JPS62113421A (en) Manufacture of semiconductor device
JPS5950104B2 (en) Hand tie souchi
JPH0258259A (en) Manufacture of semiconductor device
JPS63260050A (en) Manufacture of semiconductor device
JP3137044B2 (en) Semiconductor device and manufacturing method thereof
JPS59112656A (en) Semiconductor device and manufacture thereof
JPS63253647A (en) Semiconductor device
JPS63249333A (en) Manufacture of power ic
JPH0441510B2 (en)
JPH0373137B2 (en)
JPS61268064A (en) Manufacture of semiconductor device
JPS5951130B2 (en) Method for manufacturing semiconductor devices with low leakage current
JPS5882577A (en) Polysilicon diode with metal silicide contact
JPS6150385B2 (en)
JPS6345865A (en) Floating gate type mos semiconductor device
JPS625657A (en) Semiconductor integrated circuit device
JPS62290178A (en) Semiconductor device
JPS63119264A (en) Semiconductor device