JPS63300849A - Grinding method for disc - Google Patents

Grinding method for disc

Info

Publication number
JPS63300849A
JPS63300849A JP13745387A JP13745387A JPS63300849A JP S63300849 A JPS63300849 A JP S63300849A JP 13745387 A JP13745387 A JP 13745387A JP 13745387 A JP13745387 A JP 13745387A JP S63300849 A JPS63300849 A JP S63300849A
Authority
JP
Japan
Prior art keywords
disc
grindstone
disk
grinding
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13745387A
Other languages
Japanese (ja)
Inventor
Hideyoshi Usui
碓井 栄喜
Eiichi Kurihara
栗原 栄一
Hideo Fujimoto
日出男 藤本
Sadaharu Baba
馬場 貞春
Yaichi Watanabe
渡辺 弥一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP13745387A priority Critical patent/JPS63300849A/en
Publication of JPS63300849A publication Critical patent/JPS63300849A/en
Pending legal-status Critical Current

Links

Landscapes

  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

PURPOSE:To obtain a disc with high accuracy in which each of the grinding unevenness and sagging on the edge surface is small and the deviation of the plate thickness is exceedingly small, by setting the position relation between a ring-shaped narrow width grindstone and the disc and setting the grindstone width to the certain relations. CONSTITUTION:Grinding is performed by setting the position relation between a ring-shaped grindstone 5 and a disc (workpiece) 4 and the grindstone width so that the equations I, II, III, and IV are satisfied (RD is the radius of a circle which is formed by the centers of a plurality of discs 4 in the simultaneous grinding, GI is the inside diameter of a ring-shaped grindstone 5 whose center is set at the center position of the above-described circle, G0 is the outer peripheral radius, DI is the inner peripheral radius of the disc 4, and D0 is the outer peripheral radius). Therefore, the formation of polishing pattern on the outer or inner peripheral part of the disc and formation of sagging on the edge surface of the disc can be prevented, and the smooth rotation of the disc is permitted, and the disc having a flat plane form with high accuracy can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はドーナツ状の円板に加工されたディスク、例え
ば、アルミニウム合金の磁気ディスク基盤等の研削方法
に係り、更に詳しくは、リング状の上定盤及び下定盤が
回転運動を行い、その間に置かれた上記ディスクが定盤
より回転力を受けて自転する狭幅砥石両面平面研削機を
使用して、表面形状精度の優れた仕上面に研削加工する
ディスクの研削方法に関する。 (従来の技術) コンピュータの外部記憶装置に使用される磁気ディスク
は、近年、記録の高密度化のために媒体の薄膜化とヘッ
ド浮上高さの減少が指向され、これに伴い、使用される
ディスク基盤の表面平滑性並びに形状精度に対する要求
はますます高度化してきている。 従来、このような表面性状の優れたディスク基盤を製造
するために、超精密旋盤による鏡面切削方法と砥石を用
いる精密研削方法が工業的に一般に行われている。 後者の砥石を用いる研削方法としては、上定盤、下定盤
、太陽ギヤ、インターナルギヤの各々が独自の回転運動
を行い、上定盤と下定盤を各々反対方向に回転させるこ
とにより、上定盤と下定盤の間に置かれたキャリア(被
加工物を保持する治具)が太陽ギヤとインターナルギヤ
の回転によって下定盤と同一方向に移動(公転)しなが
ら自転し、キャリア内に保持されたディスク(被加工物
)の両面を同時に研削加工する両面平面研削機が一般的
に使用されている。しかし1本機は砥石面積が大きく、
かつ、形状精度の優れたディスク基盤を製造するために
は上定盤と下定盤に取り付けられた砥石の表面形状を高
精度に保持する必要がある。そのためには砥石をドレッ
シングしなければならないが、ドレッシングには熟練し
た技能が必要である。更には、本方式ではディスクの装
着及び研削終了後の取り出しの自動化は困難である。 (発明が解決しようとする問題点) 一方、砥石を用いる点では上記研削方式と同じであるが
、狭幅の砥石を使用する研削方式がある。 この研削方式では、第1図に示すように、リング状の上
定盤、下定盤(図示せず)に取り付けられた狭幅のリン
グ状砥石5の間に、ドーナツ状のディスク(被加工物)
がディスク支持リング1及びロール2.3に支持されて
研磨される方式であるが、上記研磨方式に比較して砥石
面積が小さく、セルフドレッシング性を有するため、砥
石の平面形状を確保するためのドレッシングに熟練した
技能を必要とせず、また自動化が比較的容易であるとい
う特徴を有しているものの、従来より、上記研削方式に
比較してディスクの板厚偏差が大きい、表面に研磨模様
が発生する等の問題点があるため。 コンピュータ用磁気ディスク基盤の要求品質には不充分
であり、実用化されていなかった。 本発明は、上記従来技術のうち、狭幅砥石を使用して複
数個のディスクの両年面を同時に研削加工する方式の有
する問題点を解決するためになされたものであって、板
厚偏差が小さく、表面に研磨模様のない高精度の表面形
状を有するディスクを得ることができるディスク研削方
法を提供することを目的とするものである。 (問題点を解決するための手段) 上記目的を達成するため、本発明者は、従来の狭幅砥石
両面平面研削方式について上記問題点が発生する原因を
解明し、その対策を見い出すべく鋭意研究した結果、リ
ング状の狭幅砥石とディスクとの位置関係及び砥石幅を
一定の関係に設定することにより、可能であることを見
出したものである。 すなわち、第1図及び第2図に示す如く、同時研削する
複数個のディスク(被加工物)4の中心が形成する円周
の半径をRDとし、この円周の中心位置に中心を設定し
たリング状砥石5の内周半径をGI、外周半径をGoと
し、ディスク4の内周半径をDI、外周半径をDoとす
ると、まず、G工≦RD−DIの場合、すなわち、砥石
内周CG工)がディスク外径(Do)とディスク内径(
DI)との間に位置する場合(第3図(a)参照)には
、■ディスク外周部或いは内周部に研磨模様が発生する
、 ■ディスク端面にダレが発生する、 等の不具合が発生するため、目的とする優れた精度の表
面性状の仕上面を有するディスクを加工するのには適さ
ない。したがって、GI>RD−DIとする必要がある
(第3図(b)参照)。 なお、砥石内周(GI)をディスク中心位置(Ro)よ
りも大きくしてもよいが、研削機が大型化し、設備費が
増加して経済的でないため、GI<RDとする(第3図
(b)参照)。 また、ディスクは上下定盤に挟まれて加圧されつつ定盤
の回転力を受けて自転し、両面同時に研削されるが、複
数個のディスク間で板厚のパラッキが少ない高精度な平
面に仕上げるためには、ディスクの自転をスムーズに行
わせる必要がある。 そのためには、ディスク中心位!(RD)と砥石幅の中
心位置((G工+Go)/2)との距離を大きくとり、
定盤から受ける回転力を大きくするのがよい。 したがって、RD>(Gz+Go)/2とする(第4図
参照)。 その際、砥石外径位置(GO)を(RD+DI/2)以
上にした場合、すなわち、砥石外径位置をディスク中心
位置から0172以上にしてディスクを内側に置きすぎ
た場合(第5図(a)参照)には、スムーズな自転が行
われ難くなるので、Go<RD+D工/2とする(第5
図(b)参照)。 更に、ディスク中心位[e(RD)よりもディスク内周
半径(DI)分だけ内側のディスク部位(RD−DI)
については、まず、砥石外径位[(GO)よりも内側に
する必要があるので、G o > RD −Dlとしく
第4図参照)、また、砥石幅の中心位置(G工+Go)
/2よりも内側にする必要があるので、(G工+GO)
/2>RD−Dxとする(第4図参照)。 なお、被加工物であるドーナツ状のディスクの寸法とし
ては、ディスクの用途等により決定されるが、その幅(
Do  Dz)がリング状砥石の内周半径G工よりも小
さくなるように砥石内周半径を設計する。 以上の点から、本発明は、リング状砥石とディスクとの
位置関係及び砥石幅を次の関係式の、■、■、■を満た
す条件に設定することを要旨とするものである。 RD−DI<G工<Ro・・・・・・・・・・・・・・
・・・・■Do−DI<G工・・・・・・・・・・・・
・・・・・・・・・・・・0次に、本発明の実施例を示
す。 (実施例) 内径が650m■φ、外径が790mmφの寸法の上下
定盤を有する狭幅砥石両面平面研削機を使用し、以下の
研削条件により、JIS5086アルミニウム合金から
なる外径(Do)が130++脂φ。 内径(DI)が40mmφで厚さ2−の寸法のディスク
基盤15枚を同時に研磨した。 皿蚕条庄 砥石:PVA砥石$1500 研削液:水溶性潤滑液 定盤回転数:30rpm、圧力1 kg/cwt”研磨
時間:5分 また、ディスク中心が形成する円周の大きさは780a
m(RD= 390a+m)である。 研削に際しては、砥石位置と幅を第1表に示す如く種々
に変えて行った。 斬削後、得られたディスクの表面性状、板厚偏差につい
て調べた。その結果を第1表に示す。 同表より明らかなとおり、RD−p工<a工及びRD−
DI< (G工+Go)/2<Roを満たしていない比
較例1は研削ムラや端面ダレが大きく、板厚偏差も大き
い。 また、R,−DIくG工を満たしていない比較例2は研
削ムラ、端面ダレ、板厚偏差が比較例1に比べてやや小
さくなっているが、実用上問題となる大きさである。 更に、Go<R工+DI/2を満たしていない比較例3
は比較例2と同様に、研削ムラ、端面ダレ。 板厚偏差が大きい。 これに対し、本発明例は、全ての条件を満たしているの
で、いずれも研削ムラや端面ダレが小さく、かつ板厚偏
差が極めて小さい優れた精度のディスクが得られ、しか
も研削速度が大きいので高能率である。
(Industrial Application Field) The present invention relates to a method for grinding a disk processed into a donut-shaped disk, such as an aluminum alloy magnetic disk substrate, and more specifically, the present invention relates to a method for grinding a disk processed into a donut-shaped disk, such as an aluminum alloy magnetic disk substrate. Disc grinding uses a narrow-width grindstone double-sided surface grinder that performs rotational motion, and the disc placed between them rotates on its own axis by receiving rotational force from a surface plate, to obtain a finished surface with excellent surface shape accuracy. Regarding the method. (Prior Art) In recent years, magnetic disks used in external storage devices for computers have become thinner and the flying height of the head has been reduced in order to achieve higher recording densities. Requirements for surface smoothness and shape accuracy of disk substrates are becoming increasingly sophisticated. Conventionally, in order to manufacture such a disk base with excellent surface properties, a mirror cutting method using an ultra-precision lathe and a precision grinding method using a grindstone have been generally carried out industrially. The latter method of grinding using a grinding wheel involves the upper surface plate, lower surface plate, sun gear, and internal gear each performing its own rotational movement, and by rotating the upper and lower surface plates in opposite directions. The carrier (the jig that holds the workpiece) placed between the surface plate and the lower surface plate rotates while moving (revolving) in the same direction as the lower surface plate due to the rotation of the sun gear and internal gear, and A double-sided surface grinder that simultaneously grinds both sides of a held disk (workpiece) is commonly used. However, this machine has a large grinding wheel area,
In addition, in order to manufacture a disk base with excellent shape accuracy, it is necessary to maintain the surface shape of the grindstones attached to the upper and lower surface plates with high precision. To do this, the grindstone must be dressed, but dressing requires skill. Furthermore, with this method, it is difficult to automate the loading of the disk and the removal of the disk after grinding is completed. (Problems to be Solved by the Invention) On the other hand, there is a grinding method that is the same as the above-mentioned grinding method in that it uses a grindstone, but uses a narrow grindstone. In this grinding method, as shown in Fig. 1, a donut-shaped disk (workpiece )
This is a method in which the grinding wheel is supported by the disk support ring 1 and the rolls 2.3, but compared to the above polishing method, the grinding wheel area is smaller and has self-dressing properties, so it is difficult to ensure the planar shape of the grinding wheel. Although dressing does not require skilled skills and is relatively easy to automate, it has traditionally had a large disc thickness deviation and a polished pattern on the surface compared to the above-mentioned grinding methods. This is because there are problems such as the occurrence of The quality was insufficient to meet the required quality of magnetic disk substrates for computers, and it had not been put into practical use. The present invention has been made in order to solve the problems of the above-mentioned prior art method of simultaneously grinding both surfaces of a plurality of disks using a narrow grindstone, It is an object of the present invention to provide a disk grinding method capable of obtaining a disk having a highly accurate surface shape with a small polishing pattern and no polishing pattern on the surface. (Means for Solving the Problems) In order to achieve the above object, the present inventor has conducted intensive research to clarify the cause of the above problems in the conventional narrow-width grindstone double-sided surface grinding method, and to find countermeasures. As a result, we found that this is possible by setting the positional relationship between the ring-shaped narrow-width grindstone and the disk and the width of the grindstone in a constant relationship. That is, as shown in FIGS. 1 and 2, the radius of the circumference formed by the centers of the plurality of disks (workpieces) 4 to be simultaneously ground is set as RD, and the center is set at the center position of this circumference. Assuming that the inner radius of the ring-shaped grindstone 5 is GI, the outer radius is Go, and the inner radius of the disc 4 is DI, and the outer radius is Do, first, if G machining≦RD-DI, that is, the inner circumference of the grindstone CG ) is the disc outer diameter (Do) and the disc inner diameter (
DI) (see Figure 3 (a)), problems such as: ■ polishing patterns occurring on the outer or inner circumference of the disk, and ■ sagging occurring on the edge surface of the disk occur. Therefore, it is not suitable for processing a disk having a finished surface with excellent surface quality as desired. Therefore, it is necessary to satisfy GI>RD-DI (see FIG. 3(b)). Note that the inner circumference (GI) of the grinding wheel may be made larger than the center position (Ro) of the disk, but since this increases the size of the grinding machine and increases the equipment cost, it is not economical, so GI < RD (Fig. 3). (see (b)). In addition, the disc is sandwiched between the upper and lower surface plates and rotates on its own axis under pressure while receiving the rotational force of the surface plate, and both sides are ground simultaneously. To complete the process, the disk must rotate smoothly. For that, place the disc in the center! Increase the distance between (RD) and the center position of the grinding wheel width ((G + Go) / 2),
It is better to increase the rotational force received from the surface plate. Therefore, RD>(Gz+Go)/2 (see FIG. 4). At that time, if the grindstone outer diameter position (GO) is set to (RD+DI/2) or more, that is, if the grindstone outer diameter position is set to 0172 or more from the disk center position and the disk is placed too far inside (see Fig. 5 (a) )), it becomes difficult to perform smooth rotation, so set Go<RD+D/2 (see 5th
(See figure (b)). Furthermore, the disk area (RD-DI) is located inside the disk center position [e(RD) by the disk inner radius (DI)].
First, the outer diameter of the grinding wheel (it needs to be inside than (GO), so Go > RD - Dl, see Figure 4), and the center position of the grinding wheel width (G + Go)
It needs to be inside than /2, so (G + GO)
/2>RD-Dx (see Fig. 4). The dimensions of the donut-shaped disk that is the workpiece are determined by the use of the disk, etc., but the width (
The inner radius of the grindstone is designed so that DoDz) is smaller than the inner radius G of the ring-shaped grindstone. In view of the above points, the gist of the present invention is to set the positional relationship between the ring-shaped grindstone and the disk and the width of the grindstone to conditions that satisfy the following relational expressions (1), (2), and (2). RD-DI<G engineering<Ro・・・・・・・・・・・・・・・
・・・・■Do-DI<G Engineering・・・・・・・・・・・・
......0 Next, examples of the present invention will be shown. (Example) Using a narrow-width grindstone double-sided surface grinder having upper and lower surface plates with an inner diameter of 650 mφ and an outer diameter of 790 mmφ, the outer diameter (Do) made of JIS 5086 aluminum alloy was 130++ fatφ. Fifteen disk substrates each having an inner diameter (DI) of 40 mmφ and a thickness of 2 mm were simultaneously polished. Grinding wheel: PVA grinding wheel $1500 Grinding fluid: Water-soluble lubricant Surface plate rotation speed: 30 rpm, pressure 1 kg/cwt" Polishing time: 5 minutes Also, the size of the circumference formed by the center of the disk is 780 a
m (RD=390a+m). During grinding, the position and width of the grinding wheel were varied as shown in Table 1. After cutting, the surface properties and thickness deviation of the obtained discs were investigated. The results are shown in Table 1. As is clear from the table, RD-p engineering<a engineering and RD-
Comparative Example 1, which does not satisfy DI<(G+Go)/2<Ro, has large grinding unevenness and end face sagging, and also has a large plate thickness deviation. Furthermore, in Comparative Example 2, which does not satisfy R, -DI, G machining, the grinding unevenness, end face sag, and plate thickness deviation are slightly smaller than those in Comparative Example 1, but these are of a size that poses a practical problem. Furthermore, Comparative Example 3 which does not satisfy Go<R work+DI/2
Similar to Comparative Example 2, there are uneven grinding and sag on the end surface. The plate thickness deviation is large. On the other hand, the examples of the present invention satisfy all of the conditions, so they can obtain discs with excellent accuracy with small grinding irregularities and end face sag, and extremely small plate thickness deviations, as well as high grinding speeds. High efficiency.

【以下余白】[Left below]

なお、第1表の結果より、砥石の代わりにクロス及び遊
離砥粒を使用するクロスポリッシングにおいても、同様
の結果が得られるものと推定される。 (発明の効果) 以上詳述したように、本発明のディスク研削方法によれ
ば、リング状の狭幅砥石を用いた両面平面研削機を使用
して高能率、かつ低コストで高精度の平面形状を有する
ディスクを得ることができ。 特にコンピュータ用ディスク基盤をはじめとする高精度
の平面形状を必要とする各種ディスクの研磨に好適であ
る。
Furthermore, from the results in Table 1, it is presumed that similar results can be obtained in cross polishing in which a cloth and free abrasive grains are used instead of a grindstone. (Effects of the Invention) As described in detail above, according to the disk grinding method of the present invention, a double-sided surface grinder using a ring-shaped narrow-width grindstone is used to produce a highly efficient, low-cost, and highly accurate surface. You can get a disc with the shape. It is particularly suitable for polishing various types of disks that require highly accurate planar shapes, such as computer disk substrates.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による狭幅砥石両面平面研削方式を示す
図、 第2図は上記方式における砥石とディスクとの位置関係
及び砥石幅について一般的に示す説明図。 第3図(a)及び第5図(a)は本発明の条件を満たし
ていない場合を示し、第3図(b)、第4図及び第5図
(b)は本発明の条件を満たしている場合を示している
。 1・・・ディスク支持リング、2.3・・・ディスク支
持ロール、4・・・ディスク(被加工物)、5・・・リ
ング状砥石。
FIG. 1 is a diagram showing a narrow-width grindstone double-sided surface grinding method according to the present invention, and FIG. 2 is an explanatory diagram generally showing the positional relationship between the grindstone and the disk and the grindstone width in the above method. Figures 3(a) and 5(a) show cases in which the conditions of the present invention are not met, and Figures 3(b), 4, and 5(b) show cases in which the conditions of the present invention are met. Indicates when DESCRIPTION OF SYMBOLS 1... Disc support ring, 2.3... Disc support roll, 4... Disc (workpiece), 5... Ring-shaped grindstone.

Claims (1)

【特許請求の範囲】[Claims] (1)リング状の上定盤及び下定盤を各々回転運動させ
ることにより、両者の定盤間に載置した複数個のディス
ク(被加工物)が該定盤より回転力を受けて自転する狭
幅砥石両面平面研削機において、リング状砥石とディス
クとの位置関係及び砥石幅を下記条件を満たすように設
定して研削することにより、優れた精度の表面形状を有
するディスクを得ることを特徴とするディスクの研削方
法。 R_D−D_I<G_I<R_D R_D−D_I<G_O<R_D+(D_I)/2RD
−D_I<(G_I+G_O)/2<R_DD_O−D
_I<G_I ここで、 R_D:複数個のディスクの中心が形成する円周の半径 G_I:上記円周の中心と同じ中心を有するリング状砥
石の内周半径 G_O:上記円周の中心と同じ中心を有するリング状砥
石の外周半径 D_I:ディスクの内周半径 D_O:ディスクの外周半径
(1) By rotating the ring-shaped upper and lower surface plates, a plurality of disks (workpieces) placed between the two surface plates receive rotational force from the surface plates and rotate on their own axis. A narrow-width grindstone double-sided surface grinder is characterized by obtaining a disk with an excellently accurate surface shape by setting the positional relationship between the ring-shaped grindstone and the disk and the grindstone width so as to satisfy the following conditions. Disc grinding method. R_D-D_I<G_I<R_D R_D-D_I<G_O<R_D+(D_I)/2RD
-D_I<(G_I+G_O)/2<R_DD_O-D
_I<G_I where, R_D: radius of the circumference formed by the centers of the plurality of disks G_I: inner radius of the ring-shaped grindstone having the same center as the center of the above circumference G_O: same center as the center of the above circumference Outer radius of ring-shaped grindstone D_I: Inner radius of disk D_O: Outer radius of disk
JP13745387A 1987-05-30 1987-05-30 Grinding method for disc Pending JPS63300849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13745387A JPS63300849A (en) 1987-05-30 1987-05-30 Grinding method for disc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13745387A JPS63300849A (en) 1987-05-30 1987-05-30 Grinding method for disc

Publications (1)

Publication Number Publication Date
JPS63300849A true JPS63300849A (en) 1988-12-08

Family

ID=15198961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13745387A Pending JPS63300849A (en) 1987-05-30 1987-05-30 Grinding method for disc

Country Status (1)

Country Link
JP (1) JPS63300849A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007260860A (en) * 2006-03-29 2007-10-11 Jtekt Corp Manufacturing method of rolling bearing device for wheel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62259753A (en) * 1986-05-06 1987-11-12 Speedfam Co Ltd Surface polishing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62259753A (en) * 1986-05-06 1987-11-12 Speedfam Co Ltd Surface polishing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007260860A (en) * 2006-03-29 2007-10-11 Jtekt Corp Manufacturing method of rolling bearing device for wheel
WO2007114153A1 (en) * 2006-03-29 2007-10-11 Jtekt Corporation Method of manufacturing rolling bearing device for wheel
US8151434B2 (en) 2006-03-29 2012-04-10 Jtekt Corporation Method of grinding a brake disk mounting surface with an annular recess using an inclined grinding wheel

Similar Documents

Publication Publication Date Title
JP3664188B2 (en) Surface processing method and apparatus
JP2011194561A (en) Chamfering device for disk-like workpiece
JP2006294099A (en) Peripheral surface polishing apparatus and manufacturing method for glass substrate for magnetic recording medium
JP3909619B2 (en) Apparatus and method for mirror processing of magnetic disk substrate
JP2000326235A (en) Grinding wheel for elid and surface grinding machine therewith
JPH0857756A (en) Doughnut-shape substrate grinding tool and grinding method using this tool
JP2000153453A (en) Glass substrate polishing method
JPS63300849A (en) Grinding method for disc
CN115256233A (en) Disc surface finishing process of double-sided grinding machine table
JP2001191247A (en) Both surface grinding method of disc-like substrate, manufacturing method of substrate for information recording medium and manufacturing method of information recording medium
JP2000084834A (en) Grinding carrier
JPH1133918A (en) Grinding wheel for working inside and outside diameter of substrate for magnetic recording medium, and method for working inside and outside diameter
KR19980080547A (en) Disk substrate intermediate, manufacturing method thereof and grinding machine
JP3334817B2 (en) Polishing method of glass plate
JP2001155331A (en) Magnetic disk substrate and its grinding method
JPS5914469A (en) Polishing apparatus
JPH01193158A (en) Grinding method for disc base
JPH04370519A (en) Substrate for magnetic disk
JPH11320358A (en) Polishing device
JP3172313B2 (en) Method and apparatus for repairing surface plate in flat surface polishing machine
JPH04261768A (en) Double-side lapping device
KR19990063400A (en) Disk substrate intermediate and its manufacturing method
JPH0349856A (en) Surface polishing method
JPH0222213Y2 (en)
JP2721642B2 (en) Inclined lapping method