JPS63305562A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS63305562A
JPS63305562A JP62141263A JP14126387A JPS63305562A JP S63305562 A JPS63305562 A JP S63305562A JP 62141263 A JP62141263 A JP 62141263A JP 14126387 A JP14126387 A JP 14126387A JP S63305562 A JPS63305562 A JP S63305562A
Authority
JP
Japan
Prior art keywords
region
transistor
mis
mis transistor
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62141263A
Other languages
Japanese (ja)
Inventor
Koji Otsu
大津 孝二
Mitsuaki Takeshita
竹下 光明
Akihiko Ochiai
落合 昭彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP62141263A priority Critical patent/JPS63305562A/en
Publication of JPS63305562A publication Critical patent/JPS63305562A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate

Abstract

PURPOSE:To provide a highly reliable MIS transistor integrated circuit (MIS-IC), by using a second MIS transistor for the MIS peripheral circuit handling relatively high voltage and high current, while using a first MIS transistor constructed in an ordinary manner for the circuit handling small signals. CONSTITUTION:A source region 16 and drain region 17 having a high dopant concentration of about 10<20>-10<21> atoms/cm<2> are formed on each of element forming regions 10 and 20 on the surface of a substrate 11. In the element forming region 19, a first MIS transistor having the source and drain regions 16, 17 directly connected to a channel stop region 18 provided under an element isolating region, namely an ordinary MIS transistor 22 is formed. In the other element forming region 20, a second MIS transistor having the source and drain regions 16 and 17 not connected directly to a channel stop region 18, namely MIS transistor 23 having high dielectric strength is formed. An MIS transistor integrated circuit having these transistors 22 and 23 can be provided with high reliability in this manner.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置特にMISトランジスタの集積回
路(旧5−IC)に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to an integrated circuit (formerly 5-IC) of MIS transistors.

〔発明の概要〕[Summary of the invention]

本発明は、MISI−ランジスタの集積回路において、
素子分離領域と平面的に連続するソース領域及びドレイ
ン領域を有する第1のMISI−ランジスタと、ソース
領域及びドレイン領域の少くとも高濃度領域が素子分離
領域と平面的に離間して形成した第2のMISトランジ
スタを有せしめることにより、接合耐圧の異なるMIS
トランジスタを同一の製造プロセスで作成可能とし、信
頼性の高い旧5−ICを提供できるようにしたものであ
る。
The present invention provides a MISI-transistor integrated circuit, in which:
A first MISI-transistor having a source region and a drain region that are continuous with the element isolation region in a plane, and a second MISI transistor in which at least a high concentration region of the source region and the drain region is formed spaced apart from the element isolation region in a plane. MIS transistors with different junction breakdown voltages can be used.
This makes it possible to manufacture transistors using the same manufacturing process, and to provide highly reliable old 5-ICs.

〔従来の技術〕[Conventional technology]

通常、MISI−ランジスタの集積回路は第9図に示す
ように構成される。即ち、第1導電形例えばp形の半導
体基板(llの一生面上にゲー日色1膜(2)を介して
ゲート電極(3)を形成し、このゲート電極(3)とフ
ィールド部の絶縁層すなわち選択酸化(LOGO5)法
による厚い酸化FjI(4)よりなる素子分離領域(5
)をマスクに自己整合的に第2導電形例えばn形不純物
を導入して基板(1)の表面に高濃度のn形のソース領
域(6)及びドレイン領域(7)を形成して構成される
。この場合、素子分離領域(6)下には予めp+層によ
るチャンネルストップ領域(8)が形成されており、ソ
ース領域(6)及びドレイン領域(7)はp+層のチャ
ンネルストップ領域(8)に連接している。
Typically, a MISI-transistor integrated circuit is constructed as shown in FIG. That is, a gate electrode (3) is formed on the entire surface of a semiconductor substrate (II) of a first conductivity type, for example, a p-type, via a gate electrode 1 film (2), and insulation between this gate electrode (3) and a field portion is formed. An element isolation region (5) made of a thick oxidized FjI (4) layer, that is, a selective oxidation (LOGO5) method.
) is used as a mask to introduce a second conductivity type, for example, an n-type impurity, in a self-aligned manner to form a highly concentrated n-type source region (6) and drain region (7) on the surface of the substrate (1). Ru. In this case, a channel stop region (8) made of a p+ layer is formed in advance under the element isolation region (6), and a source region (6) and a drain region (7) are formed in the channel stop region (8) of the p+ layer. It is connected.

斯るMist−ランジスタの高耐圧化には、基板の濃度
を下げる方法、ソース及びドレイン領域の接合深さを大
にする方法、ソース及びドレイン領域を2重拡散法で形
成して電界の集中を緩和する方法、その他種々の方法が
ある。
To increase the withstand voltage of such Mist-transistors, there are several methods: lowering the concentration of the substrate, increasing the junction depth of the source and drain regions, and forming the source and drain regions using a double diffusion method to reduce the concentration of the electric field. There are various ways to alleviate this and other methods.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、MISトランジスタの耐圧(ドレイン耐圧)
としては、第9図において、ゲート部に接する接合部分
(alの耐圧と、素子分離領域で5)のチャンネルスト
ップ領域(8)に接する接合部分(blの耐圧が問題と
なる。ソース領域(6)及びドレイン領域(7)の接合
が浅い場合にはトランジスタの耐圧は接合部分(alの
r耐圧で決まり、接合が深い場合にはトランジスタの耐
圧は接合部分子b)の耐圧で決る。
By the way, the breakdown voltage (drain breakdown voltage) of the MIS transistor
In FIG. 9, the problem is the breakdown voltage of the junction part (al) in contact with the gate part (withstand voltage of al and the breakdown voltage of bl in contact with the channel stop region (8)) and the breakdown voltage of the junction part (bl) in contact with the channel stop region (8). ) and the drain region (7) are shallow, the breakdown voltage of the transistor is determined by the breakdown voltage of the junction (al), and when the junction is deep, the breakdown voltage of the transistor is determined by the breakdown voltage of the junction molecule b).

一方、例えばMISI−ランジスタで構成されるダイナ
ミックRA Mではメモリセル中の性能のよいMISI
−ランジスタは通常の構造で構成し、比較的に高電圧、
高電流を扱う周辺回路のMISトランジスタは高耐圧M
ISI−ランジスタが必要とされる。しかし乍ら、従来
の高耐圧MISトランジスタは全て通常のMISトラン
ジスタと同一の製造プロセスで作る事が難かしかった。
On the other hand, for example, in a dynamic RAM composed of MISI-transistors, a high-performance MISI transistor in a memory cell is used.
- The transistor has a conventional structure, has a relatively high voltage,
MIS transistors in peripheral circuits that handle high current have high withstand voltage M
An ISI-transistor is required. However, it has been difficult to manufacture conventional high-voltage MIS transistors using the same manufacturing process as ordinary MIS transistors.

本発明は、上述の点に鑑み、耐圧の異なるMISトラン
ジスタを同一の製造プロセスで構成できるようにした半
導体装置を提供するものである。
In view of the above-mentioned points, the present invention provides a semiconductor device in which MIS transistors having different breakdown voltages can be constructed in the same manufacturing process.

c問題点を解決するための手段〕 本発明は、第1導電形の半導体領域上に形成した素子分
離領域と平面的に連続する第2導電形のソース領域及び
ドレイン領域を有してなる第1のMISトランジスタと
、ソース領域及びドレイン領域の少くとも高濃度領域が
素子分離領域と平面的に離間して形成してなる第2のM
ISI−ランジスタを有せしめて構成する。
Means for Solving Problem c] The present invention provides a semiconductor device having a source region and a drain region of a second conductivity type that are continuous in plan with an element isolation region formed on a semiconductor region of a first conductivity type. A second MIS transistor formed of the first MIS transistor and at least the high concentration regions of the source region and the drain region separated from the element isolation region in a plane.
It is configured with an ISI transistor.

素子分離領域下には高濃度の第1導電形層によるチャン
ネルストップ領域が形成される。第1のMISトランジ
スタのソース領域及びドレイン領域は素子骨1i1ft
領域と自己整合的に形成され、素子分離領域したがって
その下のチャンネルストップ領域と接している。又、第
2のMISI−ランジスタのソース領域及びドレイン領
域は素子分離領域したがってその下のチャンネルストッ
プ領域と接しないように形成される。或は第2のMIS
I−ランジスタのソース領域及びドレイン領域は素子分
離領域したがってその下のチャンネルストップ領域と、
ゲート部と接しないように形成される。或は第2のMI
SI−ランジスタのソース領域及びドレイン領域は低濃
度領域が素子分離領域と自己整合的に形成され、高濃度
領域が素子分離領域したがってその下のチャンネルスト
ップ領域あるいはこのチャンネルストップ領域とゲート
部に接しない様に形成される。
A channel stop region is formed by a highly doped first conductivity type layer under the element isolation region. The source region and drain region of the first MIS transistor are
It is formed in self-alignment with the element isolation region and is in contact with the underlying channel stop region. Further, the source region and drain region of the second MISI transistor are formed so as not to contact the element isolation region and thus the channel stop region therebelow. Or a second MIS
The source region and drain region of the I-transistor are connected to the element isolation region and therefore to the channel stop region thereunder,
It is formed so as not to be in contact with the gate part. Or second MI
In the source and drain regions of the SI-transistor, the low concentration region is formed in self-alignment with the element isolation region, and the high concentration region does not touch the element isolation region, the channel stop region below it, or the channel stop region and the gate part. It is formed like this.

〔作用〕[Effect]

第1のMrSトランジスタは通常の耐圧を有する。 The first MrS transistor has a normal breakdown voltage.

之に対し、第2のMISI−ランジスタはソース領域及
びドレイン領域、特に少くともその高濃度領域が素子分
離領域下のチャンネルストップ領域に接しないように構
成されることにより、接合部分(blの耐圧が上がり、
第1のMISトランジスタよりも高耐圧化される。又、
第2のMISトランジスタのソース領域及びドレイン領
域特に少くともその高濃度領域が素子分離領域下のチャ
ンネルストップ領域及びゲート部に接しないよう構成さ
れるときは、接合部分(a)及び[b)の耐圧が上がり
、第2のMISトランジスタは第1のMISトランジス
タに比べて更に高耐圧化される。そして、これら第1及
び第2のMISトランジスタは、イオン注入又は拡散に
よるソース及びドレイン領域特にその高濃度領域の形成
の際のマスクパターンを変えることにより、即ち第2の
MISトランジスタでは素子分離領域の内側にマスクが
形成されるようなパターンにすることにより、プロセス
条件を変更することなく同一の製造プロセスで同時に形
成される。
On the other hand, the second MISI-transistor is configured so that the source region and the drain region, especially at least their high concentration region, do not touch the channel stop region under the element isolation region, so that the junction portion (withstand voltage of bl) rises,
The breakdown voltage is higher than that of the first MIS transistor. or,
When the source region and the drain region of the second MIS transistor, especially at least the high concentration region thereof, are configured so as not to contact the channel stop region and gate portion under the element isolation region, the junction portions (a) and [b] The breakdown voltage is increased, and the second MIS transistor has a higher breakdown voltage than the first MIS transistor. These first and second MIS transistors can be formed by changing the mask pattern when forming the source and drain regions, especially their high concentration regions, by ion implantation or diffusion. By forming a pattern in which a mask is formed on the inside, they can be formed simultaneously in the same manufacturing process without changing process conditions.

従って、この高耐圧の第2のMrSトランジスタを比較
的に高耐圧、高電流を扱うMIS周辺回路に用い、小信
号部分に通常の構造の第1のM[31ランジスタを用い
ることにより、高信頼性のMis−ICが得られる。
Therefore, by using this high-voltage second MrS transistor in the MIS peripheral circuit that handles relatively high voltage and high current, and by using the first M[31 transistor with a normal structure in the small signal part, it is possible to achieve high reliability. Mis-IC is obtained.

〔実施例〕〔Example〕

以下、図面を参照して本発明による半導体装置の実施例
を説明する。
Embodiments of the semiconductor device according to the present invention will be described below with reference to the drawings.

第1図及び第2図は本発明の一実施例である。1 and 2 show one embodiment of the present invention.

本例においては、例えば不純物濃度1015〜1010
16ato/ ctA程度のp形シリコン基板(11)
の−主面のフィールド部に対応する部分に例えば3 X
 1016〜3X 10” atoms / cn!程
度のp+屓によるチャンネルストップ領域(18)を形
成して後、選択酸化(LOGO3)法による厚い酸化層
(■4)よりなる素子分離領域(15)を形成する。こ
の素子分離領域(15)に囲まれた1の素子形成領域(
19)及び他の素子形成領域(20)に夫々例えばSi
O2よりなるゲート絶縁膜(12)を介して例えば多結
晶シリコンよりなるゲート電極(13)を形成する。そ
して不純物導入用マスクとなる所定パターンのホトレジ
ストJiFif(21)を形成し、イオン注入法により
各素子形成領域(19) 、  (20)の基板(11
)表面に例えば不純物濃度1020〜10” atom
s / cJ程度の高濃度のソース領域(16)及びド
レイン領域(17)を形成する。このとき、1の素子形
成領14(19)ではホトレジスト層(21)を素子分
離領域(15)の端部より外側に設け、素子分離領域(
I5)及びゲート電ti(13)と自己整合的にソース
領域(16)及びドレイン領域(17)を形成する。又
、他の素子形成領6(20)ではホトレジストI’ti
f(21)を素子分離領域(15)の端部より内側に設
け、このホトレジスト層(21)及びゲート電極(13
)をマスクにソース領域(16)及びドレイン領域(1
7)を形成する。これによって1の素子形成領域(19
)では素子分離領域下のチャンネルストップ領域(18
)に連接するソース領域(16)及びドレイン領域(1
7)を有する第1のMISトランジスタ叩ち通常のMI
Sトランジスタ(22)が形成され、他の素子形成領域
(20)ではチャンネルス)7ブ領域(18)に直接に
接しないソース領域(16)及びドレイン領域(17)
を有する第2のMISトランジスタ即ち高耐圧のMIS
I−ランジスタ(23)が形成されたMISトランジス
タ集積回路を得る。
In this example, the impurity concentration is 1015 to 1010, for example.
P-type silicon substrate (11) of about 16ato/ctA
For example, 3
After forming a channel stop region (18) using p+ layers of approximately 1016 to 3×10” atoms/cn!, an element isolation region (15) is formed using a thick oxide layer (■4) using selective oxidation (LOGO3) method. One element formation region (15) surrounded by this element isolation region (15)
19) and other element forming regions (20), for example, Si.
A gate electrode (13) made of, for example, polycrystalline silicon is formed via a gate insulating film (12) made of O2. Then, a photoresist JiFif (21) with a predetermined pattern is formed as a mask for impurity introduction, and the substrate (11) of each element formation region (19) and (20) is formed by ion implantation.
) On the surface, for example, an impurity concentration of 1020 to 10" atoms
A source region (16) and a drain region (17) having a high concentration of approximately s/cJ are formed. At this time, in the first element formation region 14 (19), a photoresist layer (21) is provided outside the edge of the element isolation region (15),
A source region (16) and a drain region (17) are formed in self-alignment with I5) and gate voltage ti (13). In addition, in the other element formation region 6 (20), the photoresist I'ti
f (21) is provided inside the edge of the element isolation region (15), and this photoresist layer (21) and gate electrode (13)
) as a mask, source region (16) and drain region (1
7). As a result, one element formation area (19
), the channel stop region (18
) a source region (16) and a drain region (1
7) First MIS transistor with normal MI
A source region (16) and a drain region (17) in which an S transistor (22) is formed and which are not in direct contact with the channel region (18) in other element formation regions (20).
A second MIS transistor having a high breakdown voltage MIS
A MIS transistor integrated circuit in which an I-transistor (23) is formed is obtained.

第1のMISトランジスタ(23)におけるソース領域
(16)及びドレイン領域(17)と素子分離領域(1
5)間の隔間t1は1μm以上あればよく、本例では1
.2μ鋼とした。
The source region (16) and drain region (17) in the first MIS transistor (23) and the element isolation region (1
5) The interval t1 between the
.. It was made of 2μ steel.

第3図及び第4図は本発明の他の実施例である。FIGS. 3 and 4 show other embodiments of the present invention.

本例においては第1図及び第2図と対応する部分には同
一符号を付して重複説明を省略するも、特に、他の素子
形成領域(20)においてソース領域(16)及びドレ
イン領域(17)を夫々チャンネルストップ領域(12
)とゲート部即ちゲート電極(13)の直下に直接に接
しないように形成して第2のMISトランジスタ即ち高
耐圧MISトランジスタ(24)を構成する。素子分離
領域(15)とソース領域(16)及びドレイン領域(
17)間の間隔t1、ゲー′ト部とソース領域(16)
及びドレイン領域(17)間の間隔t2はいずれも1μ
鋼以上とするを可とし、本例では夫々 1.2μ鋼とし
た。
In this example, parts corresponding to those in FIGS. 1 and 2 are given the same reference numerals and redundant explanations are omitted. 17) respectively in the channel stop area (12
) and the gate portion, that is, directly under the gate electrode (13) so as not to be in direct contact with each other to constitute a second MIS transistor, that is, a high voltage MIS transistor (24). Element isolation region (15), source region (16) and drain region (
17) Distance t1 between gate region and source region (16)
and the distance t2 between the drain region (17) is 1μ.
It is possible to use steel or higher, and in this example, 1.2μ steel is used for each.

これによって、1の素子形成領域(19)に第1のMi
sトランジスタ即ち通常のMisトランジスタ(22)
が形成され、他の素子形成領域(20)に第2のMIS
トランジスタ即ち高耐圧のMISトランジスタ(24)
が形成されたMISトランジスタ集積回路を得る。
As a result, the first Mi
s transistor or normal Mis transistor (22)
is formed, and a second MIS is formed in another element formation region (20).
Transistor, high voltage MIS transistor (24)
A MIS transistor integrated circuit is obtained.

第6図、第7図及び第8図は、夫々上述の構成による第
1のMISトランジスタ(22) 、第1図の第2のM
ISトランジスタ(23)、及び第3図の第2のMis
トランジスタ(24) (7) I o  V。
6, 7, and 8 respectively show the first MIS transistor (22) having the above-described configuration, and the second MIS transistor (22) in FIG.
IS transistor (23) and the second Mis in FIG.
Transistor (24) (7) I o V.

特性を示す。第1のMISトランジスタ即ち通常のMI
Sトランジスタ(22)では第6図に示すようにブレー
クダウン電圧はIo、7V程度であり、素子分離領域の
チャンネルストップ領域(18)の濃度によって決まっ
ている。これに対して、高濃度のソース領域(16)及
びドレイン領域(17)を素子分離領域のチャンネルス
トップ領域(18)より離した第1図の第2のMISト
ランジスタ(23)では第7図に示すようにブレークダ
ウン電圧が13.2Vとなり通常のMISトランジスタ
(22)よリ 2.5V程度向上する。さらに、ソース
領域(16)及びドレイン領域(17)を素子分離領域
のチャンネルストップ領域(18)及びゲート部よりδ
IIした第3図の第2のMISI−ランジスタ(24)
では第8図に示すようにブレークダウン電圧が14.0
Vとなり、通常のMISトランジスタ(22)より3V
以上向上する。但し、このM I S I−ランジスタ
(24)ではソース及びドレイン抵抗が高くなるため、
1o−vo特性に劣化する。
Show characteristics. The first MIS transistor, i.e. the normal MI
As shown in FIG. 6, the S transistor (22) has a breakdown voltage Io of about 7 V, which is determined by the concentration of the channel stop region (18) in the element isolation region. On the other hand, in the second MIS transistor (23) of FIG. 1 in which the highly doped source region (16) and drain region (17) are separated from the channel stop region (18) of the element isolation region, the structure shown in FIG. As shown, the breakdown voltage is 13.2V, which is about 2.5V higher than the normal MIS transistor (22). Further, the source region (16) and the drain region (17) are separated by δ from the channel stop region (18) of the element isolation region and the gate region.
Second MISI transistor (24) in Fig. 3
In this case, the breakdown voltage is 14.0 as shown in Figure 8.
V, 3V from the normal MIS transistor (22)
or more. However, since the source and drain resistances of this M I S I-transistor (24) are high,
It deteriorates to 1 o-vo characteristic.

例えばダイナミックRAMちおいて比較的に高電圧、高
電流を扱うMIS周辺回路に上記構成のMISトランジ
スタ(23)又は(24)を用い、メモリセル中のMI
SI−ランジスタには通常の構造のMISトランジスタ
(22)を用いる事により高信頼性のダイナミックRA
 Mを構成することができる。
For example, MIS transistors (23) or (24) with the above configuration are used in dynamic RAM and MIS peripheral circuits that handle relatively high voltages and high currents.
Highly reliable dynamic RA is achieved by using a MIS transistor (22) with a normal structure as the SI transistor.
M can be configured.

第5図は本発明の他の実施例である。本例においては、
lの素子形成領域(19)において厚い酸化1舗(14
)及びゲート電極(I3)をマスクとしてソース領域(
16)及びドレイン領域(17)を構成する例えば不純
物濃度1017〜101018ato /−程度の低濃
度領域(16a)及び(17a)を形成し、次にゲート
電極に側壁部を設けてゲート部と接しないように102
0〜102iato翔s/al程度の高濃度領域(16
b)及び(17b ’)を形成して夫々ソース領域(1
6)及びドレイン領域(17)を形成し、第1のM T
 S トランジスタ即ら通常のL D D fI造のM
isトランジスタ(25)を形成する。又、他の素子形
成領域(20)において、厚い酸化層(14)及びゲー
ト電極(13)をマスクにしてソース領域(16)及び
ドレイン領域(17)を構成する低濃度領域(16a)
及び(17a)を形成し、次に素子分離領域のチャンネ
ルストップ領域(18)及びゲート部に接しないように
高濃度領域(16b)及び(17b)を形成してソース
領域(16)及びドレイン領域(17)を形成し、第2
のMISI−ランジスタ即ち高耐圧のMISトランジス
タ(26)を形成する。
FIG. 5 shows another embodiment of the invention. In this example,
A thick oxidation layer (14) is formed in the element formation region (19) of
) and the source region (
16) and the drain region (17), for example, form low concentration regions (16a) and (17a) with an impurity concentration of about 1017 to 101018ato/-, and then provide a side wall part on the gate electrode so that it does not contact the gate part. like 102
High concentration region of 0 to 102 iatos/al (16
b) and (17b') to form source regions (1
6) and drain region (17), forming the first M T
S transistor, that is, normal L D D fI structure M
An is transistor (25) is formed. In addition, in the other element formation region (20), using the thick oxide layer (14) and gate electrode (13) as masks, low concentration regions (16a) constituting the source region (16) and drain region (17) are formed.
and (17a), and then high concentration regions (16b) and (17b) are formed so as not to be in contact with the channel stop region (18) of the element isolation region and the gate region to form the source region (16) and the drain region. (17) and the second
A MISI transistor (26) with high breakdown voltage is formed.

第1及び第2のMISI−ランジスタでの夫々の低濃度
のソース領域(16a)、ドレイン領域(17a)は同
じ工程で形成され、また第1及び第2のMISトランジ
スタの高濃度のソース領域(16b)、 ドレイン領域
(17b)もマスクパターンを選定して互に同じ工程で
形成される。
The low concentration source regions (16a) and drain regions (17a) of the first and second MISI transistors are formed in the same process, and the high concentration source regions (17a) of the first and second MISI transistors are formed in the same process. 16b) and the drain region (17b) are also formed in the same process by selecting a mask pattern.

かかる構成においても、第2のMISトランジスタ(2
6)ではソース領域(16)及びドレイン領域(17)
の高濃度領域(16b)及び(17b)がチャンネルス
トップ領域(18)に接しないので、高耐圧化される。
Even in such a configuration, the second MIS transistor (2
6), the source region (16) and the drain region (17)
Since the high concentration regions (16b) and (17b) do not touch the channel stop region (18), a high breakdown voltage is achieved.

そして、この場合には低濃度領域(16a)、(17a
)があるために1.−VD特性が安定する。
In this case, the low concentration regions (16a) and (17a)
) because 1. -VD characteristics are stabilized.

なお、上側ではnチャンネルのMISトランジスタにつ
いて述べたが、pチャンネルのMISトランジスタにつ
いても通用できる。
Note that, although the above description deals with an n-channel MIS transistor, the same applies to a p-channel MIS transistor.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、MISI−ランジスタにおいてその少
くとも高濃度のソース領域及びドレイン領域を素子分離
領域より離すように形成することにより通常構成のMI
Sトランジスタより耐圧を向上することができる。そし
て、この高耐圧MISトランジスタはソース及びドレイ
ン領域の形成の際のマスクパターンを変えるだけで通常
のMISトランジスタと同一の製造プロセスで同時に形
成することができる。従って、比較的に高電圧、高電流
を扱うMis周辺回路に上記構成の高耐圧M■Sトラン
ジスタを用い、小信号部分に通常構造のMISI−ラン
ジスタを用いることにより高信頼性の旧5−ICを構成
することができる。従って、例えばダイナミックRAM
等のMIS−ICに適用して好適ならしめるものである
According to the present invention, by forming at least the highly doped source and drain regions of the MISI transistor apart from the element isolation region, it is possible to
The breakdown voltage can be improved compared to the S transistor. This high voltage MIS transistor can be formed at the same time as a normal MIS transistor in the same manufacturing process by simply changing the mask pattern when forming the source and drain regions. Therefore, by using a high-voltage M■S transistor with the above configuration in the Mis peripheral circuit that handles relatively high voltage and high current, and using a MISI-transistor with a normal structure in the small signal part, high reliability can be achieved using the old 5-IC. can be configured. Therefore, for example, dynamic RAM
It is suitable for application to MIS-ICs such as the following.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の半導体装置の一実施例を示
す断面図及びその平面図、第3図及び第4図は本発明の
半導体装置の他の実施例を示す断面図及びその平面図、
第5図は本発明の半導体装置のさらに他の実施例を示す
断面図、第6図、第7図及び第8図はTD  vD特性
図、第9図は従来のMisトランジスタ集積回路の断面
図である。 (11)はシリコン基板、(12)はゲート絶縁膜、(
13)はゲート電極、(15)は素子分離領域、(16
)はソース領域、 (17)はドレイン領域、(18)
はチャンネルストップ領域である。
1 and 2 are a cross-sectional view and a plan view of one embodiment of the semiconductor device of the present invention, and FIGS. 3 and 4 are cross-sectional views and a plan view of another embodiment of the semiconductor device of the present invention. Plan view,
FIG. 5 is a sectional view showing still another embodiment of the semiconductor device of the present invention, FIGS. 6, 7, and 8 are TD vD characteristic diagrams, and FIG. 9 is a sectional view of a conventional Mis transistor integrated circuit. It is. (11) is a silicon substrate, (12) is a gate insulating film, (
13) is a gate electrode, (15) is an element isolation region, and (16) is a gate electrode.
) is the source region, (17) is the drain region, (18)
is the channel stop area.

Claims (1)

【特許請求の範囲】 半導体領域上に形成された素子分離領域と平面的に連続
するソース領域及びドレイン領域を有してなる第1のM
ISトランジスタと、 ソース領域及びドレイン領域の少くとも高濃度領域が上
記素子分離領域と平面的に離間して形成されてなる第2
のMISトランジスタを有して成る半導体装置。
[Claims] A first M comprising a source region and a drain region that are continuous in plan with an element isolation region formed on a semiconductor region.
an IS transistor; and a second transistor in which at least high concentration regions of a source region and a drain region are formed spaced apart from the element isolation region in a plane.
A semiconductor device comprising a MIS transistor.
JP62141263A 1987-06-05 1987-06-05 Semiconductor device Pending JPS63305562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62141263A JPS63305562A (en) 1987-06-05 1987-06-05 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62141263A JPS63305562A (en) 1987-06-05 1987-06-05 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS63305562A true JPS63305562A (en) 1988-12-13

Family

ID=15287835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62141263A Pending JPS63305562A (en) 1987-06-05 1987-06-05 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS63305562A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489367A (en) * 1987-09-30 1989-04-03 Fujitsu Ltd High breakdown strength semiconductor device
JPH03188461A (en) * 1989-09-20 1991-08-16 Fuji Electric Co Ltd Electrophotograhic sensitive body
JPH06216380A (en) * 1992-10-07 1994-08-05 Matsushita Electric Ind Co Ltd Semiconductor device and manufacture thereof
JPH09186322A (en) * 1995-12-26 1997-07-15 Lg Semicon Co Ltd Semiconductor device and manufacture thereof
EP1043778A1 (en) * 1999-04-06 2000-10-11 STMicroelectronics S.r.l. Method of fabrication of a high voltage MOS transistor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151052A (en) * 1982-03-02 1983-09-08 Toshiba Corp Mos type semiconductor device
JPS616840A (en) * 1984-06-21 1986-01-13 Toshiba Corp Production of semiconductor device
JPS6119174A (en) * 1984-07-06 1986-01-28 Toshiba Corp Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151052A (en) * 1982-03-02 1983-09-08 Toshiba Corp Mos type semiconductor device
JPS616840A (en) * 1984-06-21 1986-01-13 Toshiba Corp Production of semiconductor device
JPS6119174A (en) * 1984-07-06 1986-01-28 Toshiba Corp Semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489367A (en) * 1987-09-30 1989-04-03 Fujitsu Ltd High breakdown strength semiconductor device
JPH03188461A (en) * 1989-09-20 1991-08-16 Fuji Electric Co Ltd Electrophotograhic sensitive body
JPH06216380A (en) * 1992-10-07 1994-08-05 Matsushita Electric Ind Co Ltd Semiconductor device and manufacture thereof
JPH09186322A (en) * 1995-12-26 1997-07-15 Lg Semicon Co Ltd Semiconductor device and manufacture thereof
EP1043778A1 (en) * 1999-04-06 2000-10-11 STMicroelectronics S.r.l. Method of fabrication of a high voltage MOS transistor
US6350637B1 (en) 1999-04-06 2002-02-26 Stmicroelectronics S.R.L. Method of fabrication of a no-field MOS transistor

Similar Documents

Publication Publication Date Title
US4329706A (en) Doped polysilicon silicide semiconductor integrated circuit interconnections
JP3301057B2 (en) Method of forming vertical gate field effect transistor
US4907058A (en) Complementary semiconductor device having a double well
JPH098289A (en) Semiconductor device and manufacture thereof
US3639813A (en) Complementary enhancement and depletion mosfets with common gate and channel region, the depletion mosfet also being a jfet
US4505026A (en) CMOS Process for fabricating integrated circuits, particularly dynamic memory cells
JPH08241985A (en) Ld-mos transistor
US4788158A (en) Method of making vertical inverter
US6605843B1 (en) Fully depleted SOI device with tungsten damascene contacts and method of forming same
JPS63305562A (en) Semiconductor device
JPH0653513A (en) Semiconductor device and semiconductor integrated circuit device
US6525392B1 (en) Semiconductor power device with insulated circuit
JP2000012851A (en) Field-effect transistor and manufacture thereof
US6433372B1 (en) Dense multi-gated device design
JPS63194367A (en) Semiconductor device
JP2970858B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH05243274A (en) Vertical mosfet
JP2519541B2 (en) Semiconductor device
US7002213B2 (en) Transistor and logic circuit on thin silicon-on-insulator wafers based on gate induced drain leakage currents
JPH04217371A (en) Design of soi for low-resistance gate
JPH09260690A (en) Semiconductor device and semiconductor integrated circuit
JPH01138745A (en) Semiconductor device
JPH03793B2 (en)
JPS59195869A (en) Manufacture of semiconductor device
JPS5864064A (en) Manufacture of semiconductor device