JPH05243274A - Vertical mosfet - Google Patents

Vertical mosfet

Info

Publication number
JPH05243274A
JPH05243274A JP4510292A JP4510292A JPH05243274A JP H05243274 A JPH05243274 A JP H05243274A JP 4510292 A JP4510292 A JP 4510292A JP 4510292 A JP4510292 A JP 4510292A JP H05243274 A JPH05243274 A JP H05243274A
Authority
JP
Japan
Prior art keywords
type
epitaxial layer
layer
type epitaxial
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4510292A
Other languages
Japanese (ja)
Inventor
Masanori Yamamoto
正徳 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4510292A priority Critical patent/JPH05243274A/en
Publication of JPH05243274A publication Critical patent/JPH05243274A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To reduce the dispersion in threshold voltage of a vertical MOSFFT by forming one conductive tape source layer on the surface of a reverse conductive type region in the proximity directly under a polysilicon electrode. CONSTITUTION:An N<-> type epitaxial layer 2 and a P<-> type epitaxial layer 3 are grown on an N<-> type semiconductor substrate 1. Next, using an oxide film 4 as a mask, an ion implantation is performed and an N-type layer 5 is formed. After informing a gate oxide film 4a and a gate polysilicon 6, an N<+> type source 7 is formed. Then, an interlayer insulating film 8 is formed, and a source electrode 9 and a drain electrode 10 are formed. Thus, since the P<-> type epitaxial layer 3 separated by the N<-> type layer 5 is employed as a base, the surface concentration becomes constant. As a result, the dispersion in threshold voltage is reduced. Further, the compact gate polysilicon 6 can be obtained and the parasitic capacitance is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、しきい値電圧のばらつ
きと寄生容量とを小さくした、縦型MOSFETに関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vertical MOSFET in which variations in threshold voltage and parasitic capacitance are reduced.

【0002】[0002]

【従来の技術】従来の縦型MOSFETについて、図5
(a)〜(d)を参照して説明する。
2. Description of the Related Art A conventional vertical MOSFET is shown in FIG.
This will be described with reference to (a) to (d).

【0003】はじめに図5(a)に示すように、N+
半導体基板1にN- 型エピタキシャル層2を成長させ
る。
First, as shown in FIG. 5A, an N type epitaxial layer 2 is grown on an N + type semiconductor substrate 1.

【0004】つぎに図5(b)に示すように、厚さ20
〜100nmのゲート酸化膜4aおよび厚さ600nm
のゲートポリシリコン6を形成したのち、ゲートポリシ
リコン6をマスクとしてイオン注入してP型ベース3a
を形成する。
Next, as shown in FIG.
˜100 nm gate oxide film 4a and thickness 600 nm
After the gate polysilicon 6 is formed, the gate polysilicon 6 is used as a mask for ion implantation to perform the P-type base 3a.
To form.

【0005】つぎに図5(c)に示すように、レジスト
(図示せず)およびゲートポリシリコン6をマスクとし
てイオン注入して、DSA構造のN+ 型ソース7を形成
したのちレジストを除去する。
Next, as shown in FIG. 5C, ion implantation is performed using a resist (not shown) and the gate polysilicon 6 as a mask to form an N + -type source 7 having a DSA structure, and then the resist is removed. .

【0006】つぎに図5(d)に示すように、厚さ50
0〜1000nmの層間絶縁膜8を堆積したのちコンタ
クトを開口し、ソース電極9およびドレイン電極10を
形成して素子部が完成する。
Next, as shown in FIG.
After depositing the interlayer insulating film 8 of 0 to 1000 nm, the contact is opened, and the source electrode 9 and the drain electrode 10 are formed to complete the element portion.

【0007】従来の縦型MOSFETのしきい値電圧を
決定する表面濃度分布は、図4(b)に示すようにP型
ベースにおいて一様ではなかった。またしきい値電圧を
決定するP型ベース表面のピーク濃度QB が、N+ 型ソ
ースの深さによって変化するという欠点があった。
The surface concentration distribution that determines the threshold voltage of the conventional vertical MOSFET is not uniform in the P-type base as shown in FIG. 4 (b). Further, there is a drawback that the peak concentration Q B of the surface of the P-type base that determines the threshold voltage changes depending on the depth of the N + -type source.

【0008】そのためしきい値電圧が変化し易く、ばら
つきが大きかった。
Therefore, the threshold voltage is apt to change and the variation is large.

【0009】[0009]

【発明が解決しようとする課題】従来の縦型MOSFE
Tは、ゲートポリシリコンをマスクとして、P型ベース
およびN+ 型ソースを形成するDSA構造を用いてい
る。
[Problems to be Solved by the Invention] Conventional vertical MOSFE
T uses a DSA structure that forms a P-type base and an N + -type source using the gate polysilicon as a mask.

【0010】そのためP型ベース表面のピーク濃度QB
の変動が大きく、次式で求められるしきい値がばらつく
という問題があった。
Therefore, the peak concentration Q B of the P-type base surface
Has a problem that the threshold value obtained by the following equation varies.

【0011】 VT =φMS−QSS/C0 +2φf −QB /C0 ここで、VT はしきい値電圧、QSSは表面電荷密度、φ
f はフェルミ準位、φMSは仕事関数差、C0 は単位面積
当りの容量、QB はP型ベース表面のピーク濃度であ
る。
V T = φ MS −Q SS / C 0 + 2φ f −Q B / C 0 Here, V T is the threshold voltage, Q SS is the surface charge density, and φ
f is the Fermi level, φ MS is the work function difference, C 0 is the capacity per unit area, and Q B is the peak concentration on the surface of the P-type base.

【0012】[0012]

【課題を解決するための手段】本発明の縦型MOSFE
Tは、一導電型半導体基板の一主面に一導電型エピタキ
シャル層および逆導電型エピタキシャル層が順次積層さ
れ、前記逆導電型エピタキシャル層に形成された一導電
型領域に囲まれた逆導電型領域をベースとし、前記逆導
電型エピタキシャル層の上にゲート酸化膜およびポリシ
リコンゲート電極が形成され、前記ポリシリコン電極直
下近傍の前記逆導電型領域の表面に一導電型ソース層が
形成されたものである。
A vertical type MOSFE of the present invention
The T is a reverse conductivity type surrounded by a single conductivity type region formed by sequentially stacking a single conductivity type epitaxial layer and a reverse conductivity type epitaxial layer on one main surface of a single conductivity type semiconductor substrate. With a region as a base, a gate oxide film and a polysilicon gate electrode are formed on the opposite conductivity type epitaxial layer, and a one conductivity type source layer is formed on the surface of the opposite conductivity type region immediately below the polysilicon electrode. It is a thing.

【0013】[0013]

【実施例】本発明の第1の実施例について、図1(a)
〜(d)を参照して説明する。
EXAMPLE FIG. 1A shows a first example of the present invention.
This will be described with reference to (d).

【0014】はじめに図1(a)に示すように、N+
半導体基板1にN- 型エピタキシャル層2およびP-
エピタキシャル層3を成長させる。
First, as shown in FIG. 1A, an N type epitaxial layer 2 and a P type epitaxial layer 3 are grown on an N + type semiconductor substrate 1.

【0015】つぎに図1(b)に示すように、酸化膜4
を形成したのちイオン注入または熱拡散によりN- 型エ
ピタキシャル層2に接続するN- 型層5を形成する。こ
のN- 型層5で区切られたP- 型エピタキシャル層3が
ベースとなる。
Next, as shown in FIG. 1B, the oxide film 4
By ion implantation or thermal diffusion after forming the N - -type layer 5 - N connecting -type epitaxial layer 2. The P type epitaxial layer 3 divided by the N type layer 5 serves as a base.

【0016】つぎに図1(c)に示すように、厚さ20
〜100nmのゲート酸化膜4aを形成したのち、厚さ
600nmのゲートポリシリコン6を堆積する。つぎに
レジスト(図示せず)をマスクとしてゲートポリシリコ
ン6をエッチングしてからレジストを除去する。再びレ
ジスト(図示せず)およびゲートポリシリコン6をマス
クとしてイオン注入してN+ 型ソース7を形成したのち
レジストを除去する。
Next, as shown in FIG. 1 (c), a thickness of 20
After forming a gate oxide film 4a having a thickness of ˜100 nm, a gate polysilicon 6 having a thickness of 600 nm is deposited. Next, the gate polysilicon 6 is etched using a resist (not shown) as a mask, and then the resist is removed. The resist (not shown) and the gate polysilicon 6 are again used as a mask to perform ion implantation to form an N + type source 7, and then the resist is removed.

【0017】つぎに図1(d)に示すように、厚さ50
0〜1000nmの層間絶縁膜8を堆積し、コンタクト
を開口したのち、ソース電極9を形成してから、ドレイ
ン電極10を形成して素子部が完成する。
Next, as shown in FIG. 1D, the thickness 50
An interlayer insulating film 8 having a thickness of 0 to 1000 nm is deposited, a contact is opened, a source electrode 9 is formed, and then a drain electrode 10 is formed to complete an element portion.

【0018】この縦型MOSFETの電流経路を矢印
(→)で示す。
The current path of this vertical MOSFET is shown by an arrow (→).

【0019】本実施例ではベースがP- 型エピタキシャ
ル層3からなるので、図4(a)に示すように表面濃度
が平坦になって、しきい値電圧のばらつきが小さくな
る。
In this embodiment, since the base is made of the P -- type epitaxial layer 3, the surface concentration becomes flat as shown in FIG. 4 (a) and the variation of the threshold voltage becomes small.

【0020】つぎに本発明の第2の実施例について、図
2を参照して説明する。
Next, a second embodiment of the present invention will be described with reference to FIG.

【0021】はじめにN+ 型半導体基板1にN- 型エピ
タキシャル層2およびP- 型エピタキシャル層3を成長
させたのち、ゲート酸化膜4aおよびゲートポリシリコ
ン6を形成する。つぎにレジスト(図示せず)およびゲ
ートポリシリコン6をマスクとしてイオン注入してN-
型層5を形成したのちレジストを除去する。さらにN+
型ソース5を形成し、層間絶縁膜8を堆積したのちコン
タクトを開口し、ソース電極9およびドレイン電極10
を形成して素子部が完成する。
First, an N type epitaxial layer 2 and a P type epitaxial layer 3 are grown on an N + type semiconductor substrate 1, and then a gate oxide film 4a and a gate polysilicon 6 are formed. Next, ion implantation is performed using a resist (not shown) and the gate polysilicon 6 as a mask to form N −.
After forming the mold layer 5, the resist is removed. Furthermore N +
After forming the mold source 5 and depositing the interlayer insulating film 8, the contact is opened, and the source electrode 9 and the drain electrode 10 are formed.
Are formed to complete the element portion.

【0022】つぎに本発明の第3の実施例について、図
3を参照して説明する。
Next, a third embodiment of the present invention will be described with reference to FIG.

【0023】はじめにN+ 型半導体基板1にN- 型エピ
タキシャル層2およびP- 型エピタキシャル層3を成長
させたのち、ゲート酸化膜4aを形成してからN- 型層
5を形成する。つぎに全面にイオン注入してVT コント
ロールを行なうことができる。
First, an N type epitaxial layer 2 and a P type epitaxial layer 3 are grown on an N + type semiconductor substrate 1, a gate oxide film 4a is formed, and then an N type layer 5 is formed. Next, V T control can be performed by ion-implanting the entire surface.

【0024】以上、Nチャネルの縦型MOSFETにつ
いて述べたが、同様にして本発明をPチャネル縦型MO
SFETに適用することができる。
Although the N-channel vertical MOSFET has been described above, the present invention is similarly applied to the P-channel vertical MO.
It can be applied to SFET.

【0025】[0025]

【発明の効果】ベース領域をP型エピタキシャル層で形
成することにより、ベースの表面濃度を平坦化すること
ができる。その結果、しきい値電圧のばらつきが小さく
なった。さらにゲートポリシリコン領域を縮小すること
が可能になって、寄生容量を低減することができる。
By forming the base region with the P type epitaxial layer, the surface concentration of the base can be flattened. As a result, the variation in threshold voltage was reduced. Further, the gate polysilicon region can be reduced in size, and the parasitic capacitance can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を工程順に示す断面図で
ある。
FIG. 1 is a cross-sectional view showing a first embodiment of the present invention in process order.

【図2】本発明の第2の実施例を示す断面図である。FIG. 2 is a sectional view showing a second embodiment of the present invention.

【図3】本発明の第3の実施例を示す断面図である。FIG. 3 is a sectional view showing a third embodiment of the present invention.

【図4】(a)は本発明の縦型MOSFETの表面濃度
分布を示すグラフである。(b)は従来の縦型MOSF
ETの表面濃度分布を示すグラフである。
FIG. 4A is a graph showing the surface concentration distribution of the vertical MOSFET of the present invention. (B) is a conventional vertical MOSF
It is a graph which shows the surface concentration distribution of ET.

【図5】従来の縦型MOSFETを工程順に示す断面図
である。
FIG. 5 is a cross-sectional view showing a conventional vertical MOSFET in process order.

【符号の説明】[Explanation of symbols]

1 N+ 型半導体基板 2 N- 型エピタキシャル層 3 P- 型エピタキシャル層 3a P型ベース 4 酸化膜 4a ゲート酸化膜 5 N- 型層 6 ゲートポリシリコン 7 N+ 型ソース 8 層間絶縁膜 9 ソース電極 10 ドレイン電極 QB ベース表面のピーク濃度 → 電流経路1 N + type semiconductor substrate 2 N type epitaxial layer 3 P type epitaxial layer 3a P type base 4 oxide film 4a gate oxide film 5 N type layer 6 gate polysilicon 7 N + type source 8 interlayer insulating film 9 source electrode 10 Drain electrode Q B Base surface peak concentration → Current path

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一導電型半導体基板の一主面に一導電型
エピタキシャル層および逆導電型エピタキシャル層が順
次積層され、前記逆導電型エピタキシャル層に形成され
た一導電型領域に囲まれた逆導電型領域をベースとし、
前記逆導電型エピタキシャル層の上にゲート酸化膜およ
びポリシリコンゲート電極が形成され、前記ポリシリコ
ン電極直下近傍の前記逆導電型領域の表面に一導電型ソ
ース層が形成された縦型MOSFET。
1. A one-conductivity-type epitaxial layer and a reverse-conductivity-type epitaxial layer are sequentially stacked on one main surface of a one-conductivity-type semiconductor substrate, and a reverse-type surrounded by one-conductivity-type region formed in the reverse-conductivity-type epitaxial layer. Based on the conductivity type area,
A vertical MOSFET in which a gate oxide film and a polysilicon gate electrode are formed on the opposite conductivity type epitaxial layer, and a one conductivity type source layer is formed on the surface of the opposite conductivity type region immediately below the polysilicon electrode.
JP4510292A 1992-03-03 1992-03-03 Vertical mosfet Withdrawn JPH05243274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4510292A JPH05243274A (en) 1992-03-03 1992-03-03 Vertical mosfet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4510292A JPH05243274A (en) 1992-03-03 1992-03-03 Vertical mosfet

Publications (1)

Publication Number Publication Date
JPH05243274A true JPH05243274A (en) 1993-09-21

Family

ID=12709931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4510292A Withdrawn JPH05243274A (en) 1992-03-03 1992-03-03 Vertical mosfet

Country Status (1)

Country Link
JP (1) JPH05243274A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004872A (en) * 2006-06-26 2008-01-10 Toshiba Corp Semiconductor device
JP2008262982A (en) * 2007-04-10 2008-10-30 Toyota Central R&D Labs Inc Group iii nitride semiconductor device, and manufacturing method thereof
WO2010073991A1 (en) * 2008-12-23 2010-07-01 三菱電機株式会社 Semiconductor device and method for producing the same
US7947988B2 (en) 2007-09-20 2011-05-24 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
JP2016054181A (en) * 2014-09-03 2016-04-14 トヨタ自動車株式会社 Insulated gate switching element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004872A (en) * 2006-06-26 2008-01-10 Toshiba Corp Semiconductor device
JP2008262982A (en) * 2007-04-10 2008-10-30 Toyota Central R&D Labs Inc Group iii nitride semiconductor device, and manufacturing method thereof
US7947988B2 (en) 2007-09-20 2011-05-24 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
WO2010073991A1 (en) * 2008-12-23 2010-07-01 三菱電機株式会社 Semiconductor device and method for producing the same
JP2016054181A (en) * 2014-09-03 2016-04-14 トヨタ自動車株式会社 Insulated gate switching element

Similar Documents

Publication Publication Date Title
US5834793A (en) Semiconductor devices
JP2791760B2 (en) Thin film transistor and method of manufacturing the same
JP2707977B2 (en) MOS type semiconductor device and method of manufacturing the same
JPH0216020B2 (en)
US3514676A (en) Insulated gate complementary field effect transistors gate structure
JPH08250728A (en) Field-effect semiconductor device and manufacturing method thereof
JPH0465548B2 (en)
JPH07211799A (en) Manufacture of dram cell
JPS60226185A (en) Semiconductor device
JPH05243274A (en) Vertical mosfet
JPH05251694A (en) Mos type semiconductor device and its manufacture
US5212100A (en) P-well CMOS process using neutron activated doped N-/N+ silicon substrates
JPH0629524A (en) Manufacture of semiconductor device
JPH06163905A (en) Fabrication of insulated gate semiconductor
JPH0697435A (en) Mos-type semiconductor device
JPS63305562A (en) Semiconductor device
JPH036863A (en) Semiconductor device
JP3017838B2 (en) Semiconductor device and manufacturing method thereof
JPS6346760A (en) Manufacture of semiconductor memory
KR960011179B1 (en) Dram cell structure and manufacturing process thereof
JPH0213829B2 (en)
JPH07120800B2 (en) Semiconductor device and manufacturing method thereof
JPH03793B2 (en)
JPS59175161A (en) Insulated gate semiconductor device and manufacture thereof
JPH0590575A (en) Semiconductor storage device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518