JPS60148147A - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JPS60148147A JPS60148147A JP432084A JP432084A JPS60148147A JP S60148147 A JPS60148147 A JP S60148147A JP 432084 A JP432084 A JP 432084A JP 432084 A JP432084 A JP 432084A JP S60148147 A JPS60148147 A JP S60148147A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- hole
- contact hole
- type
- semiconductor device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electrodes Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
不発明は半導体装置に関し、特に半導体基板上に形成さ
れた活性領域を連結する為のコンタクト穴に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and more particularly to a contact hole for connecting active regions formed on a semiconductor substrate.
最近半導体装置の集積化は目ざましいものがあるが、一
方その集積化に対していくつかの障壁があり、その一つ
に活性領域間、或いは活性領域に電位を与える際の配線
方法及びコンタクト穴の構造がある。Recently, the integration of semiconductor devices has been remarkable, but on the other hand, there are several barriers to this integration. There is a structure.
不発明は占有面積の十分少なくて済むコンタクト穴構造
を提供するものである。The object of the present invention is to provide a contact hole structure that occupies a sufficiently small area.
以下に図面を用いて説明する。第1図は従来構造の半導
体装置の断面を示す。ここでは簡単の為P型の導電型す
有するシリコン基板にN型の活性領域を形成する場合に
ついて説明する・従来はPffli板1中にトランジス
タのゲート部となる3t−多結晶シリコンで形成しンー
ス、ドレイン領域となるN型部分4をリン或いはAS等
のN族の不純物をドープして形成したのち層間膜5とな
る酸化膜をCVD法で索子上の全面に形成し、しかるの
ちにンース、ドレイン領域と配線8.及び9との電位を
とる為のコンタクト穴6.7を開孔する。This will be explained below using the drawings. FIG. 1 shows a cross section of a semiconductor device with a conventional structure. For the sake of simplicity, we will explain here the case where an N-type active region is formed on a silicon substrate having a P-type conductivity type. Conventionally, the active region is formed in the Pffli board 1 using 3T-polycrystalline silicon, which will become the gate part of the transistor. After forming the N-type portion 4 which will become the drain region by doping it with an N-group impurity such as phosphorus or AS, an oxide film which will become the interlayer film 5 is formed on the entire surface of the cable by CVD, and then drained. , drain region and wiring 8. A contact hole 6.7 is opened to take the potential between the contact hole 6.7 and the contact hole 6.7.
この開孔の方法としては従来フッ化水素酸に浸した!’
h CF 4 深等のプラズマガスによるドライエッ
チで行なっているが、最近の集積化に伴ない、後者のド
ライエツチングが主流になりつつある。コンタクト穴6
.7全開孔した後にソース、ドレインに電位を与える為
のアルミ配線8,9を形成して終わる。さて、この似な
従来方法の欠点としては、ソース、ドレインに電位を与
える為の金属記載8及び9が谷トランジスタに2不ずつ
必要な為隣接せる索子との間隔が、上記金属配線の間隔
で制約されてしまい、索子の乗積化の妨げとなる。The conventional method for opening this hole was to soak it in hydrofluoric acid! '
Dry etching is performed using a plasma gas such as h CF 4 deep, but with recent integration, the latter dry etching is becoming mainstream. contact hole 6
.. 7 After the holes are completely opened, aluminum wiring lines 8 and 9 for applying potential to the source and drain are formed. Now, as a drawback of this similar conventional method, since two metal lines 8 and 9 are required for each valley transistor to give potential to the source and drain, the distance between the adjacent wires is smaller than the distance between the metal wires. , which prevents the multiplication of the index.
次に不発明を実施例に従って説明する。不発明の主な内
容は、前述した様な従来方法の欠点に鑑み、金属配係の
占有面1fjtk縮少する為に、ソースの電位ケ基板か
ら取るという点にある。第2図に、不発明による半導体
装置の断面を示す、ンース會形成する導電領域4′ と
、基板1との電位を取る為に、コンタクト穴17は、こ
の部分で基板中に〜1μm の深さで堀られる形となっ
ている。コンタクト穴17の側壁にアルミ配線層が形成
されソース領域4′と基板1とを接続するが、この除P
型基板の濃度によっては金属配線17と基板1とがショ
ットキー接触になる恐れがある為、図中人に示した様な
P型不純物の高濃度領域をイオン注入技術等で形成して
よいた方が良い。Next, the invention will be explained according to examples. The main point of the invention is that, in view of the drawbacks of the conventional method as described above, the potential of the source is taken from the substrate in order to reduce the occupied area 1fjtk of the metal arrangement. FIG. 2 shows a cross section of a semiconductor device according to the invention. In order to obtain a potential between a conductive region 4' formed in a first contact with the substrate 1, a contact hole 17 is formed at a depth of ~1 μm in the substrate at this portion. It is shaped like a moat. An aluminum wiring layer is formed on the side wall of the contact hole 17 to connect the source region 4' and the substrate 1.
Depending on the concentration of the type substrate, there is a risk of Schottky contact between the metal wiring 17 and the substrate 1, so a region with a high concentration of P-type impurity as shown in the figure may be formed using ion implantation technology. It's better.
第3図(a)、 (b)、 (C)は不発明に依る4′
g造金容易に実現する為のプロセスフローに従った断面
図である。同図(a)のようにP型シリコン基板11中
に累子分離用の厚い酸化膜12全形成した後、トランジ
スタのゲート部13を第1の4電性を有する多結晶シリ
コン層で形成し、そののちセルファラインに依シソース
、ドレイン領域14’、14を各々N型不純物のイオン
注入法で形成する・次にCVD酸化膜15を索子上全面
に形成した後、第1のコンタクト′に16eドライエツ
チングで開孔し、再ひCVD法で索子全面に第2の4電
性を有する多結晶シリコン層17全形成し、ドレイン領
域14上にのみ前記第2の多結晶シリコン1曽17を残
すべく、レジスト膜18を形成する9次に第3図(bl
に示すようにレジ7)InI3にマスクとして、ドライ
エッチ法によシ多結晶層17をエツチングするが、その
場合ソース領域14′、及びシリコン基板11を〜1μ
mエツチングする様設足する。こうしてソース側に深い
コンタクト穴20を形成した後、前述した様に、アルミ
配線と基板とがオーミックになる様、P型の不純物全ド
ープして、高′1#度領域Aを形成する。その後同図(
C)のように厚い層間絶祿腺19を形成し、19に再び
コンタクト穴を開孔してアルミ配線層21.22を形成
する。Figures 3(a), (b), and (C) are 4' due to non-invention.
g is a sectional view according to a process flow for easily realizing metal manufacturing. As shown in the figure (a), after the thick oxide film 12 for separator isolation is completely formed in the P-type silicon substrate 11, the gate part 13 of the transistor is formed with the first polycrystalline silicon layer having tetraelectricity. After that, source and drain regions 14' and 14 are formed on the self-line by ion implantation of N-type impurities respectively.Next, after a CVD oxide film 15 is formed on the entire surface of the conductor, a first contact' is formed. 16e, a hole is opened by dry etching, and the entire second polycrystalline silicon layer 17 having tetraelectricity is formed on the entire surface of the core by CVD method, and the second polycrystalline silicon layer 17 is formed only on the drain region 14. The resist film 18 is formed in order to leave the resist film 18.
As shown in FIG. 7), polycrystalline layer 17 is etched by dry etching using InI3 as a mask. In this case, source region 14' and silicon substrate 11 are etched by ~1 μm.
It will be set up so that it will be etched. After forming the deep contact hole 20 on the source side, as described above, the high '1# degree region A is formed by doping all of the P type impurities so that the aluminum wiring and the substrate become ohmic. Then the same figure (
A thick interlayer insulation layer 19 is formed as shown in C), and contact holes are formed in 19 again to form aluminum wiring layers 21 and 22.
上述した様に、不発明の構造に依れば、トランジスタの
一方の電位は、基板より供給される為、アルミ配線22
は、少なくともコンタクト穴20を覆うに十分なだけの
面積で済み、隣接配線との間隔による制約を皆無とする
事が出来る。As mentioned above, according to the uninvented structure, the potential of one side of the transistor is supplied from the substrate, so the aluminum wiring 22
The area of the contact hole 20 is sufficient to cover at least the contact hole 20, and there can be no restriction caused by the distance between adjacent wiring lines.
以上、説明に用いた事例はP型基板にN型トランジスタ
を形成する場合に限ったが、その他、?−ウェル中のN
型トランジスタ、N型基板中のP型トランジスタ、相補
型トランジスタ等にも同様に適用出来る事は云うまでも
ない。The example used in the explanation above is limited to the case where an N-type transistor is formed on a P-type substrate, but there are other cases as well. -N in the well
Needless to say, the present invention can be similarly applied to type transistors, P type transistors in N type substrates, complementary type transistors, etc.
第1図は従来構造による半導体装置V断面図。
1・・・・シリコン基板、2・・・・フィールドtR化
tm、3・・・・ゲート電極、4・・・・ソース・ドレ
イン領域、5・・・・・・層間絶縁1換、6.7・・・
コンタクト穴、8゜9・・・・・・金属配悲層。
第2図は不発明の一夾施例Vこよる半導体装置の断面図
。
4′・・・・・ソース領域、17・・・・・・コンタク
ト穴、A・・・・・高濃度不純物領域。
第3図(a)、 [b)、 (C)は本発明の実施例e
(j、+る工程の断面図。
11・・・・シリコン基板、12・・・フィールド酸化
膜、13・・・・・ゲー)!極、14・・・・ドレイン
領域、14′・・・・ソース領域、15・・・・層間抱
縁膜、16、.20・・・・・コンタクト穴、17・・
・・・多結晶シリコン層、19・・・・・・層間絶縁1
換、21,22・・・・・金属配線層。FIG. 1 is a cross-sectional view of a semiconductor device with a conventional structure. 1...Silicon substrate, 2...Field tR conversion tm, 3...Gate electrode, 4...Source/drain region, 5...Interlayer insulation, 6. 7...
Contact hole, 8°9...Metal contact layer. FIG. 2 is a sectional view of a semiconductor device according to an embodiment V of the invention. 4'...source region, 17...contact hole, A...high concentration impurity region. FIG. 3(a), [b), and (C) are examples e of the present invention.
(j, cross-sectional view of + process. 11...silicon substrate, 12...field oxide film, 13...ge)! Pole, 14...Drain region, 14'...Source region, 15...Interlayer encapsulation film, 16, . 20...Contact hole, 17...
... Polycrystalline silicon layer, 19 ... Interlayer insulation 1
Exchange, 21, 22...metal wiring layer.
Claims (2)
′ 成された半導体装置に於て、該基板と逆導電型を有する
活性領域中に存して、かつ該基板に至る深さを有するコ
ンタクト穴と、該コンタクト穴の上部と側面を覆って形
成された金属配線層を有することを特徴とする半導体装
置。(1) - shape on a silicon semiconductor substrate having a conductivity type,
' In the manufactured semiconductor device, a contact hole exists in an active region having a conductivity type opposite to that of the substrate and has a depth reaching the substrate, and a contact hole is formed to cover the top and side surfaces of the contact hole. 1. A semiconductor device comprising a metal wiring layer.
導電型を有し、該基板よりも高い濃度の不純物領域を有
することを特徴とする請求の範囲第1項記載の半導体装
置。(2) The semiconductor device according to claim 1, further comprising an impurity region in the substrate surrounding the contact hole that has the same conductivity type as the substrate and has a higher concentration than the substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP432084A JPS60148147A (en) | 1984-01-13 | 1984-01-13 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP432084A JPS60148147A (en) | 1984-01-13 | 1984-01-13 | Semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60148147A true JPS60148147A (en) | 1985-08-05 |
Family
ID=11581172
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP432084A Pending JPS60148147A (en) | 1984-01-13 | 1984-01-13 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60148147A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6429837U (en) * | 1987-08-13 | 1989-02-22 | ||
US5583075A (en) * | 1990-05-13 | 1996-12-10 | Canon Kabushiki Kaisha | Method for producing a semiconductor device with a particular source/drain and gate structure |
US5665630A (en) * | 1990-05-31 | 1997-09-09 | Canon Kabushiki Kaisha | Device separation structure and semiconductor device improved in wiring structure |
KR100424172B1 (en) * | 2001-06-29 | 2004-03-24 | 주식회사 하이닉스반도체 | A method for manufacturing of semiconductor device with elector static discharge protector |
-
1984
- 1984-01-13 JP JP432084A patent/JPS60148147A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6429837U (en) * | 1987-08-13 | 1989-02-22 | ||
US5583075A (en) * | 1990-05-13 | 1996-12-10 | Canon Kabushiki Kaisha | Method for producing a semiconductor device with a particular source/drain and gate structure |
US5665630A (en) * | 1990-05-31 | 1997-09-09 | Canon Kabushiki Kaisha | Device separation structure and semiconductor device improved in wiring structure |
KR100424172B1 (en) * | 2001-06-29 | 2004-03-24 | 주식회사 하이닉스반도체 | A method for manufacturing of semiconductor device with elector static discharge protector |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4742018A (en) | Process for producing memory cell having stacked capacitor | |
US5023683A (en) | Semiconductor memory device with pillar-shaped insulating film | |
KR0133921B1 (en) | Semiconductor device | |
KR0137974B1 (en) | Semiconductor device & process for manufacturing the same | |
JP2002368221A (en) | Semiconductor device equipped with longitudinal mosfet and manufacturing method therefor | |
JPH1070281A (en) | Semiconductor device and fabrication thereof | |
JPS6321351B2 (en) | ||
US4825281A (en) | Bipolar transistor with sidewall bare contact structure | |
JP2976842B2 (en) | Method for manufacturing semiconductor memory device | |
US5643832A (en) | Semiconductor device and method for fabrication thereof | |
US5055904A (en) | Semiconductor device | |
JPS60148147A (en) | Semiconductor device | |
JPH04348070A (en) | Semiconductor device and its manufacture | |
JP2000077678A (en) | Semiconductor element and its manufacture | |
JPS59112656A (en) | Semiconductor device and manufacture thereof | |
JPH1197529A (en) | Manufacture of semiconductor device | |
JPS6240765A (en) | Read-only semiconductor memory and manufacture thereof | |
KR940009365B1 (en) | Cmos manufacturing method using trench | |
JPH02201965A (en) | Semiconductor device and manufacture thereof | |
KR100649813B1 (en) | Manufacturing method of semiconductor device | |
JPS6237960A (en) | Manufacture of read only semiconductor memory device | |
KR100374113B1 (en) | Planarized MOSFET | |
JPH0793367B2 (en) | Semiconductor memory device and manufacturing method thereof | |
JPS62219660A (en) | Semiconductor device and manufacture thereof | |
JP2001135803A (en) | Dynamic random access memory and its manufacturing method |