JPS63253647A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS63253647A
JPS63253647A JP8801287A JP8801287A JPS63253647A JP S63253647 A JPS63253647 A JP S63253647A JP 8801287 A JP8801287 A JP 8801287A JP 8801287 A JP8801287 A JP 8801287A JP S63253647 A JPS63253647 A JP S63253647A
Authority
JP
Japan
Prior art keywords
film
insulating film
interlayer insulating
contact hole
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8801287A
Other languages
Japanese (ja)
Inventor
Yoshitaka Narita
成田 宜隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8801287A priority Critical patent/JPS63253647A/en
Publication of JPS63253647A publication Critical patent/JPS63253647A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To remove diffective connection among wirings due to the external diffusion of an impurity from an interlayer insulating film, and to improve the yield and reliability of manufacture by coating the side face of a contact hole formed to the interlayer insulating film having reflow properties with an insulating film preventing the reflow of the interlayer insulating film. CONSTITUTION:A P<+> type diffusion layer wiring 14, a gate oxide film 13 and a field oxide film 12 are shaped to the surface of an N-type semiconductor substrate 11. A PSG film 15 formed onto the surfaces of the wiring 14, oxide film 13 and oxide film 12 as an interlayer insulating film having reflow properties, and an oxide film 18 having no reflowing properties and by a CVD method is shaped onto the side face of a contact hole formed to the PSG film 15. A tungsten silicide wiring 19 connected the P<+> type diffusion layer wiring 14 through a CVD oxide film 16 is shaped onto the PSG film 15. Accordingly, the PSG film 15 does not reflow and protrude into the contact hole through heat treatment as a post-process, and an impurity does not also diffuse to the outside from the PSG film 15, thus completely connecting the wiring 19 and 14.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特に層間絶縁膜の構造に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to the structure of an interlayer insulating film.

〔従来の技術〕[Conventional technology]

従来、多層配線構造を有する半導体装置では、層間絶縁
膜のコンタクト孔部分、特にコンタクト孔側面は不純物
を含んだリフロー可能な材料によって形成された層間絶
縁膜が露出した構造になっていた。
Conventionally, a semiconductor device having a multilayer wiring structure has a structure in which an interlayer insulating film formed of a reflowable material containing impurities is exposed at a contact hole portion of an interlayer insulating film, particularly at a side surface of the contact hole.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の半導体装置では、コンタクト孔部分で不
純物を含んだリフロー性を有する層間絶縁膜が露出して
いるため、コンタクト開化後の熱処理あるいは、上層の
配線層形成後の熱処理により、コンタクト開孔部で1層
間絶縁膜からの不純物の外方拡散が起こり、その不純物
がコンタクト性の劣化を起こす欠点がある。たとえば、
層間絶縁膜としてPSG膜を使用した場合には、リンが
外方拡散し、P+拡散層配線に拡散されると、上層配線
とP+拡散層配線との接続はほとんどオープン状態とな
り、半導体装置の製造歩留り及び信頼性が低下するとい
う欠点がある。
In the conventional semiconductor device described above, since the interlayer insulating film containing impurities and having reflow properties is exposed at the contact hole portion, the contact hole is removed by heat treatment after opening the contact or heat treatment after forming the upper wiring layer. There is a drawback that outward diffusion of impurities from the first interlayer insulating film occurs in some regions, and the impurities cause deterioration of contact properties. for example,
When a PSG film is used as an interlayer insulating film, when phosphorus is diffused outward and diffused into the P+ diffusion layer wiring, the connection between the upper layer wiring and the P+ diffusion layer wiring becomes almost open, which makes it difficult to manufacture semiconductor devices. The disadvantage is that yield and reliability are reduced.

また、リフロー性の良好な層間絶縁膜を使用した場合に
は、コンタクト開孔後の熱処理により、再びフローが起
こり、コンタクト孔側面が凸状になり、コンタクトサイ
ズが縮少してしまうという欠点を有する。
In addition, when an interlayer insulating film with good reflow properties is used, flow occurs again during heat treatment after the contact hole is formed, making the side surface of the contact hole convex and reducing the contact size. .

本発明の目的は、上記欠点を除去し、層間絶縁膜からの
不純物の外方拡散による配線間の接続不良をなりシ、製
造歩留り及び信頼性の向上した半導体装置を提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor device which eliminates the above-mentioned drawbacks, eliminates poor connection between wiring lines due to outward diffusion of impurities from an interlayer insulating film, and improves manufacturing yield and reliability.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置は、半導体基板上に形成された層間
絶縁膜と、前記層間絶縁膜に形成されたコンタクト孔と
、前記コンタクト孔の側面に形成され前記層間絶縁膜の
リフローを防止する絶縁膜とを含んで構成される。
A semiconductor device of the present invention includes an interlayer insulating film formed on a semiconductor substrate, a contact hole formed in the interlayer insulating film, and an insulating film formed on a side surface of the contact hole to prevent reflow of the interlayer insulating film. It consists of:

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の第1の実施例の断面図である。FIG. 1 is a sectional view of a first embodiment of the invention.

第1図において、N型半導体基板11表面にはP+型拡
散層配線14.ゲート酸化膜13及びフィールド酸化膜
12が形成されている。そしてその表面にはリフロー性
を有する層間絶縁膜としてPSG膜15か形成されてお
り、しかもそのPSG膜15に形成されたコンタクト孔
17の側面にはリフロー性のないCVD法による酸fヒ
膜(以下CVDPi化膜という〉18が形成されている
。そしてPSG膜1膜上5上CVD酸化膜16を介して
P+型拡散層配線14に接続するタングステンシリサイ
ド配線19が形成されでいるこのように構成された第1
の実施例においては、PSG膜15に設けられたコンタ
クト孔17の側面は、リフロー性のないCVD酸化膜1
8により被覆されているため、後工程の熱処理によって
もPSG膜15がコンタクト孔内ヘリフローして突出す
ることはなくなり、又P S G膜15から不純物が外
方拡散することもない 従ってタングステンシリサイド
配線19とP゛型抵拡散層配線14の接続は完全なもの
となる2 次に、第1の実施例の製造方法を第3図(a)〜(d)
を参照して簡単に説明する、 まず第3図(a)に示すように、N型半導体基板11に
5耐酸化性マスクを使った選択酸化法によって厚さ0.
6μrnのフィールド酸(ヒ膜12を形成し、ゲート酸
化@13を300人の厚さに形成共する。次に、このフ
ィールド酸化膜12をマスクとする自己整合により、ホ
ウ素をイオン注入してソースまたはドレインとなるP+
型拡散層配線14を形成する。
In FIG. 1, on the surface of an N-type semiconductor substrate 11, a P+ type diffusion layer wiring 14. A gate oxide film 13 and a field oxide film 12 are formed. A PSG film 15 is formed on its surface as an interlayer insulating film with reflow properties, and on the side surface of the contact hole 17 formed in the PSG film 15, an acid f arsenic film (CVD method) without reflow properties ( A tungsten silicide wiring 19 (hereinafter referred to as a CVDPi film) is formed.Then, a tungsten silicide wiring 19 is formed on the PSG film 1 and connected to the P+ type diffusion layer wiring 14 via the CVD oxide film 16. The first
In this embodiment, the side surface of the contact hole 17 provided in the PSG film 15 is covered with a CVD oxide film 1 that does not have reflow properties.
8, the PSG film 15 will not flow into the contact hole and protrude even during heat treatment in a later process, and impurities will not diffuse outward from the PSG film 15. Therefore, the tungsten silicide wiring 19 and the P'' type resistive diffusion layer wiring 14 are perfect. 2 Next, the manufacturing method of the first embodiment is shown in FIGS.
First, as shown in FIG. 3(a), an N-type semiconductor substrate 11 is oxidized to a thickness of 0.5 mm by selective oxidation using a 5 oxidation-resistant mask.
A field acid film 12 of 6 μrn is formed, and a gate oxide film 13 is formed to a thickness of 300 μm. Next, by self-alignment using this field oxide film 12 as a mask, boron ions are implanted to form the source. or drain P+
A type diffusion layer wiring 14 is formed.

次に第3図(b)に示すように、層間絶縁膜としてPS
G膜15を厚さ4000人、CVD酸(ヒ膜16を厚さ
1000人順次堆積する5次いで、通常のフォトレジス
トプロセスを利用して、PSG膜15、CVD酸化膜1
6をエツチングし、P゛型抵拡散層配線14達するコン
タクト孔17を開孔する。
Next, as shown in FIG. 3(b), PS is used as an interlayer insulating film.
G film 15 is deposited to a thickness of 4,000 yen, and CVD acid film 16 is deposited to a thickness of 1,000 yen.5 Next, using a normal photoresist process, a PSG film 15 and a CVD oxide film 1 are deposited.
6 is etched to open a contact hole 17 that reaches the P' type resistive diffusion layer wiring 14.

次に、第3図(c)に示すように、基板表面にCVD酸
化膜18を600人の厚さに堆積する。
Next, as shown in FIG. 3(c), a CVD oxide film 18 is deposited on the surface of the substrate to a thickness of 600 nm.

続いて、第3図(d)に示すように、基板のイオンエツ
チングにより、コンタクト孔17の側面のみにCVD酸
1ヒ膜18が残存するように、エッチバックを行う。こ
のとき、PSG膜1膜上5上、すでにCVD酸化膜16
が堆積しであるので、エツチバ・ツク時のオーバーエツ
チングにより、PSG膜15が露出しないようにCVD
酸化膜16を残存させることは容易である。
Subsequently, as shown in FIG. 3(d), the substrate is etched back by ion etching so that the CVD acid 1 arsenic film 18 remains only on the side surfaces of the contact hole 17. At this time, the CVD oxide film 16 is already on top of the PSG film 1.
Since the PSG film 15 is deposited, CVD is performed to prevent the PSG film 15 from being exposed due to over-etching during etching.
It is easy to leave the oxide film 16.

次に、コンタクト孔゛形成時の基板のダメージ回復の為
に、窒素雰囲気中で900℃の熱処理を行う。この時、
P S G膜15は、CVD酸化膜16.18により被
覆されているので、リンの外方拡散は抑制され、また、
コンタクI・孔側面は、CDV酸化膜18で固定されて
いるので、リフローによるコンタクト形状の変化も起こ
らない。
Next, heat treatment is performed at 900° C. in a nitrogen atmosphere in order to recover damage to the substrate during the formation of the contact hole. At this time,
Since the PSG film 15 is covered with the CVD oxide film 16.18, outward diffusion of phosphorus is suppressed, and
Since the side surface of the contact I/hole is fixed by the CDV oxide film 18, the shape of the contact does not change due to reflow.

最後に、基板全面にスバ・ツタ法でタングステンシリサ
イドを堆積し、所定の形状にパターンニングしてタング
ステンシリサイド配線19を形成し第1図に示した半導
体装置を完成させる。
Finally, tungsten silicide is deposited on the entire surface of the substrate by a sprinkling method and patterned into a predetermined shape to form tungsten silicide wiring 19 to complete the semiconductor device shown in FIG.

第2図は、本発明の第2の実施例の縦断面図である。FIG. 2 is a longitudinal sectional view of a second embodiment of the invention.

第2図において半導体装置は、N型半導体基板11上に
形成したフィールド酸化膜12’Aとこのフィールド酸
化膜12A上に延在したポリシリコン配線24と、層間
絶縁膜としてのBPSG膜25膜上5CDV窒化膜28
と、そしてポリシリコン配線とコンタクト孔27を介し
接触し、かつ層間絶縁膜上に延在したアルミニウム配線
29から構成されている。ここで、コンタクト孔17側
面部でBPSG膜25は、CDV窒化膜28により被覆
されており、コンタクト開孔後の熱処理によるリフロー
でコンタクト孔形状が変化しないようにクランプされて
いる。
In FIG. 2, the semiconductor device includes a field oxide film 12'A formed on an N-type semiconductor substrate 11, a polysilicon wiring 24 extending over the field oxide film 12A, and a BPSG film 25 as an interlayer insulating film. 5CDV nitride film 28
and an aluminum wiring 29 that is in contact with the polysilicon wiring through a contact hole 27 and extends over the interlayer insulating film. Here, the BPSG film 25 on the side surface of the contact hole 17 is covered with a CDV nitride film 28, and is clamped so that the shape of the contact hole does not change during reflow due to heat treatment after the contact hole is opened.

この第2の実施例の製法方法としては、通常のMOSF
ET製造プロセスにより、ゲート電極であるポリシリコ
ン配線24を形成した後。
The manufacturing method of this second embodiment is a conventional MOSFET.
After forming polysilicon wiring 24, which is a gate electrode, by the ET manufacturing process.

BPSG膜25をCVD法により、5000人の厚さに
堆積し、窒素雰囲気で900°C30分リフローを行う
。次に、フォトレジストプロセスを用い、コンタクト孔
17を異方性のエツチングにより開孔する。続いて、C
VD窒化膜を500人の厚さに堆積した後、異方性のエ
ツチングによりエッチバックを行ない、コンタクト側面
のみにCDV窒化膜28を残存させる。
A BPSG film 25 is deposited to a thickness of 5000 nm by CVD, and reflowed at 900° C. for 30 minutes in a nitrogen atmosphere. Next, a contact hole 17 is formed by anisotropic etching using a photoresist process. Next, C
After the VD nitride film is deposited to a thickness of 500 nm, it is etched back by anisotropic etching to leave the CDV nitride film 28 only on the side surfaces of the contact.

この後、コンタクト孔形成時のダメージ回痩の為に、窒
素雰囲気中で900℃10分間の熱処理を行う、この時
、コンタクト孔27 p;、q面は、リフロー性のない
CDV窒化膜で被覆されているので、BPSG膜のリフ
ローによるコンタクト孔の形状変化(縮少)は起こらず
、良好なコンタクト性が保障される。
After this, heat treatment is performed at 900°C for 10 minutes in a nitrogen atmosphere to reduce damage during contact hole formation.At this time, the contact hole 27 p; and q surfaces are covered with a non-reflowable CDV nitride film. Therefore, the shape of the contact hole does not change (shrink) due to reflow of the BPSG film, and good contact properties are ensured.

最後に、通常の方法でアルミニウム配線2つを形成する
ことにより、第2図に示した断面構造の半導体装置を得
る。
Finally, two aluminum interconnections are formed using a conventional method to obtain a semiconductor device having the cross-sectional structure shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、リフロー性のある層間絶
縁膜に形成されたコンタクj・孔の側面に層間絶縁膜の
リフローを防止する絶縁膜を被覆゛rることにより、層
間絶縁膜からの不純物の外方拡散を抑制すると共にコン
タクト開孔後の熱処理時の層間絶縁膜のリフローによる
コンタクト孔の変形を防止できる効果がある。従って半
導体装置の製造歩留り及び信頼性は向上したちのとなる
As explained above, the present invention prevents the reflow from the interlayer insulating film by coating the side surfaces of the contacts/holes formed in the interlayer insulating film with reflow properties with an insulating film that prevents reflow of the interlayer insulating film. This has the effect of suppressing outward diffusion of impurities and preventing deformation of the contact hole due to reflow of the interlayer insulating film during heat treatment after contact hole formation. Therefore, the manufacturing yield and reliability of semiconductor devices will improve2.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例の縦断面図、第2図は本
発明の第2の実施例の縦断面図、第3図(a)〜(d)
は第1の実施例の製造方法を説明するための工程順に示
した半導体チップの断面図である。 11・・・N型半導体基板、12.12A・・・フィー
ルド酸fヒ膜、13・・・ゲート酸化膜、14・・・P
+型拡散層配線、15・・・PSG膜、16.18・・
・CVD酸化膜、17・・・コンタクト孔、19・・・
タングステンシリサイド配線、24・・・ポリシリコン
配線、25・・・BPSG膜、28・・CVD窒化膜、
2つ・・・アルミニウム配線。
FIG. 1 is a longitudinal cross-sectional view of a first embodiment of the present invention, FIG. 2 is a longitudinal cross-sectional view of a second embodiment of the present invention, and FIGS. 3(a) to (d)
1A and 1B are cross-sectional views of a semiconductor chip shown in the order of steps for explaining the manufacturing method of the first embodiment. 11...N-type semiconductor substrate, 12.12A...Field oxide film, 13...Gate oxide film, 14...P
+ type diffusion layer wiring, 15...PSG film, 16.18...
・CVD oxide film, 17... contact hole, 19...
Tungsten silicide wiring, 24... Polysilicon wiring, 25... BPSG film, 28... CVD nitride film,
Two...aluminum wiring.

Claims (1)

【特許請求の範囲】[Claims]  半導体基板上に形成された層間絶縁膜と、前記層間絶
縁膜に形成されたコンタクト孔と、前記コンタクト孔の
側面に形成され前記層間絶縁膜のリフローを防止する絶
縁膜とを含むことを特徴とする半導体装置。
The method includes an interlayer insulating film formed on a semiconductor substrate, a contact hole formed in the interlayer insulating film, and an insulating film formed on a side surface of the contact hole to prevent reflow of the interlayer insulating film. semiconductor devices.
JP8801287A 1987-04-10 1987-04-10 Semiconductor device Pending JPS63253647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8801287A JPS63253647A (en) 1987-04-10 1987-04-10 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8801287A JPS63253647A (en) 1987-04-10 1987-04-10 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS63253647A true JPS63253647A (en) 1988-10-20

Family

ID=13930931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8801287A Pending JPS63253647A (en) 1987-04-10 1987-04-10 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS63253647A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5317192A (en) * 1992-05-06 1994-05-31 Sgs-Thomson Microelectronics, Inc. Semiconductor contact via structure having amorphous silicon side walls
US5753967A (en) * 1995-09-14 1998-05-19 Advanced Micro Devices, Inc. Damascene process for reduced feature size
US5863707A (en) * 1997-02-11 1999-01-26 Advanced Micro Devices, Inc. Method for producing ultra-fine interconnection features
WO2006092824A1 (en) * 2005-02-28 2006-09-08 Spansion Llc Semiconductor device and method for manufacturing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5743433A (en) * 1980-08-29 1982-03-11 Fujitsu Ltd Semiconductor device
JPS57170550A (en) * 1981-04-15 1982-10-20 Toshiba Corp Manufacture of semiconductor device
JPS63236317A (en) * 1987-03-25 1988-10-03 Toshiba Corp Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5743433A (en) * 1980-08-29 1982-03-11 Fujitsu Ltd Semiconductor device
JPS57170550A (en) * 1981-04-15 1982-10-20 Toshiba Corp Manufacture of semiconductor device
JPS63236317A (en) * 1987-03-25 1988-10-03 Toshiba Corp Manufacture of semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5317192A (en) * 1992-05-06 1994-05-31 Sgs-Thomson Microelectronics, Inc. Semiconductor contact via structure having amorphous silicon side walls
US5753967A (en) * 1995-09-14 1998-05-19 Advanced Micro Devices, Inc. Damascene process for reduced feature size
US6077773A (en) * 1995-09-14 2000-06-20 Advanced Micro Devices, Inc. Damascene process for reduced feature size
US5863707A (en) * 1997-02-11 1999-01-26 Advanced Micro Devices, Inc. Method for producing ultra-fine interconnection features
WO2006092824A1 (en) * 2005-02-28 2006-09-08 Spansion Llc Semiconductor device and method for manufacturing same

Similar Documents

Publication Publication Date Title
JPH0391930A (en) Method of manufacturing semiconductor device
JPH10135331A (en) Contact hole forming method for semiconductor device
JPS63253647A (en) Semiconductor device
JPS59112656A (en) Semiconductor device and manufacture thereof
JPS62122173A (en) Semiconductor device
JPS62224077A (en) Semiconductor integrated circuit device
JPH02133924A (en) Semiconductor device and its manufacture
JPH0227737A (en) Manufacture of semiconductor device
JPS63147318A (en) Semiconductor device and its manufacture
JPH07230968A (en) Manufacture of semiconductor device
JPS63275181A (en) Manufacture of semiconductor device
JP2779186B2 (en) Method for manufacturing semiconductor device
JPS6154661A (en) Manufacture of semiconductor device
JP3038873B2 (en) Method for manufacturing semiconductor device
JPS62147777A (en) Manufacture of mos field effect transistor
JPH0286135A (en) Manufacture of semiconductor device
JPH02130834A (en) Manufacture of semiconductor integrated circuit device
JPS62262443A (en) Semiconductor device and manufacture thereof
JPS63308963A (en) Semiconductor device and manufacture thereof
JPS6377156A (en) Manufacture of semiconductor device
JPH03157940A (en) Manufacture of semiconductor device
JPS61179575A (en) Manufacture of semiconductor device
JPS63193566A (en) Manufacture of semiconductor device
JPH04340723A (en) Manufacture of semiconductor device and semiconductor device
JPH0290671A (en) Manufacture of semiconductor integrated circuit