JPS63307197A - Production of thin film of high-temperature superconductive oxide - Google Patents

Production of thin film of high-temperature superconductive oxide

Info

Publication number
JPS63307197A
JPS63307197A JP62140895A JP14089587A JPS63307197A JP S63307197 A JPS63307197 A JP S63307197A JP 62140895 A JP62140895 A JP 62140895A JP 14089587 A JP14089587 A JP 14089587A JP S63307197 A JPS63307197 A JP S63307197A
Authority
JP
Japan
Prior art keywords
thin film
temperature superconductive
crystal structure
xnx
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62140895A
Other languages
Japanese (ja)
Inventor
Toshiaki Murakami
敏明 村上
Minoru Suzuki
実 鈴木
Yoichi Enomoto
陽一 榎本
Kazuyuki Moriwaki
森脇 和幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62140895A priority Critical patent/JPS63307197A/en
Publication of JPS63307197A publication Critical patent/JPS63307197A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To form high-temperature superconductive thin film of excellent properties on an arbitrary base by effecting epitaxial growth of a thin film with a prescribed crystal structure before deposition of thin film of a high- temperature superconductive oxide of a specific formula. CONSTITUTION:A thin film of a high-temperature superconductive oxide which is represented by the formula: (M1-xNx)2CuO (M: Y, La, rare earth, N: Ba, Sr, Ca) or MN2Cu3O7-delta (delta: 0.1-0.2) is deposited on the base plate or film which was primed beforehand. The primer is formed by epitaxial growth of a thin film of a substance having lattice constants near those of the high-temperature superconductive oxide and a NaCl type crystal structure. Thus, a thin film of high-temperature superconductive oxide is formed on a material which can give a large area base.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高温超伝導酸化物薄膜を任意の基板材料上にエ
ピタキシャル成長させるための薄膜の製法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing a thin film of a high temperature superconducting oxide for epitaxial growth on any substrate material.

(従来の技術) (Lal−x Bax )2CuO4、(La+−X 
5rX)zcuo4、(0,01<x<0.15) 、
Ba2YCu+0.−6 (δ’−0,2)は超伝導転
移温度(Tc)がそれぞれ約30に、40におよび90
にの高温超伝導酸化物であり、特にBazYCu:+0
t−6は窒素温度で動作する超伝導デバイス実現のため
に重要な材料である。
(Prior art) (Lal-x Bax )2CuO4, (La+-X
5rX)zcuo4, (0,01<x<0.15),
Ba2YCu+0. -6 (δ'-0,2) has a superconducting transition temperature (Tc) of approximately 30, 40, and 90, respectively.
is a high-temperature superconducting oxide, especially BazYCu: +0
T-6 is an important material for realizing superconducting devices that operate at nitrogen temperatures.

超伝導デバイスを実現する第一歩として薄膜化が必要で
あり、その薄膜作製には基板材料が非常に重要となって
来る。
The first step in realizing a superconducting device is to make it thin, and the substrate material is extremely important for making such thin films.

上記超伝導物質は超伝導特性に大きな異方性があること
が判っており(Y、  Hidaka et al、J
pn。
It is known that the above superconducting materials have large anisotropy in their superconducting properties (Y, Hidaka et al, J
pn.

J、Appl、Phys、26  (4)、 L377
 (1987)および26 (5)L344 (198
7))、従ってその超伝導特性を充分発揮させた状態で
利用するためには基板上にエピタキシャル成長させるこ
とが望ましい。ところが、エピタキシャル成長のために
は、結晶の対称性、格子定数が薄膜に近いことが必要で
、現在までにエピタキシャル成長を可能としている基板
材料は5rTi03のみである( M、5uzuki 
et al、+ Jpn、J。
J, Appl, Phys, 26 (4), L377
(1987) and 26 (5) L344 (198
7)) Therefore, in order to fully utilize its superconducting properties, it is desirable to grow it epitaxially on a substrate. However, for epitaxial growth, it is necessary that the crystal symmetry and lattice constant be close to those of a thin film, and to date, the only substrate material that allows epitaxial growth is 5rTi03 (M, 5uzuki
et al, + Jpn, J.

Appl、 Phy、 26 (4) 、  L521
  (1987))。
Appl, Phy, 26 (4), L521
(1987)).

(発明が解決しようとする問題点) ところが、SrTiO3の単結晶はベルヌーイ法で製作
されており、引き上げ法で製作されるSiなどのように
大きなサイズの単結晶を得ることができない。そこでS
i基板など充分な大きさのものが入手可能な材料の上に
薄膜をエピタキシャル成長する技術が要求される。
(Problems to be Solved by the Invention) However, the single crystal of SrTiO3 is manufactured by the Bernoulli method, and unlike Si or the like which is manufactured by the pulling method, it is not possible to obtain a large-sized single crystal. So S
A technique is required to epitaxially grow thin films on materials that are available in sufficient size, such as i-substrates.

本発明は高Tc超伝導酸化物の薄膜を大きな基板面積の
得られる基板材料上にエピタキシャル成長させる製法を
提供することを目的とする。
It is an object of the present invention to provide a method for epitaxially growing a thin film of a high Tc superconducting oxide on a substrate material that provides a large substrate area.

(問題点を解決するための手段) 高温超伝導酸化物(M+−xNx)2CuOn  また
はMNzCuJff−6(M=Y、La+希土類元素;
 N=Ba、Sr+Ca ;δζ0.1〜0.2)など
はペロブスカイト型結晶構造の変形で、ペロブスカイト
型およびNaCl型の両法の結晶構造と整合性がよい(
第1図参照)。第2図のようにシリコン(Si)、サフ
ァイア(A1zO+)などの基板1の上に、NaCl型
結晶構造をもち、格子定数が上記物質に近い材料の薄膜
2を数10A〜数1000Aだけエピタキシャル成長さ
せておき、その上に上述の超伝導酸化物3を堆積させる
ことにより、これら高Tc超伝導酸化物をエピタキシャ
ル成長させることができる。
(Means for solving the problem) High temperature superconducting oxide (M+-xNx)2CuOn or MNzCuJff-6 (M=Y, La+rare earth element;
N=Ba, Sr+Ca; δζ0.1~0.2) are modifications of the perovskite crystal structure, and are consistent with both the perovskite and NaCl crystal structures (
(See Figure 1). As shown in Fig. 2, a thin film 2 of a material having an NaCl type crystal structure and a lattice constant close to that of the above substance is epitaxially grown on a substrate 1 such as silicon (Si) or sapphire (A1zO+) by several tens of amps to several thousand amps. By depositing the above-mentioned superconducting oxide 3 thereon, these high Tc superconducting oxides can be epitaxially grown.

本発明について概説すると本発明の第一の発明は高温超
伝導酸化物(M+−xNx)zcuo4(M=Y、La
、希土類元素; N=Ba、 Sr、 Ca )または
MNzCuaOl−6(δζ0.1〜0.2)の薄膜作
製工程において、格子定数が上記物質に近< NaCl
型結晶構造をもつ物質の薄膜層を基板表面にエピタキシ
ャル成長させた後、上記の(M+−XNx) 1cu0
4またはMNzCu30t−6の薄膜を堆積させ、エピ
タキシャル成長させるものである。
To summarize the present invention, the first invention of the present invention is a high temperature superconducting oxide (M+-xNx) zcuo4 (M=Y, La
, rare earth elements; N=Ba, Sr, Ca) or MNzCuaOl-6 (δζ0.1~0.2) in the thin film production process when the lattice constant is close to that of the above substance < NaCl
After epitaxially growing a thin film layer of a material having a type crystal structure on the substrate surface, the above (M+-XNx) 1cu0
4 or MNzCu30t-6 is deposited and epitaxially grown.

第二の発明は、第一の発明で形成させた薄膜の上にNa
Cl型結晶構造の絶縁層を10〜30A堆積させ、さら
に(M+−xNx)2CuO4  またはMNzCu3
0y−6なる薄膜を堆積させ、ジョセフソン接合を同時
に形成させるものである。
The second invention is to apply Na on the thin film formed in the first invention.
An insulating layer with a Cl-type crystal structure is deposited for 10 to 30A, and then (M+-xNx)2CuO4 or MNzCu3
A thin film called 0y-6 is deposited, and a Josephson junction is simultaneously formed.

ここでNaCl型結晶構造をもつ物質としてはBad。Here, the substance with the NaCl type crystal structure is Bad.

SrO,CaO等のアルカリ土類の酸化物が適している
Alkaline earth oxides such as SrO and CaO are suitable.

(実施例) 以下実施例により本発明を具体的に説明する。(Example) The present invention will be specifically explained below using Examples.

(実施例1 )  St (100)面上に特願昭61
−180661 r複合酸化物薄膜の製造方法」、特願
昭61−252486 r酸化物薄膜の製造装置」によ
る第3図の装置中の基板ホルダ11にシリコン(St)
基板1を取りつける。真空度10−9Torr以下とし
、基板温度を500°Cとして、Kセル12から金属S
rを蒸発させながら、Srの堆積膜に酸素ビームを50
eVで打ち込み、NaCl型のSrO薄膜を厚さ500
A堆積させる。SrOの格子定数は第1図りで3.63
4 A ?BazYCu30.−6の軸の長さに極めて
近い。
(Example 1) Patent application 1986 on St (100) surface
Silicon (St) was used in the substrate holder 11 in the apparatus shown in FIG.
Attach board 1. With a vacuum level of 10-9 Torr or less and a substrate temperature of 500°C, metal S is removed from the K cell 12.
While evaporating r, an oxygen beam was applied to the Sr deposited film at 50°C.
Implanted at eV, NaCl-type SrO thin film was deposited to a thickness of 500 nm.
A Deposit. The lattice constant of SrO is 3.63 in the first diagram.
4 A? BazYCu30. It is very close to the axis length of -6.

次に、このSrOの上にBa、 Y、 Cuの金属をに
セル12から蒸発させながら、酸素ビーム(0)を50
eVで打ち込んだ酸化膜をエピタキシャル成長させる。
Next, while evaporating the metals Ba, Y, and Cu from the cell 12 on top of this SrO, an oxygen beam (0) was heated at 50°C.
The oxide film implanted at eV is epitaxially grown.

約2000A堆積させた薄膜の抵抗変化を第4図に示す
が、Tcは約90にである。SrOとBazYCu+(
1+−6の結晶構造の整合性が非常によいため、すぐれ
た超伝導薄膜が得られる。
The resistance change of the thin film deposited at about 2000 A is shown in FIG. 4, and Tc is about 90. SrO and BazYCu+(
Since the 1+-6 crystal structure has very good consistency, an excellent superconducting thin film can be obtained.

〔実施例2〕 実施例1の工程に引続き、SrOを20
A堆積させ、さらにBazYCus(++−6を200
0 A堆積させることによりジョセフソン接合を形成で
きる(第5図) 、 4.2 Kで■c〜5×105A
IcIIlで2△はBC3の値の約2.5倍であった。
[Example 2] Following the process of Example 1, 20% of SrO was added.
A deposited and further BazYCus (++-6 at 200
A Josephson junction can be formed by depositing 0 A at 4.2 K (Fig. 5) ~ 5 x 105 A
2Δ for IcII was about 2.5 times the value for BC3.

〔実施例3〕 実施例と同じ< St (100)面上
に500°CでSrOを50OA堆積させた後、La、
Sr。
[Example 3] After depositing 50OA of SrO at 500°C on the same < St (100) plane as in Example, La,
Sr.

Cuの金属をにセルより蒸発させながら、酸素ビームを
照射して(Lao、 qSro、 I)2CLI04を
厚さ3000人堆積させ、第4図の特性の超伝導薄膜を
得た。
While the Cu metal was evaporated from the cell, 2CLI04 was deposited to a thickness of 3,000 yen by irradiating it with an oxygen beam (Lao, qSro, I) to obtain a superconducting thin film with the characteristics shown in FIG.

以上Ba、YCu+Ot−6および(Lao、 、sr
o、 1)2CL104の場合について実施例を述べた
が、Nacl型構造の物質として適当な材料(BaO、
 SrO,CaO等のアルカリ土類の酸化物)を選ぶこ
とにより、任意の(Ml−X Nx)zcuo4、MN
zCu+(1+−6の薄膜をSt基板、サファイア基板
等の上にエピタキシャル成長させることができる。
Above Ba, YCu+Ot-6 and (Lao, , sr
o, 1) Although the example has been described for the case of 2CL104, suitable materials (BaO,
By selecting alkaline earth oxides such as SrO and CaO, any (Ml-X Nx)zcuo4, MN
A thin film of zCu+(1+-6) can be epitaxially grown on a St substrate, a sapphire substrate, etc.

(発明の効果) St、サファイア、Zr(hなど比較的大きな単結晶が
入手できる材料を基板として用い、その上に岩塩構造の
物質をエピタキシャル成長させ、その上に高Tc超伝導
酸化物をエピタキシャル成長させることができ、広い面
積を利用できるので超伝導デバイス開発上の利点が大き
い。
(Effect of the invention) Materials such as St, sapphire, and Zr (h) for which relatively large single crystals are available are used as a substrate, a substance with a rock salt structure is epitaxially grown on the substrate, and a high Tc superconducting oxide is epitaxially grown on the substrate. This is a great advantage in the development of superconducting devices because it allows the use of a large area.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図Aはペロブスカイト形超伝導酸化物BaPb1−
x Bix 03の結晶構造、Bは(La+−XSrx
 )zcuo4の構造、CはBa2YCu3O7−6の
構造、DはNaCl型のSrOまたはBrOの構造であ
る。 第2図は本発明の薄膜の構成、第3図は本発明に用いる
薄膜製造装置、第4図は実施例1と3の薄膜の抵抗温度
変化、第5図はBa2YCuiO+−6のジョセフソン
接合の特性である。 1・・・基板、 2・・・NaCl型薄膜層、3− (
Ml−、Nx)2Cu04またはMNzCu:+07−
6  なる酸化物超伝導薄膜、4・・・エビ成長室、5
・・・酸素イオン源、6・・・イオンソース、7・・・
質量分離器、8・・・酸素ビーム、9・・・減速機構、
10・・・中和機構、11・・・基板ホルダ、12・・
・Kセル、13・・・Eガン、14・・・金属元素ビー
ム、15・・・予備排気室。
Figure 1A shows perovskite superconducting oxide BaPb1-
The crystal structure of x Bix 03, B is (La+-XSrx
) structure of zcuo4, C is the structure of Ba2YCu3O7-6, and D is the structure of NaCl type SrO or BrO. Fig. 2 shows the structure of the thin film of the present invention, Fig. 3 shows the thin film manufacturing apparatus used in the invention, Fig. 4 shows the change in resistance temperature of the thin films of Examples 1 and 3, and Fig. 5 shows the Josephson junction of Ba2YCuiO+-6. It is a characteristic of DESCRIPTION OF SYMBOLS 1... Substrate, 2... NaCl type thin film layer, 3- (
Ml-, Nx)2Cu04 or MNzCu: +07-
6 oxide superconducting thin film, 4...shrimp growth chamber, 5
...Oxygen ion source, 6...Ion source, 7...
Mass separator, 8... oxygen beam, 9... deceleration mechanism,
10... Neutralization mechanism, 11... Substrate holder, 12...
・K cell, 13... E gun, 14... Metal element beam, 15... Preliminary exhaust chamber.

Claims (3)

【特許請求の範囲】[Claims] (1)高温超伝導酸化物(M_1_−_xNx)_2C
uO_4(M=Y、La、希土類元素;N=Ba、Sr
、Ca)またはMN_2Cu_3O_7_−_δ(δ≒
0.1〜0.2)の薄膜作製工程において、格子定数が
上記物質に近く、NaCl型結晶構造をもつ物質の薄膜
層を基板表面にエピタキシャル成長させた後、上記の(
M_1_−_xNx)_2CuO_4またはMN_2C
u_3O_7_−_δの薄膜を堆積させ、エピタキシャ
ル成長させることを特徴とする高温超伝導酸化物薄膜の
製造方法。
(1) High temperature superconducting oxide (M_1_-_xNx)_2C
uO_4 (M=Y, La, rare earth element; N=Ba, Sr
, Ca) or MN_2Cu_3O_7_-_δ(δ≒
0.1 to 0.2), a thin film layer of a substance having a lattice constant close to that of the above substance and having an NaCl type crystal structure is epitaxially grown on the substrate surface, and then the above (
M_1_−_xNx)_2CuO_4 or MN_2C
A method for producing a high-temperature superconducting oxide thin film, comprising depositing and epitaxially growing a thin film of u_3O_7_-_δ.
(2)高温超伝導酸化物(M_1_−_xNx)_2C
uO_4(M=Y、La、希土類元素;N=Ba、Sr
、Ca)またはMN_2Cu_3O_7_−_δ(δ≒
0.1〜0.2)の薄膜作製工程において、格子定数が
上記物質に近く、NaCl型結晶構造をもつ物質の薄膜
層を基板表面にエピタキシャル成長させた後、上記の(
M_1_−_xNx)_2CuO_4またはMN_2C
u_3O_7_−_δの薄膜を堆積させ、エピタキシャ
ル成長させた後該薄膜の上にNaCl型結晶構造の絶縁
層を10〜30Å堆積させ、再び(M_1_−_xNx
)_2CuO_4またはMN_2Cu_3O_7_−_
δの薄膜を堆積させ、ジョセフソン接合を同時に形成す
ることを特徴とする高温超伝導酸化物薄膜の製造方法。
(2) High-temperature superconducting oxide (M_1_-_xNx)_2C
uO_4 (M=Y, La, rare earth element; N=Ba, Sr
, Ca) or MN_2Cu_3O_7_-_δ(δ≒
0.1 to 0.2), a thin film layer of a substance having a lattice constant close to that of the above substance and having an NaCl type crystal structure is epitaxially grown on the substrate surface, and then the above (
M_1_−_xNx)_2CuO_4 or MN_2C
After a thin film of u_3O_7_-_δ is deposited and epitaxially grown, an insulating layer with a NaCl type crystal structure of 10 to 30 Å is deposited on the thin film, and again (M_1_-_xNx
)_2CuO_4 or MN_2Cu_3O_7_-_
A method for producing a high-temperature superconducting oxide thin film, characterized by depositing a thin film of δ and simultaneously forming a Josephson junction.
(3)NaCl型結晶構造をもつ物質としてアルカリ土
類の酸化物(BaO、SrO、CaO)を用いることを
特徴とする特許請求の範囲第1項または第2項記載の高
温超伝導酸化物薄膜の製造方法。
(3) The high-temperature superconducting oxide thin film according to claim 1 or 2, characterized in that an alkaline earth oxide (BaO, SrO, CaO) is used as the substance having the NaCl type crystal structure. manufacturing method.
JP62140895A 1987-06-05 1987-06-05 Production of thin film of high-temperature superconductive oxide Pending JPS63307197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62140895A JPS63307197A (en) 1987-06-05 1987-06-05 Production of thin film of high-temperature superconductive oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62140895A JPS63307197A (en) 1987-06-05 1987-06-05 Production of thin film of high-temperature superconductive oxide

Publications (1)

Publication Number Publication Date
JPS63307197A true JPS63307197A (en) 1988-12-14

Family

ID=15279285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62140895A Pending JPS63307197A (en) 1987-06-05 1987-06-05 Production of thin film of high-temperature superconductive oxide

Country Status (1)

Country Link
JP (1) JPS63307197A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104178808A (en) * 2014-08-06 2014-12-03 上海交通大学 Liquid-phase epitaxial method for preparing high-temperature superconductive artificial crystal boundary

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104178808A (en) * 2014-08-06 2014-12-03 上海交通大学 Liquid-phase epitaxial method for preparing high-temperature superconductive artificial crystal boundary

Similar Documents

Publication Publication Date Title
JPH02177381A (en) Tunnel junction element of superconductor
JPH0354116A (en) Compound oxide superconducting thin film and production thereof
JPH04300292A (en) Film forming method for multicomponent oxide film superconducting film
JPS63307197A (en) Production of thin film of high-temperature superconductive oxide
JPS63239742A (en) Manufacture for film superconductor
JPH0218974A (en) Supeconducting device and its manufacture
JPS63306676A (en) Josephson element
JPH01208327A (en) Production of thin film of superconductor
JPS63301424A (en) Manufacture of oxide superconductor membrane
JP2506798B2 (en) Superconductor
JPS63225599A (en) Preparation of oxide superconductive thin film
JPH0244782A (en) Superconductive element and manufacture thereof
JPH01167912A (en) Sheathing material of superconducting material and manufacture thereof
JPH0688858B2 (en) Superconductor
JPS63306678A (en) Josephson element
JPH0719922B2 (en) Superconductor and integrated superconducting device
JP2835235B2 (en) Method of forming oxide superconductor thin film
JPH02197179A (en) Josephson junction element and manufacture thereof
JP2828652B2 (en) Superconducting element manufacturing method
JP2913653B2 (en) Oxide superconducting thin film structure
JPS63236794A (en) Production of superconductive thin film of oxide
JPH01161628A (en) Formation of oxide superconducting thin film
JPS63235462A (en) Formation of thin oxide film with k2nif4-type crystalline structure
JP3015393B2 (en) Method for producing oxide superconductor thin film
JPS63279515A (en) Superconductor structure