JPS6140124B2 - - Google Patents

Info

Publication number
JPS6140124B2
JPS6140124B2 JP52081845A JP8184577A JPS6140124B2 JP S6140124 B2 JPS6140124 B2 JP S6140124B2 JP 52081845 A JP52081845 A JP 52081845A JP 8184577 A JP8184577 A JP 8184577A JP S6140124 B2 JPS6140124 B2 JP S6140124B2
Authority
JP
Japan
Prior art keywords
oxide film
humidity
dielectric
capacitance
anodic oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52081845A
Other languages
Japanese (ja)
Other versions
JPS5417075A (en
Inventor
Akihiko Yoshida
Atsushi Nishino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8184577A priority Critical patent/JPS5417075A/en
Priority to AU36668/78A priority patent/AU501488B1/en
Priority to GB7826328A priority patent/GB2000292B/en
Priority to US05/912,714 priority patent/US4217623A/en
Priority to DE2824609A priority patent/DE2824609C2/en
Priority to CA304,798A priority patent/CA1116237A/en
Publication of JPS5417075A publication Critical patent/JPS5417075A/en
Publication of JPS6140124B2 publication Critical patent/JPS6140124B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】 本発明は小型で高精度、高応答性の湿度検出素
子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a compact, highly accurate, and highly responsive humidity sensing element.

自然界の基礎的な諸変化量、たとえば温度、気
圧、湿度のうちで、未だ精度の高い測定が困難な
ものは湿度である。食品工業、農業、その他多く
の分野で湿度の正確で容易な測定およびその調整
が必要となつてきている。
Among the various basic variables in nature, such as temperature, atmospheric pressure, and humidity, humidity is still difficult to measure with high precision. Accurate and easy measurement and adjustment of humidity is becoming necessary in the food industry, agriculture, and many other fields.

現在、電気信号として湿度を検出する方式とし
ては塩化リチウムのような潮解性塩のイオン伝導
の変化を利用するもの、マグネタイト、シリコン
半導体の水分吸脱着による抵抗変化を利用したも
のが広く用いられている。
Currently, methods that use the change in ionic conduction of deliquescent salts such as lithium chloride to detect humidity as an electrical signal are widely used, and methods that use resistance changes due to moisture adsorption and desorption of magnetite and silicon semiconductors are widely used. There is.

しかしながら、これらの方式のものは、いずれ
もイオン伝導を利用したものであり、分極による
経時変化が大きく、湿度以外の吸着ガスによつて
も指示値が変つてしまう。また、応答性、ヒステ
リシス、測定湿度範囲が非常に限られたものとな
つていた。
However, all of these methods utilize ionic conduction, and change over time due to polarization is large, and the indicated value also changes due to adsorbed gases other than humidity. Furthermore, the response, hysteresis, and measurement humidity range were extremely limited.

他に毛髪、ナイロン、スチレンのような合成繊
維の水分吸脱着に伴なう変形を応力素子などと組
合せたものもあるが、応答速度、ヒステリシス、
精度に難点がある。
There are other methods that combine the deformation of synthetic fibers such as hair, nylon, and styrene with stress elements as they absorb and desorb moisture, but they also reduce response speed, hysteresis,
There is a problem with accuracy.

カーボン、金属粉末などの導電性微粒子を含ん
だ合成樹脂の膨潤性を利用した素子は、過度の点
で問題があり、湿度劣化も大きい。
Elements that utilize the swelling properties of synthetic resins containing conductive fine particles such as carbon and metal powder have problems in that they are excessively swellable and suffer from significant humidity deterioration.

さらに、酸化アルミニウムの細孔での水分吸脱
着を容量変化として検出する方式のものもある
が、経時変化が大きい欠点がある。
Furthermore, there is a method that detects water adsorption and desorption in the pores of aluminum oxide as a change in capacitance, but this method has the drawback of large changes over time.

また、α線吸収透過を利用した湿度計は非常に
精度が高いが、装置が大がかりであり、また非常
に高価であり一般用としては用いることができな
いものであつた。
Furthermore, although hygrometers that utilize α-ray absorption and transmission have very high accuracy, they require large-scale equipment and are very expensive, making them impossible to use for general purposes.

このように現在、開発されあるいは市販されて
いる湿度検出素子および装置は、精度、応答性、
環境ガスの影響、測定範囲、感度耐熱性、ヒステ
リシス、経時変化、取扱いの容易さ、価格の点な
どいずれも一長一短があり、全ての点で満足でき
るものが存在しなかつた。
In this way, currently developed or commercially available humidity sensing elements and devices have high accuracy, responsiveness,
There are advantages and disadvantages in terms of the influence of environmental gases, measurement range, sensitivity and heat resistance, hysteresis, changes over time, ease of handling, price, etc., and there was no one that was satisfactory in all respects.

本発明は以上のような従来の欠点を除去するも
のであり、小型で取扱いが容易で特性的に安定し
た安価な湿度検出素子を提供しようとするもので
ある。
The present invention eliminates the above-mentioned conventional drawbacks, and aims to provide an inexpensive humidity sensing element that is small, easy to handle, and has stable characteristics.

以下本発明の実施例を添付の図面第1図〜第1
0図により説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
This will be explained using Figure 0.

まず第1図より本発明の湿度検出素子の基本構
成について示す。
First, the basic structure of the humidity detecting element of the present invention is shown in FIG.

1はタンタル、アルミニウム、チタニウムのよ
うな弁作用金属の金属基体であり、この金属基体
1の表面には誘電体性陽極酸化皮膜2が形成さ
れ、この誘電体性陽極酸化皮膜2には二酸化マン
ガンのような半導体性金属酸化物膜3が形成され
ている。ただし、誘電体性陽極酸化皮膜2と半導
体性金属酸化物膜3とは、接触部分5と非接触空
間部4とで隣接している。そしてこの半導体性金
属酸化物膜3の上には金属基体1との対向電極6
が設けられる。
1 is a metal base made of a valve metal such as tantalum, aluminum, or titanium, and a dielectric anodic oxide film 2 is formed on the surface of this metal base 1, and this dielectric anodic oxide film 2 is made of manganese dioxide. A semiconductor metal oxide film 3 is formed as shown in FIG. However, the dielectric anodic oxide film 2 and the semiconductor metal oxide film 3 are adjacent to each other at the contact portion 5 and the non-contact space portion 4 . On this semiconducting metal oxide film 3, an electrode 6 facing the metal substrate 1 is provided.
is provided.

本発明の特徴は、上記誘電体性陽極酸化被皮膜
2と半導体性金属酸化物膜3との最適接触率範囲
に関するものであり、接触部分5が誘電体性陽極
酸化皮膜2の全面積の20〜98%の範囲であること
を特徴とする湿度検出素子に関するものである。
The feature of the present invention is related to the optimum contact ratio range between the dielectric anodic oxide film 2 and the semiconducting metal oxide film 3, and the contact portion 5 is 20% of the total area of the dielectric anodic oxide film 2. The present invention relates to a humidity detection element characterized in that the humidity is within the range of ~98%.

以下に本発明湿度検出素子の湿度検出の機構を
述べながら、湿度検出素子としての実用性を考慮
した場合、誘電体性陽極酸化皮膜2の接触皮覆率
が最適20〜98%であることを詳細に述べる。
The humidity detection mechanism of the humidity detection element of the present invention will be described below, and when practicality as a humidity detection element is taken into account, it will be shown that the contact coverage of the dielectric anodic oxide film 2 is optimally 20 to 98%. Explain in detail.

第2図は第1図の誘電体性陽極酸化皮膜2と、
半導体性金属酸化物膜3との接触部分を拡大した
ものである。
FIG. 2 shows the dielectric anodic oxide film 2 of FIG. 1,
This is an enlarged view of the contact portion with the semiconductor metal oxide film 3.

第2図に示すように、誘電体性陽極酸化皮膜2
と半導体性金属酸化物膜3はbで示す範囲で接触
部分5となつておりaで示す範囲で非接触空間4
となつている。
As shown in FIG. 2, dielectric anodic oxide film 2
The semiconductor metal oxide film 3 forms a contact area 5 in the range indicated by b, and a non-contact space 4 in the range indicated by a.
It is becoming.

いま相対湿度0%の雰囲気中に本発明の湿度検
出素子を配置した場合、半導体性金属酸化物膜3
による水分吸収が0であるので、第2図の接触部
分5のみの誘電体性陽極酸化皮膜2による静電容
量が検出できる。このとき半導体性金属酸化物膜
3は半導電性を有するため、容量取出用電極とし
ての働きをする。
If the humidity sensing element of the present invention is placed in an atmosphere with a relative humidity of 0%, the semiconductor metal oxide film 3
Since moisture absorption by the dielectric film 2 is zero, the capacitance due to the dielectric anodic oxide film 2 only at the contact portion 5 in FIG. 2 can be detected. At this time, since the semiconductor metal oxide film 3 has semiconductivity, it functions as an electrode for taking out the capacitance.

次に本発明の湿度検出素子を湿気中に配置する
と、半導体性金属酸化物膜3が吸湿性を有するた
め、吸湿された水分が誘電体性陽極酸化皮膜2の
表面にまで達して誘電体性陽極酸化皮膜2と半導
体性金属酸化物膜3との非接触空間4の表面に到
る。この半導体性金属酸化物膜3の吸湿水分量
は、空気中の相対湿度に比例するので誘電体性陽
極酸化皮膜2における水分被覆率は相対湿度に比
例することになる。
Next, when the humidity detection element of the present invention is placed in humidity, since the semiconductor metal oxide film 3 has hygroscopicity, the absorbed moisture reaches the surface of the dielectric anodic oxide film 2, causing the dielectric property to deteriorate. The surface of the non-contact space 4 between the anodic oxide film 2 and the semiconducting metal oxide film 3 is reached. Since the amount of moisture absorbed by the semiconductor metal oxide film 3 is proportional to the relative humidity in the air, the moisture coverage in the dielectric anodic oxide film 2 is proportional to the relative humidity.

このようにして、誘電体性陽極酸化皮膜2まで
到達した水分は空気中の炭酸ガス、半導体性金属
酸化物膜3中のマンガンイオン、その他の不純物
を含んでおり、それ自体電解質としての機能を持
ち、したがつて誘電体性陽極酸化皮膜2の接触部
分5と非接触空間部4中の水分による被覆部とに
よる静電容量を取出すことができる。
In this way, the moisture that has reached the dielectric anodic oxide film 2 contains carbon dioxide gas in the air, manganese ions in the semiconductor metal oxide film 3, and other impurities, and itself functions as an electrolyte. Therefore, the capacitance due to the contact portion 5 of the dielectric anodic oxide film 2 and the portion covered by moisture in the non-contact space 4 can be taken out.

以下、さらに詳細に湿度−静電容量変換につい
て説明する。
Hereinafter, humidity-capacitance conversion will be explained in more detail.

金属基体1と対向電極6との両電極間に検出さ
れる静電容量Cは次のようになる。
The electrostatic capacitance C detected between the metal base 1 and the counter electrode 6 is as follows.

A:半導体性金属酸化物膜3が接触していない誘
電体性陽極酸化皮膜2の全面積 B:半導体性金属酸化物膜3が接触している誘電
体性陽極酸化皮膜2の全面積 ε:誘電体性陽極酸化皮膜2の誘電率 l:誘電体性陽極酸化皮膜2の厚さ α:誘電体性陽極酸化皮膜2の非接触空間部4部
の水分による被覆率 HR:相対湿度 とすると、誘電体性陽極酸化皮膜2の水分皮覆率
αが相対湿度HRに依存するので、 α∝HR また静電容量Cは C=ε/l(B+α・A) ∴C∝ε/l(B+HR・A) となり、金属基体1と対向電極6との間の静電容
量Cは相対湿度HRに対して一義的かつ直接的に
定まる。第3図は容量−相対湿度の関係を示した
ものであり、相対湿度0〜100%の間で直線性を
示している。
A: Total area of the dielectric anodic oxide film 2 that is not in contact with the semiconducting metal oxide film 3 B: Total area ε of the dielectric anodic oxide film 2 that is in contact with the semiconducting metal oxide film 3: Dielectric constant l of dielectric anodic oxide film 2: Thickness α of dielectric anodic oxide film 2: Coverage rate of moisture in the non-contact space 4 portion of dielectric anodic oxide film 2 HR: Relative humidity. Since the moisture coverage α of the dielectric anodic oxide film 2 depends on the relative humidity HR, α∝HR Also, the capacitance C is C=ε/l(B+α・A) ∴C∝ε/l(B+HR・A) The capacitance C between the metal base 1 and the counter electrode 6 is uniquely and directly determined by the relative humidity HR. FIG. 3 shows the relationship between capacity and relative humidity, and shows linearity between 0 and 100% relative humidity.

ところで上述した誘電体性陽極酸化皮膜2の半
導体性金属酸化膜層3の接触率すなわち、両者の
接触部5の誘電体性陽極酸化皮膜2の全面積に対
する割合、B/A+Bは湿度検出素子の精度、感
度、応答性等の特性と重要な相関性を有する。第
4図は相対湿度と静電容量変化との関係を誘電体
性陽極酸化皮膜2と半導体性金属酸化物層3との
接触比率B/A+B別に示したものである。すな
わちB/A+Bの小さい時は、水分の吸脱着によ
る容量変化が大きく、B/A+Bが大きくなるに
つれて湿度変化に対する容量変化が小さくなる。
また、B/A+Bが小さい方が相対湿度0%の時
の静電容量値が小さくなるので、湿度0%の時の
静電容量C0と、0%〜100%の容量変化との比
C100−C0/C0はB/A+Bが小さい方が大きく
なり、湿度検出素子としての精度も優れたものに
なる。(ただし、C100はR・H=100%の時の容量
値) 第5図はB/A+BとC100−C0/C0との関係
を示すものであるが、上述したようにB/A+B
が大きくなるに従つてC100−C0/C0が小さくな
る。すなわち湿度検出素子としての精度が悪くな
ることがわかる。
By the way, the above-mentioned contact ratio of the dielectric anodic oxide film 2 to the semiconductor metal oxide film layer 3, that is, the ratio of the contact portion 5 between the two to the total area of the dielectric anodic oxide film 2, B/A+B is the humidity detection element. It has an important correlation with characteristics such as accuracy, sensitivity, and responsiveness. FIG. 4 shows the relationship between relative humidity and capacitance change depending on the contact ratio B/A+B between the dielectric anodic oxide film 2 and the semiconductor metal oxide layer 3. That is, when B/A+B is small, the capacitance change due to moisture adsorption and desorption is large, and as B/A+B becomes large, the capacitance change with respect to humidity changes becomes small.
Also, the smaller B/A+B, the smaller the capacitance value at 0% relative humidity, so the ratio of capacitance C 0 at 0% humidity to the capacitance change from 0% to 100%
C 100 −C 0 /C 0 becomes larger as B/A+B is smaller, and the accuracy as a humidity detection element becomes better. (However, C 100 is the capacitance value when R・H=100%) Figure 5 shows the relationship between B/A+B and C 100 -C 0 /C 0 , but as mentioned above, B/ A+B
As C 100 −C 0 /C 0 becomes larger, C 100 −C 0 /C 0 becomes smaller. In other words, it can be seen that the accuracy as a humidity detection element deteriorates.

第6図は相対湿度30%から90%への急激な雰囲
気変化に対する容量変化の応答性を、B/A+B
別に示したものである。この場合もB/A+Bの
小さい方が変化率が大きいために静電容量変化を
電気信号として検出する時応答性が優れ、感度の
良い素子になる。
Figure 6 shows the response of capacitance change to a sudden change in atmosphere from 30% to 90% relative humidity, B/A+B.
It is shown separately. In this case as well, the smaller B/A+B is, the larger the rate of change is, so when detecting a change in capacitance as an electrical signal, the response is excellent and the element becomes sensitive.

第7図は脱湿、吸湿時の湿度検出素子のヒステ
リシスをB/A+B別に示したものであるが、
B/A+Bが小さすぎるヒステリシスが大きくな
る傾向であることがわかる。つまり、誘電体性陽
極酸化皮膜2の半導体性金属酸化物膜3との非接
触部4に存在する水分は、前にも述べたようにか
ならず両者の接触部5を通つて非接触誘電体性陽
極酸化皮膜上に到達し、拡がつて行く。その結
果、両者の接触部5があまり少な過ぎると、すな
わち、Bが小さくなりすぎると誘電体性陽極酸化
皮膜2上への水分の吸脱着の中継点が少なくなる
ことになり、雰囲気湿度の上下変化に対するヒス
テリシスが大きくなる。
Figure 7 shows the hysteresis of the humidity detection element during dehumidification and moisture absorption by B/A+B.
It can be seen that when B/A+B is too small, the hysteresis tends to increase. In other words, the moisture present in the non-contact area 4 of the dielectric anodic oxide film 2 with the semiconducting metal oxide film 3 must pass through the contact area 5 between the two to form the non-contact dielectric material. It reaches the anodic oxide film and spreads. As a result, if the number of contact parts 5 between the two is too small, that is, if B becomes too small, there will be fewer relay points for adsorption and desorption of moisture onto the dielectric anodic oxide film 2, and the upper and lower atmospheric humidity will increase. Greater hysteresis to changes.

第8図はR.H.50%の時の吸湿、脱湿時の容量
値の差と接触率B/A+Bとの関係である。
Figure 8 shows the relationship between the difference in capacitance values during moisture absorption and dehumidification and the contact ratio B/A+B when the RH is 50%.

以上のような誘電体性陽極酸化膜2の半導体性
金属酸化物膜3による接触率を湿度検出素子とし
ての実用領域について考慮すると、 〔〕 B/A+B>0.98の時、 両者の接触率が大きすぎると相対湿度変化に
対する静電容量変化が小さくなり、精度C100
C0/C0が小さくなる。第5図からわかるよう
にB/A+Bが0.98より大きくなるとC100
C0/C0が極端に小さくなり、湿度検出素子と
しての実用性が無くなる。
Considering the contact ratio between the dielectric anodic oxide film 2 and the semiconducting metal oxide film 3 as described above in terms of practical use as a humidity detection element, [] When B/A+B>0.98, the contact ratio between the two is large. If it is too high, the capacitance change due to relative humidity change will be small, and the accuracy C 100
C 0 /C 0 becomes smaller. As can be seen from Figure 5, when B/A+B is greater than 0.98, C 100
C 0 /C 0 becomes extremely small, making it impractical as a humidity detection element.

〔〕 B/A+B<0.2の時、 B/A+Bが小さい方が精度C100−C0/C0
は優れたものが得られるが、上述したように、
相対湿度変化に対する静電容量変化のヒステリ
シスが大きくなり、第8図からわかるように
B/A+Bが0.2より小さくなると、湿度検出
素子の実用性を考慮した場合不適当になる。
[] When B/A+B<0.2, the smaller B/A+B is, the higher the accuracy C 100 −C 0 /C 0
can yield excellent results, but as mentioned above,
If the hysteresis of the capacitance change with respect to the relative humidity change becomes large and B/A+B becomes smaller than 0.2 as shown in FIG. 8, the humidity detection element becomes unsuitable in consideration of its practicality.

このように、湿度検出素子としての精度、応答
性、ヒステリシスを考慮した場合、誘電体性陽極
酸化皮膜2と半導体性金属酸化物膜3との接触率
B/A+Bは、 0.2<B/A+B<0.98 が適当である。
In this way, when considering the accuracy, responsiveness, and hysteresis as a humidity detection element, the contact ratio B/A+B between the dielectric anodic oxide film 2 and the semiconductor metal oxide film 3 is 0.2<B/A+B< 0.98 is appropriate.

このように本発明の湿度検出素子によれば、相
対湿度変化を容量値に変換して知ることが可能で
ある。
As described above, according to the humidity detection element of the present invention, it is possible to convert changes in relative humidity into capacitance values.

次に本発明の湿度検出素子の応答性、精度、ヒ
ステリシス、経時変化等について述べる。
Next, the response, accuracy, hysteresis, change over time, etc. of the humidity detection element of the present invention will be described.

(A) 応答性 上述したように半導体性金属酸化物膜3の吸
湿作用によつて応答性が決定されるが、この半
導体性金属酸化物膜3の膜厚は数十ミクロン〜
数百ミクロンであり、前記の接触率の時には湿
度変化に対する静電容量変化は数秒以内であ
り、まだ数分以内に飽和値に達する。第9図は
従来方式による各種湿度計の応答速度である
が、本発明の応答速度は非常に大きい。
(A) Responsiveness As mentioned above, the responsiveness is determined by the moisture absorption effect of the semiconducting metal oxide film 3, and the thickness of the semiconducting metal oxide film 3 is several tens of microns to
When the contact rate is several hundred microns, the capacitance change due to humidity change is within a few seconds, and the saturation value is still reached within a few minutes. FIG. 9 shows the response speed of various conventional hygrometers, but the response speed of the present invention is extremely high.

(B) 精 度 誘電体陽極酸化皮膜2上のミクロな水分の吸
脱着を容量信号として取出すために、従来の抵
抗変化式、機械的変位式などの湿度検出素子に
比して高精度である。
(B) Accuracy In order to extract microscopic adsorption and desorption of moisture on the dielectric anodic oxide film 2 as a capacitance signal, it has higher accuracy than conventional humidity detection elements such as resistance change type and mechanical displacement type. .

(C) 感 度 前述のように本発明の接触率の範囲内では、
容量変化量が非常に大きく感度が優れている。
(C) Sensitivity As mentioned above, within the range of the contact rate of the present invention,
The amount of capacitance change is very large and the sensitivity is excellent.

(D) ヒステリシス 応答性が上述のように優れているため、ヒス
テリシスはほとんど無く、静電容量−相対湿度
の直線関係は常に維持されている。
(D) Hysteresis Since the response is excellent as described above, there is almost no hysteresis, and the linear relationship between capacitance and relative humidity is always maintained.

(E) 経時変化 酸化タンタル皮膜などの誘電体性陽極酸化皮
膜2は熱的、電気的、化学的に非常に安定な皮
膜であり、その特性経時変化もほとんど無い。
また二酸化マンガンなどの半導体性金属酸化物
膜3についても同様のことが云える。両者の接
触率についても、経時変化がほとんどないこと
が確認され、これらを介しての水分の吸脱着反
応も非常に安定したものである。
(E) Change over time The dielectric anodic oxide film 2 such as tantalum oxide film is a very stable film thermally, electrically, and chemically, and its properties hardly change over time.
The same can be said of the semiconductor metal oxide film 3 such as manganese dioxide. It was confirmed that there was almost no change over time in the contact ratio between the two, and the moisture adsorption/desorption reaction through these was also very stable.

(F) 耐熱性 従来の湿度検出素子が潮解性塩、有機フイル
ム、毛髪などにより構成されていたため、高温
での使用には難点があり、高々50℃までの使用
範囲であつたが、本発明による湿度検出素子は
その構成材料から考えて150〜200℃程度の雰囲
気での使用が可能である。
(F) Heat Resistance Conventional humidity detection elements were composed of deliquescent salts, organic films, hair, etc., making them difficult to use at high temperatures, and could only be used at temperatures up to 50°C. The humidity detection element can be used in an atmosphere of about 150 to 200 degrees Celsius, considering its constituent materials.

(G) 耐薬品性、耐ガス性 タンタルなどは耐食性の金属であり、この点
からも従来のものより優れている。
(G) Chemical resistance and gas resistance Tantalum and other metals are corrosion-resistant metals, and are superior to conventional metals in this respect as well.

(H) 価格およびコストパーフオーマンス 酸化タンタルε=28、酸化アルミε=10、酸
化チタンε=100、といずれも誘電率が大きい
ため、非常に小型の形状でも湿度変化を大きな
容量変化に感度よく変換でき、価格も著しく安
価となる。また取扱、保守についても従来の湿
度検出素子に比して格段に容易となる。
(H) Price and cost performance Tantalum oxide ε = 28, aluminum oxide ε = 10, and titanium oxide ε = 100, all of which have high dielectric constants, making them highly sensitive to humidity changes and large capacitance changes even in a very small size. It can be converted and the price is significantly lower. Furthermore, handling and maintenance are much easier than with conventional humidity detection elements.

さらに、従来の抵抗変化式等の湿度検出素子
は、一度吸湿した水分を脱湿する時、ヒーターに
よる加熱等の何らかの手段によつて脱湿を促進す
る必要があり、電気回路上、素子構成上非常に複
雑なものであつたが、本発明の素子では、前述の
ように、吸湿、脱湿ともに、半導体性金属酸化物
膜3の独自の作用によつて速かに行うことがで
き、特別な補助装置を必要としない。
Furthermore, in conventional humidity detection elements such as variable resistance type, when dehumidifying moisture that has been absorbed, it is necessary to accelerate the dehumidification by some means such as heating with a heater, which is difficult due to the electrical circuit and element configuration. However, in the device of the present invention, as mentioned above, both moisture absorption and dehumidification can be quickly performed by the unique action of the semiconducting metal oxide film 3. No additional auxiliary equipment required.

次に本発明の具体的な実施例について説明す
る。
Next, specific examples of the present invention will be described.

実施例 直径0.1〜1.0mm、長さ10mmのタンタルからなる
金属基体1の一部に酸化タンタル皮膜2を厚さ
100〜1000Å設け、その上に二酸化マンガン膜3
を厚さ数〜数百ミクロン形成する。ただし、この
時の二酸化マンガンと酸化タンタルの接触面積
は、その割合が酸化タンタルの全面積の20〜98%
になるようにする。さらに対向電極としてカーボ
ン層6を形成し、このカーボン層6の一部に電極
リード7を半田層8で接続する。第10図は本実
施例素子の断面図である。
Example: A tantalum oxide film 2 is applied to a part of a metal base 1 made of tantalum with a diameter of 0.1 to 1.0 mm and a length of 10 mm.
100 to 1000 Å and a manganese dioxide film 3 on top of it.
Form a thickness of several to several hundred microns. However, the contact area between manganese dioxide and tantalum oxide at this time is 20 to 98% of the total area of tantalum oxide.
so that it becomes Further, a carbon layer 6 is formed as a counter electrode, and an electrode lead 7 is connected to a part of this carbon layer 6 with a solder layer 8. FIG. 10 is a sectional view of the device of this example.

このようにして得られた湿度検出素子の相対湿
度対静電容量の関係は第4図に示したようにな
る。
The relationship between relative humidity and capacitance of the humidity detection element thus obtained is as shown in FIG.

本発明の弁作用金属基体としては、前に述べた
ように化学的、熱的、電気的安定性、および酸化
物の誘電率が大きいことから、タンタル、チタ
ン、アルミニウムが適当であり、その形状も、棒
状、板状、薄膜、焼結体、溶射層等が考えられ
る。また半導体性金属酸化物としては二酸化マン
ガン、酸化鉛、酸化ニツケル、酸化ルテニウムお
よびこれらの混合物が考えられる。
As the valve metal base of the present invention, tantalum, titanium, and aluminum are suitable because of their chemical, thermal, and electrical stability, and the high dielectric constant of oxides as described above, and their shapes Also, rod-shaped, plate-shaped, thin film, sintered body, sprayed layer, etc. can be considered. Further, as the semiconducting metal oxide, manganese dioxide, lead oxide, nickel oxide, ruthenium oxide, and mixtures thereof can be considered.

以上のように、誘電体性陽極酸化皮膜と半導体
性金属酸化物層との接触面積が誘電体性陽極酸化
皮膜層全面積の20〜98%である本発明の湿度検出
素子は、精度、感度、応答性、ヒステリシス、経
時変化、耐薬品性、取扱いの容易さ、測定範囲、
耐熱性等のすべての点において従来のものより優
れており、工業的価値の大なるものである。
As described above, the humidity sensing element of the present invention, in which the contact area between the dielectric anodic oxide film and the semiconducting metal oxide layer is 20 to 98% of the total area of the dielectric anodic oxide film, has excellent accuracy and sensitivity. , responsiveness, hysteresis, aging, chemical resistance, ease of handling, measurement range,
It is superior to conventional products in all respects such as heat resistance, and has great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の湿度検出素子の原理構成を示
す断面図、第2図は同動作原理を示すための要部
の拡大断面図、第3図は同湿度検出素子の相対湿
度と静電容量の関係を示す特性図、第4図は相対
湿度と静電容量変化との関係を誘電体性陽極酸化
皮膜と半導体性金属酸化物膜との接触率B/A+
B別に示した特性図、第5図は同じくB/A+B
とC100−C0/C0との関係を示す特性図、第6図
は容量変化の応答性をB/A+B別に示す特性
図、第7図は静電容量−相対湿度のヒステリシス
をB/A+B別に示す特性図、第8図は相対湿度
50%の時の吸湿、脱湿時の容量値の差を接触率
B/A+Bに対して示した特性図、第9図は従来
方式の各種湿度検出素子の応答速度と、本発明の
応答速度と比較した特性図、第10図は本発明の
湿度検出素子の具体構成の一例を示す断面図であ
る。 1……金属基体、2……誘電体性陽極酸化皮
膜、3……半導体性金属酸化皮膜、4……非接触
空間部、5……接触部分、6……対向電極、7…
…電極リード。
Fig. 1 is a sectional view showing the principle structure of the humidity detection element of the present invention, Fig. 2 is an enlarged sectional view of the main part to show the principle of operation, and Fig. 3 is the relative humidity and electrostatic charge of the humidity detection element. A characteristic diagram showing the relationship between capacitance and Figure 4 shows the relationship between relative humidity and capacitance change based on the contact ratio B/A+ between the dielectric anodic oxide film and the semiconducting metal oxide film.
Characteristic diagram shown separately for B, Figure 5 is also B/A+B
Figure 6 is a characteristic diagram showing the relationship between C 100 -C 0 /C 0 , Figure 6 is a characteristic diagram showing the response of capacitance change for each B/A+B, and Figure 7 is a diagram showing the hysteresis of capacitance-relative humidity as B/A+B. Characteristic diagram shown separately for A+B, Figure 8 shows relative humidity
A characteristic diagram showing the difference in capacitance value during moisture absorption and dehumidification at 50% with respect to the contact ratio B/A+B. Figure 9 shows the response speed of various conventional humidity detection elements and the response speed of the present invention. FIG. 10 is a cross-sectional view showing an example of a specific configuration of the humidity detecting element of the present invention. DESCRIPTION OF SYMBOLS 1... Metal base, 2... Dielectric anodic oxide film, 3... Semiconductor metal oxide film, 4... Non-contact space, 5... Contact portion, 6... Counter electrode, 7...
...electrode lead.

Claims (1)

【特許請求の範囲】 1 弁作用金属の基体に、誘電体性陽極酸化皮膜
を設け、この誘電体性陽極酸化皮膜の全面積の20
〜98%に半導体性金属酸化物層が接触するように
被覆し、この半導体性金属酸化物層上の一部また
は全部に集電対向電極を設けたことを特徴とする
湿度検出素子。 2 上記半導体性金属酸化物が、二酸化マンガ
ン、酸化鉛、酸化ニツケル、酸化ルテニウムのい
ずれか1つ以上からなることを特徴とする特許請
求の範囲第1項記載の湿度検出素子。
[Claims] 1. A dielectric anodic oxide film is provided on a valve metal base, and 20% of the total area of the dielectric anodic oxide film is
1. A humidity sensing element, characterized in that ~98% of the humidity sensing element is coated with a semiconductor metal oxide layer so as to be in contact therewith, and a current collecting counter electrode is provided on a part or all of the semiconductor metal oxide layer. 2. The humidity sensing element according to claim 1, wherein the semiconductor metal oxide is made of one or more of manganese dioxide, lead oxide, nickel oxide, and ruthenium oxide.
JP8184577A 1977-06-06 1977-07-07 Humidity detecting element Granted JPS5417075A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP8184577A JPS5417075A (en) 1977-07-07 1977-07-07 Humidity detecting element
AU36668/78A AU501488B1 (en) 1977-06-06 1978-05-30 Humidity sensor
GB7826328A GB2000292B (en) 1977-06-06 1978-06-05 Humidity sensor of capacitance change type
US05/912,714 US4217623A (en) 1977-06-06 1978-06-05 Humidity sensor of capacitance change type
DE2824609A DE2824609C2 (en) 1977-06-06 1978-06-05 Device for measuring humidity by changing electrostatic capacitance
CA304,798A CA1116237A (en) 1977-06-06 1978-06-05 Humidity sensor of capacitance change type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8184577A JPS5417075A (en) 1977-07-07 1977-07-07 Humidity detecting element

Publications (2)

Publication Number Publication Date
JPS5417075A JPS5417075A (en) 1979-02-08
JPS6140124B2 true JPS6140124B2 (en) 1986-09-08

Family

ID=13757804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8184577A Granted JPS5417075A (en) 1977-06-06 1977-07-07 Humidity detecting element

Country Status (1)

Country Link
JP (1) JPS5417075A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54135990U (en) * 1978-03-14 1979-09-20
JPS5710202A (en) * 1980-06-20 1982-01-19 Matsushita Electric Ind Co Ltd Moisture detector

Also Published As

Publication number Publication date
JPS5417075A (en) 1979-02-08

Similar Documents

Publication Publication Date Title
US4307373A (en) Solid state sensor element
US3255324A (en) Moisture responsive resistance device
Chung et al. Tin oxide microsensor for LPG monitoring
US4041437A (en) Humidity sensor
CA1116237A (en) Humidity sensor of capacitance change type
JP3041491B2 (en) Humidity sensor
Kalkan et al. A rapid-response, high-sensitivity nanophase humidity sensor for respiratory monitoring
Sberveglieri et al. Capacitive humidity sensor with controlled performances, based on porous Al2O3 thin film growm on SiO2-Si substrate
US4280115A (en) Humidity sensor
JPS6140124B2 (en)
US3022667A (en) Adsorption electric hygrometer
US4765870A (en) Method of manufacture of an electric moisture-content sensor
JPS589056A (en) Moisture sensitive resistance element
Raj et al. Electrical and humidity sensing properties of tin (IV) oxide-tin (II) molybdate composites
JPS6020841B2 (en) Humidity detection element
WO2015002571A1 (en) Semiconductor oxygen sensor
JPS6049863B2 (en) Humidity detection element
JPS6015121B2 (en) moisture sensing element
JPS6145367B2 (en)
JPS6151735B2 (en)
KR820002321B1 (en) Humidity censor of capacitance change type
JPH0114536B2 (en)
JPS6130211B2 (en)
JPS5843894B2 (en) Manufacturing method of humidity sensing element
JPS5843895B2 (en) Manufacturing method of humidity sensing element