JPS6346760A - Manufacture of semiconductor memory - Google Patents

Manufacture of semiconductor memory

Info

Publication number
JPS6346760A
JPS6346760A JP61189565A JP18956586A JPS6346760A JP S6346760 A JPS6346760 A JP S6346760A JP 61189565 A JP61189565 A JP 61189565A JP 18956586 A JP18956586 A JP 18956586A JP S6346760 A JPS6346760 A JP S6346760A
Authority
JP
Japan
Prior art keywords
layer
impurity layer
film
insulating film
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61189565A
Other languages
Japanese (ja)
Other versions
JP2519215B2 (en
Inventor
Katsuhiko Hieda
克彦 稗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61189565A priority Critical patent/JP2519215B2/en
Publication of JPS6346760A publication Critical patent/JPS6346760A/en
Application granted granted Critical
Publication of JP2519215B2 publication Critical patent/JP2519215B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/39DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor and the transistor being in a same trench
    • H10B12/395DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor and the transistor being in a same trench the transistor being vertical

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To be able to preferably form transistors which use the sides of grooves without implanting a high concentration n-type impurity to the sides of the grooves by ion implanting the bottoms of the grooves after forming the grooves to form an n-type high concentration impurity layer. CONSTITUTION:An n-type impurity layer 12 is buried in advance in a region for forming an impurity layer on the bottom of the groove, and then epitaxially grown to form a p-type epitaxial layer 13. Further, a trench 16 is opened at a predetermined place, and a gate electrode is formed through a gate oxide film 17 as a word line 18. Thereafter, a capacitor lower electrode is formed by electrically contacting with the layer 12. The electrodes in the bottom of the trench of the transistor can be formed even if ion implanting is not performed after the trench is formed. Thus, a source diffused layer can be formed without deteriorating transistor characteristics using the side faces of the groove.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は半導体記憶装置に係り、特にスイッチングトラ
ンジスタのゲート部を基板に垂直に形成し、キャパシタ
部をスイッチングトランジスタ上部に形成し、高集積化
を可能にした半導体記憶装置の製造方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a semiconductor memory device, and in particular, a semiconductor memory device in which a gate portion of a switching transistor is formed perpendicular to a substrate, and a capacitor portion is formed above the switching transistor. The present invention also relates to a method of manufacturing a semiconductor memory device that enables high integration.

(従来の技術) ダイナミック型のメモリセルはメモリキャパシタとスイ
ッチングトランジスタからなり高集積化に適しているた
め広くメモリ素子として用られている。しかし高集積化
が進み1つのセル当りの面積が減少するとメモリキャパ
シタのみならずスイッチングトランジスタの占める面積
も減少させなければならない。
(Prior Art) Dynamic memory cells are widely used as memory elements because they are composed of a memory capacitor and a switching transistor and are suitable for high integration. However, as integration becomes higher and the area per cell decreases, not only the area occupied by the memory capacitor but also the area occupied by the switching transistor must be reduced.

スイッチングトランジスタの占める面積を減少させる試
みの1つとして、スイッチングトランジスタ部を基板に
垂直に形成する方法がある。第3図(a)〜(d)は従
来のスイッチングトランジスタを基板に垂直に形成した
、ダイナミック型MOSメモリセルの工程断面図を示し
たものである。
One of the attempts to reduce the area occupied by the switching transistor is to form the switching transistor section perpendicularly to the substrate. FIGS. 3(a) to 3(d) are process cross-sectional views of a dynamic MOS memory cell in which a conventional switching transistor is formed perpendicularly to a substrate.

以下、この第3図の工程断面図に従って従来例の説明を
行なう。
Hereinafter, the conventional example will be explained according to the process sectional view shown in FIG.

まずP型シリコン基板31上にビット線となるN型不純
物層32をイオン注入等によりストライプ状に形成する
。次いで、例えば比校的厚いS i O。
First, an N-type impurity layer 32 that will become a bit line is formed in a stripe shape on a P-type silicon substrate 31 by ion implantation or the like. Then, for example, relatively thick SiO.

膜33を形成し、これを所定の形状にパターニングし、
SiOt膜33全33し、これを所定の形状にバターニ
ングし、SiO!膜33全33ツチングマスクとして用
いてリアクティブイオンエツチング(凡IE)により基
板31をエツチングし、1つのメモリセルに対して1個
の溝を形成する。次いで、溝の底部にイオン注入法を用
いて基板と反対導電型の不純物層34を形成する(第3
図(a))。
Forming a film 33 and patterning it into a predetermined shape,
The entire SiOt film 33 is formed, patterned into a predetermined shape, and SiO! Using the entire film 33 as an etching mask, the substrate 31 is etched by reactive ion etching (IE) to form one trench for one memory cell. Next, an impurity layer 34 of a conductivity type opposite to that of the substrate is formed at the bottom of the groove using an ion implantation method (third
Figure (a)).

次に溝の側壁及び底部に第一の絶縁膜35、例えばSi
n,膜を形成し、導電膜36、例えばリンを含んだ多結
晶シリコン膜をビット線と直交する方向にストライプ状
に形成する。
Next, a first insulating film 35 is formed on the side walls and bottom of the trench, for example, with Si.
A conductive film 36, for example, a polycrystalline silicon film containing phosphorus, is formed in a stripe shape in a direction perpendicular to the bit line.

ストライプ状に加工するとき、溝の底部の多結晶シリコ
ン膜の少なくとも一部をエツチング除去し、開口部を設
ける。(第3図(b))。
When processing into stripes, at least a portion of the polycrystalline silicon film at the bottom of the trench is removed by etching to provide an opening. (Figure 3(b)).

ここで絶縁膜35はスイッチングトランジスタのゲート
絶縁膜として用い、導電膜36は、ゲート電極、すなわ
ちメモリセルのワード線として用いられる0次に導電膜
36の上に第2の絶縁膜37例えばSin,膜を形成し
たのち、溝底部の絶縁膜37を選択除去し、導1!膜3
8、例えばリンを含んだ多結晶シリコン膜をビット線と
ワード線の交差部に形成し、キャパシタ下部電極とする
(第3図(C))。このとき、導電膜38は不純物層3
4と電気的に接続されるように形成する。
Here, the insulating film 35 is used as a gate insulating film of a switching transistor, and the conductive film 36 is a second insulating film 37, for example, a Sin, etc. After forming the film, the insulating film 37 at the bottom of the trench is selectively removed and the conductor 1! membrane 3
8. For example, a polycrystalline silicon film containing phosphorus is formed at the intersection of the bit line and the word line to serve as the lower electrode of the capacitor (FIG. 3(C)). At this time, the conductive film 38
4 to be electrically connected.

(発明が解決しようとする問題点) 本発明は、舅の底部に不純物層を形成する時、例えばイ
オン注入法を用いた場合に、講の側壁にも不純物が注入
され、溝の側壁部に形成するスイッチングトランジスタ
のしきい値制御が劣化するという問題を解決するもので
ある。
(Problems to be Solved by the Invention) The present invention provides that when an impurity layer is formed on the bottom of the groove, for example, when ion implantation is used, the impurity is also injected into the sidewall of the groove. This solves the problem that the threshold voltage control of the switching transistor to be formed deteriorates.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明では、あらかじめ溝の底部の不純物層を形成する
領域にN型不純物層を埋め込んでおき、その後エピタキ
シャル成長を行い、P型エピタキシャル層を形成する。
(Means for Solving the Problems) In the present invention, an N-type impurity layer is buried in advance in a region at the bottom of a trench where an impurity layer is to be formed, and then epitaxial growth is performed to form a P-type epitaxial layer.

さらに、トレンチを所定の場所に開け、ゲート酸化膜を
介してゲート′匝極を形成し、ワード線とする。この後
、前記のN型不純物層にit気的にコンタクトを取り、
キャパシタ下部電極を形成する。このようにすることに
よりトランジスタのトレンチ底部における電極をトレン
チ形成をした後にイオン注入を行わなくても形成できる
Furthermore, a trench is opened at a predetermined location, and a gate electrode is formed via a gate oxide film to form a word line. After that, contact is made to the N-type impurity layer,
Form a capacitor lower electrode. By doing so, the electrode at the bottom of the trench of the transistor can be formed without performing ion implantation after forming the trench.

(作用) 本発明においては溝の側面をチャネル領域として用いた
トランジスタは例えばSi表面をドレイン拡散層、溝の
底部をソース拡散層として構成される。この溝の底部の
N型不純物層(ソース拡散層)を形成するのに、従来は
、溝を形成した後にイオン注入を行いN型高濃度層を形
成する方法と溝の底部に堆積した例えばリンをドープし
たポリSiから拡散させて形成する方法の2通りが提案
されていたが、どちらの方法もそれぞれ欠点があった。
(Function) In the present invention, a transistor using the side surfaces of a trench as a channel region is configured, for example, by using the Si surface as a drain diffusion layer and the bottom of the trench as a source diffusion layer. In order to form the N-type impurity layer (source diffusion layer) at the bottom of the trench, the conventional method is to form a heavily doped N-type layer by performing ion implantation after forming the trench, or to form a heavily doped N-type layer at the bottom of the trench. Two methods have been proposed in which the silicon oxide layer is formed by diffusion from doped poly-Si, but both methods have their own drawbacks.

このため、あらかじめn型の埋込み不純物層を作り、そ
の上にP型のエピタキシャル層を作り、そしてN型の埋
込み不純物層に達するように溝を形成し、このN型不純
物層を前記トランジスタのソース拡散層として用いる方
法を本発明は提案している。このようにすることにより
溝の側面を用いたトランジスタ特性を劣化させることな
く、ソース拡散層を形成できる。
For this purpose, an n-type buried impurity layer is formed in advance, a P-type epitaxial layer is formed on it, a trench is formed to reach the N-type buried impurity layer, and this N-type impurity layer is used as the source of the transistor. The present invention proposes a method of using it as a diffusion layer. By doing so, the source diffusion layer can be formed without deteriorating the characteristics of the transistor using the side surfaces of the trench.

(実施例) 本発明の一実施例を第2図(a)〜(e)に示した工程
断面図により説明する。
(Example) An example of the present invention will be described with reference to process cross-sectional views shown in FIGS. 2(a) to (e).

まず、P型(100)シリコン基板11上に、例えばア
ンチモン(sb)を不純物とする。
First, antimony (sb), for example, is added as an impurity onto a P-type (100) silicon substrate 11.

第1のN型窩濃度層12を形成し、その後全面にP型の
1〜10Ωcm程度の濃度をもったシリコン層13をエ
ピタキシャル成長法により例えば2μm程度形成する。
A first N-type cavity concentration layer 12 is formed, and then a P-type silicon layer 13 having a concentration of about 1 to 10 Ωcm is formed on the entire surface by epitaxial growth to a thickness of, for example, about 2 μm.

このN型不純物層12は少はくとも後の工程で1を形成
する領域を含む程度の形状であるとする。さらに、この
エピタキシャル層13の表面にビット線となるN型の第
2の不純物層14をイオン注入法によりストライプ状に
形成する(第2図(a))。
It is assumed that this N-type impurity layer 12 has a shape that includes at least a region where 1 will be formed in a later step. Further, on the surface of this epitaxial layer 13, a second N-type impurity layer 14, which will become a bit line, is formed in a stripe shape by ion implantation (FIG. 2(a)).

次いで、例えば比較的厚い5in2膜15を例えば熱酸
化法により約4000A程度形成し、これを所定の形状
にパターニングし、このSiO,膜15を耐エツチング
マスクとして用いて例えばリアクティブイオンエツチン
グ(RIE)により第2のNffJ層14、エピタキシ
ャル層13を連続してエツチングし、第1のN型窩12
に達するように溝16を形成する(第2図(b))。次
に溝16の便槽及び底部に第1の絶縁膜17、例えばS
 iO1膜を200A程度形成し、さらに、第1の絶縁
膜17を介して、導[918、例えばリンを含んだ多結
晶シリコン膜を全面に堆積する。この時、多結晶シリコ
ン膜の堆積条件は例えば平担部で厚く、また、溝の側壁
や底部では薄く堆積するようなものを選択すると良い。
Next, for example, a relatively thick 5 in 2 film 15 of about 4000 A is formed by thermal oxidation, patterned into a predetermined shape, and etched by reactive ion etching (RIE) using this SiO film 15 as an etching-resistant mask. The second NffJ layer 14 and the epitaxial layer 13 are etched successively to form the first N-type cavity 12.
A groove 16 is formed so as to reach (FIG. 2(b)). Next, a first insulating film 17, for example S
An iO1 film of about 200 Å is formed, and a polycrystalline silicon film containing a conductor, for example, phosphorus, is deposited over the entire surface via the first insulating film 17. At this time, it is preferable to select conditions for depositing the polycrystalline silicon film such that the polycrystalline silicon film is deposited thickly on the flat part and thinly on the side walls and bottom of the trench.

次に反応性イオンエツチング(RIE)を用いて全面の
多結晶シリコンに対してエツチングを行ない、溝の底部
の多結晶シリコン膜のみがエツチング除去される時点で
エツチングを終了する。溝の底部に対して膜厚の厚い平
担部や、溝の側壁部には、十分電極として作用できるく
らいの多結晶シリコン膜が残置されているようにエツチ
ングする。次に通常のレジストを用いたパターニング工
程により溝の底部のみがエツチング除去された導電膜1
8をビット線と直交する方向にストライブ状に形成する
(第2図(C))。ここで絶縁膜17はスイッチングト
ランジスタのゲート絶縁膜として用い、導電膜17はゲ
ート電極、すなわちメモリセルのワード線として用いら
れる。
Next, reactive ion etching (RIE) is used to etch the polycrystalline silicon over the entire surface, and the etching is terminated when only the polycrystalline silicon film at the bottom of the groove is etched away. The polycrystalline silicon film is etched so that enough polycrystalline silicon film to function as an electrode is left on the flat portion where the film is thicker than the bottom of the trench and on the sidewalls of the trench. Next, conductive film 1 from which only the bottom of the groove is etched away is removed by a patterning process using a normal resist.
8 are formed in a stripe shape in a direction perpendicular to the bit line (FIG. 2(C)). Here, the insulating film 17 is used as a gate insulating film of a switching transistor, and the conductive film 17 is used as a gate electrode, that is, a word line of a memory cell.

次に導電膜18上に第2の絶縁膜19、例えば、Sin
、膜を形成したのち、溝の底部20の絶縁膜19を選択
除去し、第1のN型不純物層12を露出させ、導電膜2
1、例えばリンを含んだ多結晶シリコン膜をビット線1
4とワード線18の交差点に形成し、キャパシタ下部電
極とする(第2図(d))。このとき、導電膜21と第
1のN型不純物層12は電気的に接続されており、第1
のN型不純物層はスイッチングトランジスタのソース電
極として働く。また、例えば第2の絶縁膜19を熱酸化
膜で形成すれば、シリコン基板より多結晶シリコン膜の
方が酸化速度が早いので、この後、全面をRIE等でS
in、膜エツチングすれば溝底部20の酸化膜のみをエ
ツチング除去する事が可能である。
Next, a second insulating film 19 is formed on the conductive film 18, e.g.
After forming the film, the insulating film 19 at the bottom 20 of the groove is selectively removed to expose the first N-type impurity layer 12, and the conductive film 2 is removed.
1. For example, put a polycrystalline silicon film containing phosphorus on the bit line 1.
4 and the word line 18, and serve as the capacitor lower electrode (FIG. 2(d)). At this time, the conductive film 21 and the first N-type impurity layer 12 are electrically connected, and the first
The N-type impurity layer serves as a source electrode of the switching transistor. For example, if the second insulating film 19 is formed of a thermal oxide film, the oxidation rate of a polycrystalline silicon film is faster than that of a silicon substrate, so the entire surface is then subjected to RIE or the like.
By performing in-film etching, it is possible to remove only the oxide film at the trench bottom 20 by etching.

この後さらに導電膜21上に第3の絶縁膜22、例えば
Sin、膜を約100A程度形成したのち、キャパシタ
対向電極として導電膜23、例えばリンを含んだ多結晶
シリコン膜を全面に堆積し、キャパシタ部を形成する(
第2図(e))。
After this, a third insulating film 22, for example, a film of about 100A of Si, is further formed on the conductive film 21, and then a conductive film 23, for example, a polycrystalline silicon film containing phosphorus, is deposited on the entire surface as a capacitor counter electrode. Form the capacitor part (
Figure 2(e)).

尚、導電膜18.21.23は多結晶シリコンに限らず
、シリサイド膜かメタル、あるいは多結晶シリコン、シ
リサイドメタル等の何れから組み合せでも良い。また、
第1、第2、第3の絶縁膜も、8i0.膜に限らず、窒
化膜、高誘電体膜、あるいは、それらを組み合せた多M
膜であっても良いことは言うまでもない。
Note that the conductive films 18, 21, and 23 are not limited to polycrystalline silicon, but may be a silicide film, metal, or a combination of polycrystalline silicon, silicide metal, and the like. Also,
The first, second, and third insulating films are also 8i0. Not limited to films, nitride films, high dielectric films, or multi-M films that combine them.
Needless to say, it may be a membrane.

この後、さらに導電膜38上に第3の絶縁膜39例えば
膜厚約10OAのSin、膜を形成した後、キャパシタ
対向電極として導電膜例えばリンを含んだ多結晶シリコ
ン膜40を全面に形成し、メモリセルを完成する(第3
図(d))。
After this, a third insulating film 39, for example, a Sin film with a thickness of about 10 OA, is further formed on the conductive film 38, and then a conductive film, for example, a polycrystalline silicon film 40 containing phosphorus is formed on the entire surface as a capacitor counter electrode. , complete the memory cell (third
Figure (d)).

〔発明の効果〕〔Effect of the invention〕

このようなメモリセル構造をとることにより、微細なメ
モリセル面積を実現できるようになった。
By adopting such a memory cell structure, it has become possible to realize a small memory cell area.

しかしながら、溝を形成した後に、イオン注入法により
溝の底部に不純物層を形成する方法では、第4図に示す
ように溝の側壁部45にも不純物がイオン注入され、こ
のためこの後に溝の側壁15≦に形成するスイッチング
トランジスタのしきい値の調整が非常に困難となり、メ
モリセルの電気的特性を著しく低下させるという問題が
発生する。
However, in the method of forming an impurity layer at the bottom of the trench by ion implantation after forming the trench, impurity ions are also implanted into the sidewalls 45 of the trench, as shown in FIG. It becomes very difficult to adjust the threshold value of the switching transistor formed on the sidewall 15≦, and a problem arises in that the electrical characteristics of the memory cell are significantly degraded.

また、溝の底部のn”W+159の形成に第5図に示す
ようにリンをドープしたポリSi膜57からの拡散で行
うことも従来おこなわれていたが、このときは、溝の底
部58の自然酸化膜やホ゛リ 5i57中のリン濃度の
バラツキなどにより溝の底部コーナー60まで制御性良
く拡散させることができなかった。このため溝の底部コ
ーナー60が溝の側壁を利用したトランジスタ特性に影
響を与え、例えばトランジスタのサブスレッショルド特
性が2段になるなどのいわゆる「ハンプ現象」が観察さ
れ、製品の歩留りを著しく低下させていた。
Furthermore, as shown in FIG. 5, the formation of n''W+159 at the bottom of the trench was conventionally carried out by diffusion from a poly-Si film 57 doped with phosphorus; Due to variations in the concentration of phosphorus in the natural oxide film and the phosphorus 5i57, it was not possible to diffuse the phosphorus to the bottom corner 60 of the trench with good control.For this reason, the bottom corner 60 of the trench had an effect on the characteristics of the transistor that utilized the sidewalls of the trench. For example, a so-called "hump phenomenon" in which the subthreshold characteristics of a transistor becomes two-stage has been observed, significantly reducing product yields.

本発明によれば、溝の底部にn型高濃度不純物層を形成
するに溝を形成した後にイオン注入を打ってn型高濃度
層を形成することがないので、溝の側面に高濃度のn型
不純物が注入されることがない。このため溝の側面を用
いたトランジスタを良好に形成できる。
According to the present invention, there is no need to perform ion implantation to form an n-type high concentration impurity layer at the bottom of the groove after forming the groove. No n-type impurity is implanted. Therefore, a transistor using the side surfaces of the trench can be formed satisfactorily.

また、同様にポリSiからの拡散による方法も取らなく
て良いから、溝の底部コーナーがトランジスタのチャネ
ル領域となることはなく、トランジスタ特性に溝底部の
n型不純物層に起因した異常は生じない。さらに本発明
によれば、1セル当りの占有面積が従来例に較べ大幅に
減少し、高集積化が可能となる。また、穴の深さにより
ゲート長を自由にコントロールすることが可能であり、
穴を深くすることでショートチャネル効果の低減ができ
る。さらに穴の側壁全体がチャネル部となるため、トラ
ンジスタが比較的大きな電流で動作し、メモリ動作のス
ピードが早くなる。またキャパシタ部が基板と対向して
いないため、ソフトエアーに対し耐性がよい。また本発
明によれば、トランジスタのソース1!極を作る際に溝
の底部へのイオン注入とか、リンをドープしたポリSi
からの拡散を行わずにすむためトランジスタ特性が劣化
せず、製品の歩留り、信頼性が著しく向上する。
In addition, since there is no need to use the method of diffusion from poly-Si, the bottom corner of the trench does not become the channel region of the transistor, and abnormalities caused by the n-type impurity layer at the bottom of the trench do not occur in the transistor characteristics. . Further, according to the present invention, the area occupied by each cell is significantly reduced compared to the conventional example, and high integration becomes possible. In addition, the gate length can be freely controlled by adjusting the depth of the hole.
By making the hole deeper, the short channel effect can be reduced. Furthermore, since the entire sidewall of the hole becomes a channel portion, the transistor operates with a relatively large current, increasing the speed of memory operation. Also, since the capacitor part does not face the substrate, it has good resistance to soft air. Further, according to the present invention, the source 1 of the transistor! When making poles, ions are implanted into the bottom of the groove, and poly-Si doped with phosphorus is used.
Since there is no need for diffusion from the substrate, transistor characteristics do not deteriorate, and product yield and reliability are significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のメモリセル構造を説明するための平面
図及び概略図、第2図は本発明の一実施例を説明するた
めの工程断面図、第3図は従来例を説明するための工程
断面図、第4図及び第5図は従来方法の問題点を説明す
るための断面図である。 P型シリコン基板・・11.31.41.51n層(ド
レイン)・・・14.32.52Sin、膜・・・15
.33.43 穴部・・・16 nFll(7−x )−34,44,59ゲート絶縁膜
(Sint股)・・・17.35.54ポリSi(ワー
ド線)・・・18.36.55穴底部・・・20,58 ビット線・・・23 、42 、52 工ピタキシヤル層・・・13 N型埋込み層・・・12 代理人 弁理士 則 近 憲 佑 同      竹  花  喜久男 m1図 第  2 図 (d) ?83 図 第4図
FIG. 1 is a plan view and a schematic diagram for explaining the memory cell structure of the present invention, FIG. 2 is a process sectional view for explaining an embodiment of the present invention, and FIG. 3 is for explaining a conventional example. 4 and 5 are cross-sectional views for explaining the problems of the conventional method. P-type silicon substrate...11.31.41.51N layer (drain)...14.32.52Sin, film...15
.. 33.43 Hole...16 nFll(7-x)-34,44,59 Gate insulating film (Sint)...17.35.54 Poly-Si (word line)...18.36.55 Hole bottom...20, 58 Bit line...23, 42, 52 Pitaxial layer...13 N-type buried layer...12 Agent Patent attorney Noriyuki Chika Yudo Kikuo Takehana m1 diagram Figure 2 (d)? 83 Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基板にMOSトランジスタとMOSキャパ
シタから成るメモリセルを集積した半導体記憶装置を製
造する方法において、前記半導体基板のMOSトランジ
スタのソースとなる領域の少なくとも一部に基板と逆導
電型の第1の高濃度不純物層を形成する工程と、前記半
導体基板及び前記第1の不純物層の上部全面に前記基板
と同導電型の不純物を含む半導体層を堆積する工程と、
前記第2の不純物層の表面にMOSトランジスタのドレ
インとなる前記基板と逆導電型の第3の高濃度不純物層
を形成する工程と、前記第2及び第3の不純物層を貫通
して、前記第1の不純物層に達するように設けられた穴
部を形成する工程と、前記穴部の底に設けられた基板と
逆導電型の第1の不純物層をソースとし、第2の不純物
層をチャネル領域とし、第3の不純物層をドレインとす
るように第1のゲート絶縁膜を介して前記穴部をおおっ
てMOSトランジスタのゲート電極を形成する工程と、
前記穴部の底の前記第1の不純物層に設けられた開口部
にて、前記第1の不純物層とコンタクトし、前記ゲート
電極と第2の絶縁膜を介して少なくとも前記ゲート電極
層上にキャパシタ下部電極層を形成する工程と、前記キ
ャパシタ下部電極層上に第3の絶縁膜を介してキャパシ
タ上部電極とを具備した事を特徴とする半導体記憶装置
の製造方法。
(1) In a method for manufacturing a semiconductor memory device in which a memory cell consisting of a MOS transistor and a MOS capacitor is integrated on a semiconductor substrate, at least a portion of a region of the semiconductor substrate that becomes a source of a MOS transistor is provided with a conductivity type opposite to that of the substrate. a step of forming a first high concentration impurity layer; a step of depositing a semiconductor layer containing an impurity of the same conductivity type as the substrate over the entire upper surface of the semiconductor substrate and the first impurity layer;
forming a third high-concentration impurity layer on the surface of the second impurity layer and having a conductivity type opposite to that of the substrate, which will become the drain of the MOS transistor; a step of forming a hole provided to reach the first impurity layer; and a step of forming a second impurity layer using the first impurity layer provided at the bottom of the hole and having a conductivity type opposite to that of the substrate as a source. forming a gate electrode of a MOS transistor by covering the hole via a first gate insulating film so as to form a channel region and a third impurity layer as a drain;
Contact is made with the first impurity layer at the opening provided in the first impurity layer at the bottom of the hole, and the contact layer is formed on at least the gate electrode layer via the gate electrode and the second insulating film. 1. A method of manufacturing a semiconductor memory device, comprising: forming a capacitor lower electrode layer; and forming a capacitor upper electrode on the capacitor lower electrode layer with a third insulating film interposed therebetween.
(2)前記ゲート電極はリンをドープした多結晶シリコ
ン膜であり、前記キャパシタ下部電極はリンをドープし
た多結晶シリコン膜であり、前記第2の絶縁膜は酸化膜
かあるいは、酸化膜を含む多層膜であり、前記キャパシ
タ上部電極はリンをドープした多結晶シリコン膜である
ことを特徴とする前記特許請求の範囲第1項記載の半導
体記憶装置の製造方法。
(2) The gate electrode is a polycrystalline silicon film doped with phosphorus, the capacitor lower electrode is a polycrystalline silicon film doped with phosphorus, and the second insulating film is an oxide film or includes an oxide film. 2. The method of manufacturing a semiconductor memory device according to claim 1, wherein the capacitor upper electrode is a multilayer film, and the capacitor upper electrode is a polycrystalline silicon film doped with phosphorus.
(3)前記キャパシタ下部電極の少なくとも表面層はメ
タル層であり、前記第2の絶縁膜は少なくとも高誘電体
膜を含む絶縁膜であり、前記キャパシタ上部電極の少な
くとも前記第2の絶縁膜と接する領域はメタル層である
ことを特徴とする前記特許請求の範囲第1項記載の半導
体記憶装置の製造方法。
(3) At least the surface layer of the capacitor lower electrode is a metal layer, the second insulating film is an insulating film including at least a high dielectric constant film, and the second insulating film is in contact with at least the second insulating film of the capacitor upper electrode. 2. The method of manufacturing a semiconductor memory device according to claim 1, wherein the region is a metal layer.
JP61189565A 1986-08-14 1986-08-14 Method for manufacturing semiconductor memory device Expired - Lifetime JP2519215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61189565A JP2519215B2 (en) 1986-08-14 1986-08-14 Method for manufacturing semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61189565A JP2519215B2 (en) 1986-08-14 1986-08-14 Method for manufacturing semiconductor memory device

Publications (2)

Publication Number Publication Date
JPS6346760A true JPS6346760A (en) 1988-02-27
JP2519215B2 JP2519215B2 (en) 1996-07-31

Family

ID=16243460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61189565A Expired - Lifetime JP2519215B2 (en) 1986-08-14 1986-08-14 Method for manufacturing semiconductor memory device

Country Status (1)

Country Link
JP (1) JP2519215B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5180680A (en) * 1991-05-17 1993-01-19 United Microelectronics Corporation Method of fabricating electrically erasable read only memory cell
US5338953A (en) * 1991-06-20 1994-08-16 Mitsubishi Denki Kabushiki Kaisha Electrically erasable and programmable semiconductor memory device with trench memory transistor and manufacturing method of the same
EP0831532A2 (en) * 1996-09-19 1998-03-25 Texas Instruments Incorporated Semiconductor memories
US6281557B1 (en) 1997-07-30 2001-08-28 Infineon Technologies Ag Read-only memory cell array and method for fabricating it
US6563155B2 (en) 1998-09-08 2003-05-13 Texas Instruments Incorporated Cross point type DRAM cell composed of a pillar having an active region

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51147271A (en) * 1975-06-13 1976-12-17 Hitachi Ltd Semiconductor memory device
JPS6122665A (en) * 1984-07-11 1986-01-31 Hitachi Ltd Semiconductor integrated circuit device
JPS61150366A (en) * 1984-12-25 1986-07-09 Nec Corp Mis type memory cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51147271A (en) * 1975-06-13 1976-12-17 Hitachi Ltd Semiconductor memory device
JPS6122665A (en) * 1984-07-11 1986-01-31 Hitachi Ltd Semiconductor integrated circuit device
JPS61150366A (en) * 1984-12-25 1986-07-09 Nec Corp Mis type memory cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5180680A (en) * 1991-05-17 1993-01-19 United Microelectronics Corporation Method of fabricating electrically erasable read only memory cell
US5338953A (en) * 1991-06-20 1994-08-16 Mitsubishi Denki Kabushiki Kaisha Electrically erasable and programmable semiconductor memory device with trench memory transistor and manufacturing method of the same
US5460989A (en) * 1991-06-20 1995-10-24 Mitsubishi Denki Kabushiki Kaisha Electrically erasable and programmable semiconductor memory device with trench memory transistor and manufacturing method of the same
EP0831532A2 (en) * 1996-09-19 1998-03-25 Texas Instruments Incorporated Semiconductor memories
EP0831532A3 (en) * 1996-09-19 1999-05-12 Texas Instruments Incorporated Semiconductor memories
US6281557B1 (en) 1997-07-30 2001-08-28 Infineon Technologies Ag Read-only memory cell array and method for fabricating it
US6563155B2 (en) 1998-09-08 2003-05-13 Texas Instruments Incorporated Cross point type DRAM cell composed of a pillar having an active region

Also Published As

Publication number Publication date
JP2519215B2 (en) 1996-07-31

Similar Documents

Publication Publication Date Title
US7648883B2 (en) Phosphorous doping methods of manufacturing field effect transistors having multiple stacked channels
US7229884B2 (en) Phosphorous doping methods of manufacturing field effect transistors having multiple stacked channels
JP2826924B2 (en) Method of manufacturing MOSFET
JPH06350090A (en) Manufacture of semiconductor device
KR20000006579A (en) Semiconductor device and method for producing the same
JPH07211799A (en) Manufacture of dram cell
US6271064B2 (en) Thin film transistor and method of manufacturing the same
JPS6346760A (en) Manufacture of semiconductor memory
JPH09116148A (en) Trench dmos transistor and its manufacture
JPH0945904A (en) Semiconductor device and its manufacture
US20020001903A1 (en) Electrically programmable memory cell
JPH0945899A (en) Manufacture of semiconductor device equipped with vertical transistor
JPH09167838A (en) Semiconductor device and its manufacture
KR100671633B1 (en) Semiconductor device and method for manufacturing the same
JPH0666326B2 (en) Semiconductor device and manufacturing method thereof
JPH09116150A (en) Semiconductor device with gold structure and its manufacture
JPS63211762A (en) Insulated-gate semiconductor device and manufacture thereof
JP3480815B2 (en) Semiconductor device and method of manufacturing the same
JPH10154809A (en) Semiconductor device and manufacture thereof
JPH02201965A (en) Semiconductor device and manufacture thereof
KR950013788B1 (en) Making method of vertical mosfet
JPH067596B2 (en) Method for manufacturing semiconductor device
JPS63172457A (en) Manufacture of semiconductor device
JPH06163912A (en) Vertical insulated gate transistor and fabrication thereof
JP3805917B2 (en) Manufacturing method of semiconductor device