JPS63293459A - Detecting element - Google Patents

Detecting element

Info

Publication number
JPS63293459A
JPS63293459A JP13060787A JP13060787A JPS63293459A JP S63293459 A JPS63293459 A JP S63293459A JP 13060787 A JP13060787 A JP 13060787A JP 13060787 A JP13060787 A JP 13060787A JP S63293459 A JPS63293459 A JP S63293459A
Authority
JP
Japan
Prior art keywords
thin film
thermal conductivity
bridge
conductive layer
base plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13060787A
Other languages
Japanese (ja)
Inventor
Hiroki Tabuchi
宏樹 田渕
Kazutaka Uda
和孝 宇田
Takashi Sugihara
孝志 杉原
Yasuhiko Inami
井波 靖彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP13060787A priority Critical patent/JPS63293459A/en
Priority to US07/078,741 priority patent/US4928513A/en
Priority to DE3724966A priority patent/DE3724966C3/en
Priority to GB8717919A priority patent/GB2194845B/en
Publication of JPS63293459A publication Critical patent/JPS63293459A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To enhance the detection sensitivity of a detecting element laminated with a conductive layer on an insulating layer molded to the shape of a bridge, etc. on a base plate and to increase the response speed thereof by using a metallic material having <=100W/m.k thermal conductivity as a material of the conductive layer. CONSTITUTION:After the bridge-shaped insulating layer 2 formed of a thin film is formed on the base plate 1, the base plate 1 is subjected to crystal axis anisotropic etching of Si which is the base plate. A hollow structure is thereby formed between the base plate 1 and the microbridge 3 as the element structure having excellent thermal insulation; furthermore, the surface of the bridge 3 is fixed to a sensor material 4 made of a thin film. The metallic material, such as titanium, having <=100W/m.k thermal conductivity is used as the material of the conductive layer. The absolute humidity is thus detected in humidity measurement. The detection sensitivity in particular is thereby enhanced and the response speed is increased.

Description

【発明の詳細な説明】 く技術分野〉 本発明は、検出雰囲気の熱伝導率の変化によって温度変
化の生ずるセンサ材料の熱絶縁を向上させることにより
、検出感度の向上や高速応答性を図ることのできる検知
素子に関するものであり、特に湿度計測において直接水
蒸気量を検知する絶対湿度センサの検出感度向上及び特
性の高速応答性を図ることのできる感湿素子電極材料に
関するものである。
[Detailed Description of the Invention] Technical Field> The present invention aims to improve detection sensitivity and high-speed response by improving the thermal insulation of a sensor material whose temperature changes due to changes in the thermal conductivity of the detection atmosphere. The present invention relates to a sensing element capable of detecting moisture, and in particular to a moisture sensing element electrode material capable of improving the detection sensitivity and high-speed response of an absolute humidity sensor that directly detects the amount of water vapor in humidity measurement.

〈従来技術とその問題点〉 従来より感湿素子あるいは湿度センサとしては多種類の
ものが開発されており、特に雰囲気中の相対湿度を検出
するセンサとしては感湿材料の電気抵抗値あるいは電気
容量が雰囲気中の湿気あるいは水蒸気に感応して変化す
ることを利用し、主に次に上げるものが知られている。
<Prior art and its problems> Many types of humidity sensing elements or humidity sensors have been developed in the past, and in particular sensors for detecting relative humidity in the atmosphere are based on the electrical resistance or capacitance of humidity sensitive materials. The following methods are mainly known, taking advantage of the fact that water changes in response to humidity or water vapor in the atmosphere.

■酸化鉄(Fe203.Fe304)、酸化錫(5no
2)などの金属酸化物の焼結体あるいは金属酸化膜を用
いたもの、■親水性高分子膜あるいは高分子電解質さら
には繊維高分子を用いたもの、■塩化ソリチウム Li
ck)等の電解質塩な用いたもの及び■吸湿性樹脂ある
いは吸湿性高分子膜などに炭素等の導電性粒子又は繊維
を分散させたものなどである。
■Iron oxide (Fe203.Fe304), tin oxide (5no
2) Those using sintered bodies of metal oxides or metal oxide films, ■ Those using hydrophilic polymer membranes or polymer electrolytes, and even fiber polymers, ■ Solithium chloride (Li)
ck), etc., and (2) those in which conductive particles or fibers such as carbon are dispersed in a hygroscopic resin or a hygroscopic polymer membrane.

以上のセンサは検出湿度領域、検出感度及び精度、応答
速度、信頼性、耐環境性等大々に長所・短所を有するが
、いずれの場合も電子レンジ内の動作時における雰囲気
の様に雰囲気温度が急激に変化する様な環境下で微小な
水蒸気の変化を検出するには温度の関数である相対湿度
の変化が以下の様に考えられ、水蒸気量の検出には不利
である。例えば、検出雰囲気内の水蒸気量が一定である
と仮定し、この雰囲気の温度が上昇すると考えた場合、
相対湿度は水蒸気量が一定であっても飽和水蒸気圧の関
係で低下し、さらに温度の上昇が急激であれば微念の水
蒸気の増加は相対湿度としては温度開化に相殺されるか
やはり低下してしまうことが予想され検出に大きな問題
を有している。従って、前述した様な環境の湿度計測に
は相対湿度検知よりも直接水蒸気量を検出可能な絶対湿
度検知が有利である。
The above sensors have many advantages and disadvantages, such as detection humidity range, detection sensitivity and accuracy, response speed, reliability, and environmental resistance. In order to detect minute changes in water vapor in an environment where humidity changes rapidly, changes in relative humidity, which is a function of temperature, can be considered as follows, which is disadvantageous for detecting the amount of water vapor. For example, if we assume that the amount of water vapor in the detection atmosphere is constant and the temperature of this atmosphere increases,
Even if the amount of water vapor is constant, relative humidity decreases due to the saturated water vapor pressure, and if the temperature rises rapidly, the slight increase in water vapor will be offset by the temperature increase or the relative humidity will decrease. This poses a major problem in detection. Therefore, absolute humidity detection, which can directly detect the amount of water vapor, is more advantageous than relative humidity detection in measuring the humidity of the environment as described above.

水蒸気量の検知手段としては、従来より水蒸気によるマ
イクロ波の減衰や赤外線の吸収等を応用した計測装置が
用いられている。これらは物理的手法により直接水蒸気
を検出可能であることから前述の急激な温度変化を伴う
様な環境においても水蒸気の少量変化検出に有利となる
反面、装置の構成が大がかりでありコストもかなり高い
ものとなる。又、湿り空気と乾き空気の熱伝導率差を利
用し、特性のそろった2個のサーミスタを用いる熱伝導
式の絶対湿度センサがあり、小型で耐環境性にも優れて
いるが、従来のものは検圧感度の高感度化、高速応答性
という点で問題があった。
As means for detecting the amount of water vapor, measuring devices that utilize the attenuation of microwaves by water vapor, the absorption of infrared rays, etc. have been conventionally used. Since these devices can directly detect water vapor using physical methods, they are advantageous in detecting small changes in water vapor even in environments with rapid temperature changes as mentioned above, but on the other hand, the device configuration is large-scale and the cost is quite high. Become something. There is also a thermal conduction type absolute humidity sensor that uses two thermistors with the same characteristics, making use of the difference in thermal conductivity between humid air and dry air.It is small and has excellent environmental resistance, but compared to conventional However, there were problems in terms of high pressure detection sensitivity and high-speed response.

上記問題点を解決するため、本発明者らは以下に述べる
様な感湿素子を開発した。即ち絶対湿度の検出手法とし
て、空気の熱伝導率が空気中に含有される水蒸気の量に
よって変化することを利用し、一定温度に加熱された素
子を検出雰囲気に露出し、水蒸気1変化に伴う熱伝導率
変化により生じる温度変化をもって水蒸気量を検出する
。さらに素子構造としてマイクロマシニング技術を駆使
し、マイクロブリッジを形成することにより素子の熱容
量を極力低減した構造とし、またセンサ材料にはGe等
のサーミスタ定数の大きい材料の薄膜を用いた。これら
の手法により、作製した感湿素子は従来に比べて検出感
度、応答特性等に改善は見られたが、導電層の材料とし
て一般的なAu1Ae等の熱伝導率の高い金属材料を用
いたため、ブリッジ上のセンサ薄膜の熱絶縁が十分でな
く、従って熱容量を極力低減したマイクロブリッジの長
所が生かされず、良好な検出感度や応答特性が得られな
かった。
In order to solve the above problems, the present inventors developed a moisture sensitive element as described below. In other words, the absolute humidity detection method uses the fact that the thermal conductivity of air changes depending on the amount of water vapor contained in the air, and exposes an element heated to a constant temperature to the detection atmosphere, and detects the temperature as a result of a change in water vapor. The amount of water vapor is detected based on the temperature change caused by the change in thermal conductivity. Furthermore, micromachining technology was used for the element structure, and a micro bridge was formed to reduce the heat capacity of the element as much as possible, and a thin film of a material with a large thermistor constant, such as Ge, was used as the sensor material. Although the moisture-sensitive elements fabricated using these methods showed improvements in detection sensitivity, response characteristics, etc. compared to conventional methods, it was not possible to improve the detection sensitivity and response characteristics of the moisture-sensitive elements due to the use of common metal materials with high thermal conductivity such as Au1Ae as the material for the conductive layer. However, the thermal insulation of the sensor thin film on the bridge was insufficient, and therefore the advantage of the microbridge, which had a reduced heat capacity as much as possible, was not utilized, and good detection sensitivity and response characteristics could not be obtained.

以上のように従来の感湿素子には問題点があるため、こ
れらの解消法、特に架橋構造の感湿素子におけるブリッ
ジ上の導電層材料の開発が切望されている。
As mentioned above, there are problems with conventional moisture sensing elements, and there is a strong desire for a method to solve these problems, particularly the development of a conductive layer material on a bridge in a crosslinked moisture sensing element.

〈発明の目的〉 本発明は、以上に述べたような従来の感湿素子が有して
いた欠点を解消するためになされたちのモあり、湿度計
測において絶対湿度を検出し、特に検出感度の従来にな
い高感度化さらに高速応答化を図るものである。
<Purpose of the Invention> The present invention has been made in order to eliminate the drawbacks of the conventional moisture sensing elements as described above, and it detects absolute humidity in humidity measurement, and in particular improves the detection sensitivity. The aim is to achieve unprecedented high sensitivity and high-speed response.

〈発明の概要〉 本発明は、基板上にブリッジあるいはカンチレバーもし
くはダイヤフラム形状に形成した絶縁層に導電層を積層
形成した構造の検知素子において、導電層の材料として
、熱伝導率が100W/m・k以下のチタン等の金属材
料を用いることを特徴とする。
<Summary of the Invention> The present invention provides a sensing element having a structure in which a conductive layer is laminated on an insulating layer formed in the shape of a bridge, a cantilever, or a diaphragm on a substrate. It is characterized by using a metal material such as titanium having a particle diameter of k or less.

代表的な絶縁層であるSiO3の熱伝導率は1.4W/
mekであり、一方絶縁層上に形成する導電層の金属材
料の熱伝導率は5i02に比べて大きく、一般的な導電
材料であるA g 、Cu + A u v A 6は
それぞれ428,403,319,236W/rn@に
である。従って導電材料として熱伝導率が20W/m@
にと金属材料の中では最も低い部類のチタン等を用いる
と、絶縁層を架橋構造等に形成することにより、ブリッ
ジ上のセンサ材料が十分熱絶縁され熱容量を極力低減し
た構造の長所をよりいっそう生かすことができる。
The thermal conductivity of SiO3, a typical insulating layer, is 1.4 W/
mek, and on the other hand, the thermal conductivity of the metal material of the conductive layer formed on the insulating layer is higher than that of 5i02, and the general conductive materials A g and Cu + A uv A 6 are 428, 403, and 403, respectively. It is 319,236W/rn@. Therefore, as a conductive material, the thermal conductivity is 20W/m@
By using titanium, which is the lowest class of metal materials, by forming the insulating layer into a cross-linked structure, the sensor material on the bridge can be sufficiently thermally insulated, further enhancing the advantage of the structure that reduces heat capacity as much as possible. You can make use of it.

また、一般的に金属材料の電気伝導度と熱伝導率は比例
するため、熱伝導率の低いチタン等は、同時に電気伝導
度も低くなるため、AAN等の配線に比べ、配線抵抗が
大きくなるが、センサ材料であるGe薄膜等はさらに高
抵抗であるため、チタンの配線抵抗は無視できる。
In addition, since the electrical conductivity and thermal conductivity of metal materials are generally proportional, materials such as titanium, which have low thermal conductivity, also have low electrical conductivity, resulting in higher wiring resistance than wiring such as AAN. However, since the sensor material, such as a Ge thin film, has even higher resistance, the wiring resistance of titanium can be ignored.

さらにチタンは高融点金属であるため安定で、またSi
O等の絶縁層との接着性もよく、信頼性の高い素子構造
が構築できる。
Furthermore, titanium is stable because it is a high melting point metal, and Si
It also has good adhesion with insulating layers such as O, and a highly reliable device structure can be constructed.

従って、直接水蒸気を検出し、しかもマイクロブリッジ
構造による素子熱容量の低減と、低い熱伝導率を有する
導電層金属材料の構築、さらに大きなサーミスタ定数を
有する薄膜センサ材料の構築により従来にない優れた検
出感度並びに精度を有し且つ素子の良好なる熱応答性に
よる水蒸気検出の高速応答性が得られる。また、熱伝導
率の水蒸気量依存性を利用した物理的手法による検出で
あるため、水分の吸脱着に伴う電気特性の変化を利用す
る化学的手法による検出に比較してセンサ材料等の汚染
に対しても安定であり、耐環境性にも優れたものとなり
、さらにはマイクロブリッジ素子の作製あるいはセンサ
薄膜の作製が通常の半導体プロセスまたはその応用プロ
セスによるバッチ処理可能であるため安価な素子とする
ことができる。
Therefore, water vapor can be directly detected, and the micro-bridge structure reduces the element heat capacity, the construction of a conductive layer metal material with low thermal conductivity, and the construction of a thin film sensor material with a large thermistor constant provide unprecedented superior detection. High-speed response of water vapor detection can be obtained due to sensitivity and accuracy and good thermal response of the element. In addition, since detection is performed using a physical method that utilizes the dependence of thermal conductivity on the amount of water vapor, it is less likely to contaminate the sensor material, etc., than detection using a chemical method that uses changes in electrical characteristics due to adsorption and desorption of moisture. The device is stable even when exposed to sunlight, has excellent environmental resistance, and is inexpensive because the fabrication of the microbridge device or sensor thin film can be carried out in batches using a normal semiconductor process or its applied process. be able to.

以上述べた様に、本発明は、上記幾多の利点を有し、特
に、検出感度の高感度化、高速応答性に優れた感湿素子
を提供することを目的とするものである。
As described above, an object of the present invention is to provide a moisture-sensitive element which has the above-mentioned many advantages and is particularly excellent in high detection sensitivity and high-speed response.

〈実施例〉 第1図及び第2図は本発明の1実施例を示す感湿素子の
構造模式図及び断面図である。Si基板l上にブリッジ
形状の薄膜絶縁層2を形成した後、基板1であるSiの
結晶軸異方性エツチングを行なうことにより絶縁層ブリ
ッジ部下のエツチングにて基板l−絶縁層ブリッジ部(
以下マイクロブリッジと称す。°)3間に中空構造を形
成して熱絶縁すなわち低熱容量化に優れた素子構造とし
、さらにマイクロブリッジ3上に薄膜センサ材料4を固
着している。この素子の作製プロセスについて詳細に述
べると、まず結晶軸の方位により化学エツチングの速度
が異なるSi基板1上に、マイクロブリッジ3となり且
つエツチング時のマスクとなる薄膜絶縁層2を材料に応
じて熱酸化法、真空蒸着法、スパッタ法、CVD法等に
より積層形成し、ホトリソグラフィー技術によりブリッ
ジ形状に微細加工を行なう。又、絶縁層材料としては5
i02 、A1203 、ZrO2等低熱容量にて基板
1と比較的熱膨張率の近いものが良く、形状としてもカ
ンチレバーやダイヤフラム構造も有用である。
<Example> FIGS. 1 and 2 are a schematic structural diagram and a cross-sectional view of a moisture-sensitive element showing an example of the present invention. After forming a bridge-shaped thin film insulating layer 2 on a Si substrate 1, etching the Si substrate 1 with crystal axis anisotropy etches the area below the insulating layer bridge to form a structure between the substrate 1 and the insulating layer bridge portion (
Hereinafter, it will be referred to as a microbridge. °) A hollow structure is formed between the microbridges 3 to provide an element structure excellent in thermal insulation, that is, low heat capacity, and furthermore, a thin film sensor material 4 is fixed on the microbridge 3. To describe the manufacturing process of this device in detail, first, a thin film insulating layer 2, which will become a microbridge 3 and a mask during etching, is heated on a Si substrate 1 whose chemical etching speed differs depending on the orientation of the crystal axis, depending on the material. Lamination is formed by an oxidation method, vacuum evaporation method, sputtering method, CVD method, etc., and microfabrication into a bridge shape is performed by photolithography technology. In addition, as an insulating layer material, 5
It is preferable to use materials such as i02, A1203, and ZrO2 that have a low heat capacity and a coefficient of thermal expansion relatively similar to that of the substrate 1, and cantilever or diaphragm structures are also useful.

次にマイクロブリッジ3上にEB(電子ビーム)蒸着法
、真空蒸着法、スパッタ法等にて、チタン等の低熱伝導
率の金属材料な櫛歯状等の電極5として設け、さらにそ
の電極5上にセンサ薄膜を真空蒸着法、スパッタ法、C
VD法等にて作製する。
Next, a comb-shaped electrode 5 made of a metal material with low thermal conductivity such as titanium is provided on the micro bridge 3 by EB (electron beam) evaporation, vacuum evaporation, sputtering, etc., and then on the electrode 5. The sensor thin film is deposited using vacuum evaporation method, sputtering method, C
Manufactured by VD method etc.

尚、薄膜センサ材料としてはサーミスタ定数の大きい材
料としてGe、SiC,TaN等を用いることができる
。以上の工程の後、基板1のSiを絶縁層側から所定の
時間E、P、W (エチレンジアミン−ピロカテコール
−水)等の溶液を用いて化学エツチングすなわち、結晶
軸異方性エツチングを行うことにより、サーミスタ定数
の大きい薄膜センサ材料を積層し、低熱伝導率の電極に
より十分熱絶縁され熱容量の小さなマイクロブリッジ構
造の微小チップ感湿素子が得られる。
Note that Ge, SiC, TaN, etc. can be used as the thin film sensor material as a material having a large thermistor constant. After the above steps, the Si of the substrate 1 is chemically etched from the insulating layer side for a predetermined time using a solution such as E, P, W (ethylenediamine-pyrocatechol-water), that is, crystal axis anisotropic etching. By stacking thin film sensor materials with a large thermistor constant, a microchip moisture sensing element with a microbridge structure, which is sufficiently thermally insulated by electrodes with low thermal conductivity and has a small heat capacity, can be obtained.

従って、マイクロブリッジ構造による素子熱容量の低減
、低い熱伝導率の導電層材料の構築さらに大きなサーミ
スタ定数を有する薄膜センサ材料の構築により、従来よ
り優れた検出感度と応答性が得られる。
Therefore, by reducing the element heat capacity through the microbridge structure, constructing a conductive layer material with low thermal conductivity, and constructing a thin film sensor material with a large thermistor constant, detection sensitivity and responsiveness superior to the conventional ones can be obtained.

この様に、上記実施例の感湿素子は絶対湿度センサへの
応用に適し、熱伝導式のため直接水蒸気量を検知でき従
来にない高い検出感度と高速応答性を有するものであり
、又、物理的手法によって検出するため耐環境性にも優
れており実用上極めて有益である。
As described above, the humidity sensing element of the above embodiment is suitable for application to an absolute humidity sensor, and because it is of a thermal conduction type, it can directly detect the amount of water vapor, and has unprecedented high detection sensitivity and high-speed response. Since it is detected using a physical method, it has excellent environmental resistance and is extremely useful in practice.

〈発明の効果〉 本発明に係る感湿素子は以下に示す実用上極めて有益な
特性を有する。
<Effects of the Invention> The moisture-sensitive element according to the present invention has the following practically extremely useful characteristics.

即ち、マイクロブリッジ、カンナレバーあるいはダイヤ
フラム構造の素子構成により素子の熱容量を極めて小さ
なものとし、且つ配線材料としてチタン等の熱伝導率の
低い材料を用い、さらに薄膜センサ材料としてGe 、
SiC,TaN等のサーミスタ定数の大きい材料を用い
ていることで従来にない高感度特性と高速応答性を有す
る。
That is, the heat capacity of the element is made extremely small by the element configuration of a micro bridge, cannalever, or diaphragm structure, and a material with low thermal conductivity such as titanium is used as the wiring material, and furthermore, Ge, Ge, etc. are used as the thin film sensor material.
By using materials with large thermistor constants such as SiC and TaN, it has unprecedented high sensitivity characteristics and high-speed response.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の一実施例を示す感湿素子の
構造模式図及び断面図である。 1・・・基板、2・・・絶縁層、3・・・マイクロブリ
ッジ、4・・・センサ薄膜、5・・・電極。 代理人 弁理士 杉 山 毅 至(他1名)第1図 第2図
1 and 2 are a schematic structural diagram and a sectional view of a moisture-sensitive element showing an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Substrate, 2... Insulating layer, 3... Micro bridge, 4... Sensor thin film, 5... Electrode. Agent Patent attorney Takeshi Sugiyama (and 1 other person) Figure 1 Figure 2

Claims (4)

【特許請求の範囲】[Claims] 1.空隙部を設けた基板と、該基板上に層設され、前記
空隙部でブリッジ,カンチレバーもしくはダイヤフラム
形状となる絶縁層と、該絶縁層上に互いに一定間隙をも
って積層形成された1対の導電層と、該導電層の双方に
接触するセンサ薄膜層とを有し、検出雰囲気の熱伝導率
の変化に対応するセンサ薄膜の温度変化を抵抗値変化と
して検出する検知素子において、前記導電層は、熱伝導
率が100W/m・k以下の金属材料であることを特徴
とする検知素子。
1. A substrate provided with a void, an insulating layer layered on the substrate and forming a bridge, cantilever, or diaphragm shape in the void, and a pair of conductive layers laminated on the insulating layer with a constant gap between each other. and a sensor thin film layer in contact with both of the conductive layer, and detects a temperature change of the sensor thin film corresponding to a change in thermal conductivity of the detection atmosphere as a change in resistance value, the conductive layer comprising: A sensing element characterized in that it is made of a metal material with a thermal conductivity of 100 W/m·k or less.
2.導電層の材料がチタンである特許請求の範囲第1項
記載の検知素子。
2. The sensing element according to claim 1, wherein the material of the conductive layer is titanium.
3.検出雰囲気の熱伝導率の変化が、雰囲気中の水蒸気
量の変化によって生じる特許請求の範囲第1項記載の検
知素子。
3. 2. The sensing element according to claim 1, wherein the change in thermal conductivity of the sensing atmosphere is caused by a change in the amount of water vapor in the atmosphere.
4.センサ薄膜層の材料が、Ge,SiCまたはTaN
から成る材料あるいはこれらを主成分とする材料の薄膜
である特許請求の範囲第1項記載の検知素子。
4. The material of the sensor thin film layer is Ge, SiC or TaN.
The sensing element according to claim 1, which is a thin film of a material consisting of or having these as main components.
JP13060787A 1986-07-29 1987-05-27 Detecting element Pending JPS63293459A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP13060787A JPS63293459A (en) 1987-05-27 1987-05-27 Detecting element
US07/078,741 US4928513A (en) 1986-07-29 1987-07-28 Sensor
DE3724966A DE3724966C3 (en) 1986-07-29 1987-07-28 sensor
GB8717919A GB2194845B (en) 1986-07-29 1987-07-29 A sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13060787A JPS63293459A (en) 1987-05-27 1987-05-27 Detecting element

Publications (1)

Publication Number Publication Date
JPS63293459A true JPS63293459A (en) 1988-11-30

Family

ID=15038258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13060787A Pending JPS63293459A (en) 1986-07-29 1987-05-27 Detecting element

Country Status (1)

Country Link
JP (1) JPS63293459A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02179459A (en) * 1988-12-29 1990-07-12 Sharp Corp Structure of moisture sensitive element and humidity sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02179459A (en) * 1988-12-29 1990-07-12 Sharp Corp Structure of moisture sensitive element and humidity sensor

Similar Documents

Publication Publication Date Title
JP5425214B2 (en) Capacitive humidity sensor and manufacturing method thereof
Lee et al. Humidity sensors: a review
JP3704685B2 (en) Capacitance sensor
CN101532975B (en) Constant temperature measurement-type micro humidity sensor and producing method thereof
KR101367887B1 (en) Capacitance Type Humidity Sensor
Sberveglieri et al. Capacitive humidity sensor with controlled performances, based on porous Al2O3 thin film growm on SiO2-Si substrate
JPH06281610A (en) Humidity sensor, alcohol sensor or ketone sensor
JPS63293459A (en) Detecting element
JPS63289443A (en) Moisture sensing element
Wang et al. Low-cost parylene based micro humidity sensor for integrated human thermal comfort sensing
JP3047137B2 (en) Manufacturing method of humidity sensor
JPS589056A (en) Moisture sensitive resistance element
KR20040024134A (en) High-precise capacitive humidity sensor and methodo of manufacturing the same
JPS6358249A (en) Humidity detecting element
JPS61191953A (en) Gas detector
JPS63145954A (en) Moisture sensitive element
JPH02179459A (en) Structure of moisture sensitive element and humidity sensor
JPH0720080A (en) Humidity sensor
JPS5967445A (en) Humidity sensor
KR100363687B1 (en) Sensor of fabrication of onebodied temperature/humidity sensor
KR101830304B1 (en) Fabrication method of integrated sensor and integrated sensor using the same
JPS6140124B2 (en)
JP2002328110A (en) Electrostatic capacity sensor
JP2719830B2 (en) Moisture sensitive element
Lee et al. Techniques in MEMS devices for micro humidity sensors and their applications