JPS6329953A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6329953A
JPS6329953A JP17419386A JP17419386A JPS6329953A JP S6329953 A JPS6329953 A JP S6329953A JP 17419386 A JP17419386 A JP 17419386A JP 17419386 A JP17419386 A JP 17419386A JP S6329953 A JPS6329953 A JP S6329953A
Authority
JP
Japan
Prior art keywords
diffusion
layer
wiring
semiconductor substrate
wiring layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17419386A
Other languages
Japanese (ja)
Inventor
Kazuo Sato
和夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP17419386A priority Critical patent/JPS6329953A/en
Publication of JPS6329953A publication Critical patent/JPS6329953A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To reduce a stepped section in the surface, and to form a structure, in which the disconnection and defective short circuits of a wiring with a change into multilayers of the wiring are difficult to be generated, by connecting a wiring layer in a semiconductor substrate bulk by a diffusion layer shaped by diffusing a semiconductor having the same conduction type as the wiring layer and turning the wiring into multilayers. CONSTITUTION:A first diffusion wiring layer 12 having a conductivity type reverse to at least one layer or more of an electrically isolated semiconductor substrate 11 and a second diffusion wiring layer 14 electrically isolated from the first diffusion wiring layer 12 and having the conductivity type reverse to the semiconductor substrate 11 in a surface region in the semiconductor substrate 11 are formed into one conductivity type semiconductor substrate bulk. Predetermined sections in the first and second diffusion wiring layers 12, 14 are connected by a diffusion layer 17 buried between the layers 12, 14 and shaped by diffusing a semiconductor having the conductivity type reverse to the semiconductor substarte 11. Accordingly, since both diffusion wiring layers 12, 14 are connected by the diffusion layer 17, a stepped section in the surface of the second diffusion wiring layer 14 can be reduced, thus preventing the generation of the disconnections and defective short circuits of wirings with a change into multilayers of the wirings.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体集積回路の多層配I!;!禍漬にIII
づ“るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to a multilayer arrangement of semiconductor integrated circuits. ;! Magazuke ni III
It is something that

従来の技術 従来、半導体集積回路の高集積化、高密度化を達成する
ために、集積回路の配線領域を多層構造とづることがよ
く知られている。
2. Description of the Related Art Conventionally, in order to achieve higher integration and higher density of semiconductor integrated circuits, it has been well known that the wiring area of an integrated circuit has a multilayer structure.

第3図は従来の半導体装置の多層配線WJ造の一例を示
す断面図である。第3図において、1はシリコン基板で
あり、このシリコン基板1の表面領域に拡散配線層2が
形成され、この拡散配置!;1層2上2上1の約8層3
を介して第1の金属配!!2層4が形成され、この第1
の金属配線層4上に第2の絶縁層5を介して第2の金属
配5!層6が形成され、配線層4.6は絶縁層3,5に
形成されたコンタクトホール3a、5aを介して配線層
2,4に接続されている。7は第2の金属配線層6を保
護する第3の絶縁層である。
FIG. 3 is a sectional view showing an example of a conventional multilayer wiring WJ structure of a semiconductor device. In FIG. 3, 1 is a silicon substrate, and a diffusion wiring layer 2 is formed on the surface area of this silicon substrate 1, and this diffusion arrangement! ;1 layer 2 upper 2 upper 1 approximately 8 layers 3
First metal distribution through! ! Two layers 4 are formed, this first
A second metal interconnection layer 5! is formed on the metal interconnection layer 4 through the second insulating layer 5! A wiring layer 4.6 is connected to the wiring layers 2, 4 through contact holes 3a, 5a formed in the insulating layers 3, 5. 7 is a third insulating layer that protects the second metal wiring layer 6.

発明が解決しようとする問題点 しかしながら、従来の多層配線構造においては、金属配
線層が2層、3層と多層化するにつれて、金属配線層4
のコンタクトホール3a上の表面で−の段差4aが大き
くなり、配線の断線やショート不良が発生しやすいとい
った問題点を有していた。
Problems to be Solved by the Invention However, in the conventional multilayer wiring structure, as the number of metal wiring layers increases to two or three layers, the metal wiring layer 4
The negative step 4a becomes large on the surface above the contact hole 3a, and there is a problem in that wiring breaks and short circuits are likely to occur.

本発明は、上記問題点を解決するものであり、半導体集
積回路の配線層を多層化しても配5!層の表面での段差
が生じない多層配線構造の半導体装置を提供することを
目的とするものである。
The present invention solves the above-mentioned problems, and even when the wiring layers of a semiconductor integrated circuit are multi-layered, the wiring is only 5. It is an object of the present invention to provide a semiconductor device having a multilayer wiring structure in which no level difference occurs on the surface of the layers.

問題点を解決するための手段 上記問題点を解決するため、本発明は一導電型の半導体
基板バルク中に、少なくとも一層以上の電気的に分離さ
れた前記半導体基板と反対導電型の第1の拡散配線層と
、前記半導体基板の表面領域に前記第1の拡散配線層と
電気的に分離された前記半導体基板と反対導電型の第2
の拡散配45i1層とを猫え、前記第1および第2の拡
散配15i!層の所定の部分を、その間で埋められた前
記半導体基板と反対導電型の半導体の拡散により形成し
た拡散層で接続したものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a bulk semiconductor substrate of one conductivity type, at least one layer of which is electrically isolated from the semiconductor substrate and a first layer of the opposite conductivity type. a diffusion wiring layer, and a second diffusion wiring layer of a conductivity type opposite to that of the semiconductor substrate, which is electrically isolated from the first diffusion wiring layer in a surface region of the semiconductor substrate.
The first and second diffusion layers 15i! Predetermined portions of the layers are connected by a diffusion layer formed by diffusion of a semiconductor of a conductivity type opposite to that of the semiconductor substrate buried therebetween.

作用 上記構成により、電気的に分離された半導体基板バルク
中の配線層をこれらを同じ導電型の半導体の拡散により
形成した拡散層で接続して配線の多1ffl(ヒを行な
うため、従来の半導体基板上に配線層を積層する構造に
比べて、表面での段差を小さくすることかでさ、配線の
多層化に伴う配線の断線やショート不良が発生しにくい
@造となる。
Function: With the above structure, wiring layers in the bulk of a semiconductor substrate that are electrically separated are connected by a diffusion layer formed by diffusion of a semiconductor of the same conductivity type. Compared to a structure in which wiring layers are stacked on a substrate, the @ structure is less likely to cause disconnections or short circuits due to multi-layered wiring, due to the smaller level difference on the surface.

実施例 以下、本発明の一実施例を図面に暴づいて説明する。Example Hereinafter, one embodiment of the present invention will be explained with reference to the drawings.

第1図(a)は本発明の一実施例である半導体装置の平
面図、第1図(b)は第1図のA−A’断面図である。
FIG. 1(a) is a plan view of a semiconductor device which is an embodiment of the present invention, and FIG. 1(b) is a sectional view taken along line AA' in FIG.

第1図において、11はp型シリコン基板であり、この
p型シリコン基板1の表面領域にn型の第1の拡散配線
層12が形成され、さらにp型シリコン基板11の上に
p型のエピタキシャル層13が形成されている。また、
エピタキシャル層13の表面領域にn型の第2の拡散配
線層14が形成され、この第2の拡散配線層14と第1
の拡散配線層12の所定の部分とは、第2の拡散配線層
14とエピタキシトル層13を通して第1の拡散配線層
12に達ザるように設けられた第1のコンタクトホール
15に埋められた、リンをドープしたポリシリコン16
から拡散されて形成されたn型の拡散層17により接続
されている。18はアルミニウム配線層であり、第1の
酸化シリコン層19により第2の拡散配線層14と絶縁
され、第1の酸化シリコン層19の所定の部分に設けら
れた第2のコンタクトホール20を介して第2の拡散配
線層14に接続されている。21はアルミニウム配I!
!;!層18を保護する第2の酸化シリコン層である。
In FIG. 1, reference numeral 11 denotes a p-type silicon substrate, and an n-type first diffusion wiring layer 12 is formed on the surface region of this p-type silicon substrate 1. An epitaxial layer 13 is formed. Also,
An n-type second diffusion wiring layer 14 is formed in the surface region of the epitaxial layer 13, and this second diffusion wiring layer 14 and the first diffusion wiring layer 14 are connected to each other.
The predetermined portion of the diffusion wiring layer 12 is a region filled in a first contact hole 15 provided to reach the first diffusion wiring layer 12 through the second diffusion wiring layer 14 and the epitaxial layer 13. In addition, phosphorus-doped polysilicon 16
They are connected by an n-type diffusion layer 17 formed by diffusion from the substrate. Reference numeral 18 denotes an aluminum wiring layer, which is insulated from the second diffusion wiring layer 14 by a first silicon oxide layer 19 and is connected through a second contact hole 20 provided in a predetermined portion of the first silicon oxide layer 19. and is connected to the second diffusion wiring layer 14. 21 is aluminum layout I!
! ;! A second silicon oxide layer that protects layer 18.

次に、本発明の半導体装置の製造工程を説明する。Next, the manufacturing process of the semiconductor device of the present invention will be explained.

第2図は、第1図に示1J半導体装置の製造工程の一実
施例を示す断面図である。まず、第2図(a)に示プよ
うに、不純物濃度1X10葛αづのp型シリコン基板1
1の表面の所定の部分に、不純物温度約1×10″cm
 ’のn型の第1の拡散配線層12を公知の選択拡散技
術により形成し、次いぐ不純1勿濃度1x10”ciづ
のp型の]−ヒ°タキシャル層13を杓7μm形成し、
第1の拡散配、腺層12の上のエピタキシャル層13の
所定の部分にRIE(反応性イオンエツチング)技術に
より、第1のコンタクトホール15を形成ツる。
FIG. 2 is a sectional view showing an embodiment of the manufacturing process of the 1J semiconductor device shown in FIG. First, as shown in FIG. 2(a), a p-type silicon substrate 1 with an impurity concentration of 1×10×α
1 at a predetermined portion of the surface of
A first n-type diffusion wiring layer 12 is formed using a well-known selective diffusion technique, and then a p-type []-hypertaxial layer 13 with an impurity concentration of 1×10” ci is formed to a thickness of 7 μm.
A first contact hole 15 is formed in a predetermined portion of the epitaxial layer 13 above the first diffusion layer 12 by RIE (reactive ion etching) technique.

次に、第2図(b)に示すように、第1のコンタクトホ
ール15の中をリンをドープした不純物濃度約5 x 
10” cm ’のポリシリコン16を公知の気相成長
法により埋め、第1のコンタクトホール15以外のポリ
シリコンはエッヂバック法によって取り去り平坦化を行
う。次いで、ポリシリコン16に含まれるリンを熱拡散
によりエピタキシトル層13に拡rFiさ「、n型の拡
散層17を形成する。
Next, as shown in FIG. 2(b), the inside of the first contact hole 15 is doped with phosphorus at a concentration of about 5 x
Polysilicon 16 of 10" cm ' is filled by a known vapor phase growth method, and the polysilicon other than the first contact hole 15 is removed by an edge-back method and flattened. Next, phosphorus contained in polysilicon 16 is removed by heating. An n-type diffusion layer 17 is formed in the epitaxial layer 13 by diffusion.

次に、第2図(C)に示すように、エピタキシャル層1
3の表面上のn型の拡散層17を除く領域に、不Ki物
濃度約1×10″cxr−’のn型の第2の拡散配線層
14を公知の選択拡散技術により形成し、さらに絶縁層
として第1の酸化シリコン膜19を公知の気相成長法に
より形成し、次いで酸化シリコン膜19の所定の部分に
公知のフォトエツチング技術により第2のコンタクトホ
ール20を形成する。
Next, as shown in FIG. 2(C), the epitaxial layer 1
A second n-type diffusion interconnection layer 14 with an inactive concentration of about 1×10″cxr−’ is formed in a region excluding the n-type diffusion layer 17 on the surface of 3 by a known selective diffusion technique, and further A first silicon oxide film 19 is formed as an insulating layer by a known vapor phase growth method, and then a second contact hole 20 is formed in a predetermined portion of the silicon oxide film 19 by a known photoetching technique.

次に、第2図(d)に示すように、アルミニウム膜を約
1μm公知の真空蒸着法により被着し、ホトエツヂング
により第2のコンタクトホール20を覆うようにアルミ
ニウム配PiJ層18を形成する。次いでアルミニウム
配線層18を保護すべく第2の酸化シリコンWA21を
公知の気相成長法により形成し、第1図に示す半導体装
置が得られる。
Next, as shown in FIG. 2(d), an aluminum film of about 1 μm is deposited by a known vacuum evaporation method, and an aluminum PiJ layer 18 is formed by photoetching to cover the second contact hole 20. Next, a second silicon oxide WA 21 is formed by a known vapor phase growth method to protect the aluminum wiring layer 18, and the semiconductor device shown in FIG. 1 is obtained.

本実施例では多層配線構造のみについて説明を行なって
きたが、MOSトランジスタ、バイポーラトランジスタ
などの半導体素子の接続に本発明の多層配線M4造を用
い得ることは言うまでもない。
Although only the multilayer wiring structure has been described in this embodiment, it goes without saying that the multilayer wiring M4 structure of the present invention can be used to connect semiconductor elements such as MOS transistors and bipolar transistors.

また、本実施例では半導体基板バルク中の1層の拡散配
線層を用いた例を示したが、2層以上の多1ffl(ヒ
することによりさらに高集積化をはかることができる。
Further, although this embodiment shows an example using one diffusion wiring layer in the bulk of the semiconductor substrate, higher integration can be achieved by using two or more layers.

このように、両拡散配a層12.14を拡散層17にて
接続するため、第2の拡散配4!2層14の表面の段差
を小さくすることができる。
In this way, since both the diffusion layers 12 and 14 are connected by the diffusion layer 17, the level difference on the surface of the second diffusion layer 4!2 layer 14 can be reduced.

発明の詳細 な説明したように、本発明によれば、電気的に分離され
た半導体基板バルク中の半導体基板と反対導電型の拡散
配a層を半導体基板と反対導電型の拡散層にて接続する
ため、従来の半導体基板上に配線層を積層化する構造に
比べ、表面での段差を小さくすることができ、配線の多
層化にともなう配線の断線やショート不良が発生しにく
く、半導体集積回路の多層配線構造の信頼性向上に大き
く寄与することができる。
DETAILED DESCRIPTION OF THE INVENTION As described in detail, according to the present invention, a diffusion layer having a conductivity type opposite to that of the semiconductor substrate in an electrically isolated bulk of the semiconductor substrate is connected by a diffusion layer having a conductivity type opposite to that of the semiconductor substrate. Therefore, compared to the conventional structure in which wiring layers are stacked on a semiconductor substrate, it is possible to reduce the level difference on the surface, and it is less likely to cause disconnections or short circuits that occur due to multilayer wiring, making it possible to improve semiconductor integrated circuits. This can greatly contribute to improving the reliability of multilayer wiring structures.

また、従来の多層配F[造と本発明の4III造を組合
Vて用いることにより、半導体*a回路の配線の多層化
が飛躍的に向上し、半導体集積回路の高集積化、高密度
化に大きく寄与づるごとができる。
In addition, by combining the conventional multilayer F structure and the 4III structure of the present invention, the multilayer wiring of semiconductor*a circuits can be dramatically improved, leading to higher integration and higher density of semiconductor integrated circuits. It is possible to make a significant contribution to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の一実施例を示す半導体装置の平
面図、第1図(b)は第1図(a)のA−A’断面図、
第2図(a)〜(d)は同半導体装置の製造工程を説明
する断面図、第3図は従来の多層配線411I造を示す
断面図である。 11・・・p型シリコン基板、12・・・第1の拡散配
KJ層、13・・・エピタキシャル層、14・・・第2
の拡散配、Pi1層、16・・・ポリシリコン層、17
・・・ノ広散層代理人   森  木  義  弘 第1図 ’4−−−N2y+t@eど$4   21−−−pi
、、7a>m ft)グツ>4t6−iマlノシダクン 第3図
FIG. 1(a) is a plan view of a semiconductor device showing an embodiment of the present invention, FIG. 1(b) is a sectional view taken along line AA' in FIG. 1(a),
FIGS. 2(a) to 2(d) are cross-sectional views illustrating the manufacturing process of the same semiconductor device, and FIG. 3 is a cross-sectional view showing a conventional multilayer wiring 411I structure. DESCRIPTION OF SYMBOLS 11... P-type silicon substrate, 12... First diffusion distribution KJ layer, 13... Epitaxial layer, 14... Second
diffusion distribution, Pi1 layer, 16...polysilicon layer, 17
... Diffusion layer agent Yoshihiro Moriki Figure 1'4---N2y+t@edo$4 21---pi
,,7a>m ft) Gutu>4t6-i Marunoshidakun Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1、一導電型の半導体基板バルク中に、少なくとも一層
以上の電気的に分離された前記半導体基板と反対導電型
の第1の拡散配線層と、前記半導体基板の表面領域に前
記第1の拡散配線層と電気的に分離された前記半導体基
板と反対導電型の第2の拡散配線層とを備え、前記第1
および第2の拡散配線層の所定の部分を、その間で埋め
られた前記半導体基板と反対導電型の半導体の拡散によ
り形成した拡散層で接続した半導体装置。
1. In a semiconductor substrate bulk of one conductivity type, at least one electrically isolated first diffusion wiring layer of an opposite conductivity type to the semiconductor substrate, and the first diffusion wiring layer in a surface region of the semiconductor substrate; a second diffusion wiring layer of a conductivity type opposite to the semiconductor substrate, which is electrically isolated from the wiring layer;
and a semiconductor device in which a predetermined portion of the second diffusion wiring layer is connected by a diffusion layer formed by diffusion of a semiconductor of a conductivity type opposite to that of the semiconductor substrate buried therebetween.
JP17419386A 1986-07-24 1986-07-24 Semiconductor device Pending JPS6329953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17419386A JPS6329953A (en) 1986-07-24 1986-07-24 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17419386A JPS6329953A (en) 1986-07-24 1986-07-24 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6329953A true JPS6329953A (en) 1988-02-08

Family

ID=15974351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17419386A Pending JPS6329953A (en) 1986-07-24 1986-07-24 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6329953A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302855A (en) * 1990-09-10 1994-04-12 Canon Kabushiki Kaisha Contact electrode structure for semiconductor device
US5789794A (en) * 1994-12-29 1998-08-04 Siemens Aktiengesellschaft Fuse structure for an integrated circuit element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302855A (en) * 1990-09-10 1994-04-12 Canon Kabushiki Kaisha Contact electrode structure for semiconductor device
US5789794A (en) * 1994-12-29 1998-08-04 Siemens Aktiengesellschaft Fuse structure for an integrated circuit element
US5827759A (en) * 1994-12-29 1998-10-27 Siemens Microelectronics, Inc. Method of manufacturing a fuse structure

Similar Documents

Publication Publication Date Title
JPH07183302A (en) Formation of metal layer and bonding method therefor
JPH0277133A (en) Semiconductor device
JPH1070281A (en) Semiconductor device and fabrication thereof
KR900003835B1 (en) Semiconductor device
US4988639A (en) Method of manufacturing semiconductor devices using trench isolation method that forms highly flat buried insulation film
JPH05304262A (en) Semiconductor device and manufacture thereof
JPS6234150B2 (en)
JPS6329953A (en) Semiconductor device
JPH08250600A (en) Semiconductor device and manufacture thereof
JPS63211672A (en) Semiconductor integrated circuit device
JPS58215055A (en) Semiconductor integrated circuit device
JPH0286160A (en) Semiconductor device
JPH0590492A (en) Semiconductor integrated circuit and manufacture thereof
JPS59112656A (en) Semiconductor device and manufacture thereof
JPS5931216B2 (en) Manufacturing method of semiconductor device
JPS5842257A (en) Semiconductor device
JPS6010751A (en) Semiconductor integrated circuit device
JPS63219160A (en) Semiconductor element and manufacture thereof
JPH03116852A (en) Semiconductor device
JPH05211131A (en) Semiconductor device
JPS6113383B2 (en)
JPS5914650A (en) Semiconductor integrated circuit device
JPS627703B2 (en)
JPS6012783B2 (en) semi-moving device
JPS5965480A (en) Semicnductor device