JPS6130211B2 - - Google Patents

Info

Publication number
JPS6130211B2
JPS6130211B2 JP3042578A JP3042578A JPS6130211B2 JP S6130211 B2 JPS6130211 B2 JP S6130211B2 JP 3042578 A JP3042578 A JP 3042578A JP 3042578 A JP3042578 A JP 3042578A JP S6130211 B2 JPS6130211 B2 JP S6130211B2
Authority
JP
Japan
Prior art keywords
oxide film
sensing element
humidity sensing
forming
humidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3042578A
Other languages
Japanese (ja)
Other versions
JPS54122195A (en
Inventor
Osakuni Ogino
Atsushi Nishino
Akihiko Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3042578A priority Critical patent/JPS54122195A/en
Priority to GB7906032A priority patent/GB2017924B/en
Priority to US06/014,382 priority patent/US4276128A/en
Publication of JPS54122195A publication Critical patent/JPS54122195A/en
Publication of JPS6130211B2 publication Critical patent/JPS6130211B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】 本発明は小型で高精度、高応答性の湿度検知素
子の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a small-sized, highly accurate, and highly responsive humidity sensing element.

自然界の基礎的な諸変化量、たとえば温度、気
圧、湿度などのうちで、未だ精度の高い測定が困
難なものは湿度である反面、食品工業、農業、そ
の他多くの分野で湿度の正確で容易な測定および
その調整が必要となつてきている。
Among the basic variables in the natural world, such as temperature, pressure, and humidity, humidity is still difficult to measure with high precision, but humidity can be measured easily and accurately in the food industry, agriculture, and many other fields. There is a growing need for accurate measurements and adjustments.

現在、電気信号として湿度を検知する方式とし
ては、塩化リチウムのような潮解性塩のイオンン
伝導の変化を利用するもの、マグネタイト、シリ
コン半導体の水分吸脱着による抵抗変化を利用し
たものが広く用いられている。
Currently, methods that use the change in ion conduction of deliquescent salts such as lithium chloride to detect humidity as an electrical signal, and methods that use resistance changes due to moisture adsorption and desorption of magnetite and silicon semiconductors are widely used. ing.

しかしながら、これらの方式のものは、いずれ
もイオン伝導を利用したものであり、分極による
経時変化が大きく、湿度以外の吸着ガスによつて
も指示値が変つてしまう。また、応答性が悪く、
ヒステリシスも大きく、測定湿度範囲が非常に限
られたものとなつていた。
However, all of these methods utilize ionic conduction, and change over time due to polarization is large, and the indicated value also changes due to adsorbed gases other than humidity. Also, the responsiveness is poor,
The hysteresis was also large, and the measurement humidity range was extremely limited.

他の毛髪、ナイロン、スチレンのような合成繊
維の水分吸脱着に伴なう変形を応力素子などと組
合せたものであるが、応答速度、ヒステリシス、
精度に難点がある。
It combines the deformation caused by moisture adsorption and desorption of other synthetic fibers such as hair, nylon, and styrene with stress elements, etc., but the response speed, hysteresis,
There is a problem with accuracy.

また、カーボン、金属粉末などの導電性微粒子
を含んだ合成樹脂の膨潤性を利用した素子は、感
度の点で問題があり、湿度劣化も大きい。
Furthermore, elements that utilize the swelling properties of synthetic resins containing conductive fine particles such as carbon and metal powder have problems in terms of sensitivity and are subject to significant humidity deterioration.

さらに、酸化アルミニウムの細孔での水分吸脱
着を容量変化として検出する方式のものもあるが
経時変化が大きい欠点がある。
Furthermore, there is a method that detects water adsorption and desorption in the pores of aluminum oxide as a change in capacitance, but this method has the drawback of large changes over time.

また、α線吸収透過を利用した湿度計は非常に
精度が高いが、装置が大がかりであり、また非常
に高価であり一般用としては用いることができな
いものである。
Further, a hygrometer that uses α-ray absorption and transmission has very high accuracy, but the device is large-scale and very expensive, so it cannot be used for general purpose.

このように現在、開発され、あるいは市販され
ている湿度検知素子および装置は、精度、応答性
環境ガスの影響、測定湿度範囲、感度、耐熱性、
ヒステリシス、経時変化、取扱いの容易さ、価格
の点などでいずれも一長一短があり、全ての点で
満足できるものが存在しなかつた。
As described above, currently developed or commercially available humidity sensing elements and devices have various characteristics such as accuracy, responsiveness, influence of environmental gas, measurement humidity range, sensitivity, heat resistance,
All of them have advantages and disadvantages in terms of hysteresis, change over time, ease of handling, price, etc., and there was no one that was satisfactory in all respects.

本発明は以上のような従来の欠点を除去するも
であり、小型で取扱いが容易で特性的に安定した
安価な湿度検知素子、特にその製造方法を提供し
ようとするものである。
The present invention eliminates the above-mentioned conventional drawbacks, and aims to provide a small, easy-to-handle, inexpensive humidity sensing element with stable characteristics, and in particular, a method for manufacturing the same.

まず最初に、本発明の湿度検知素子の基本構成
および湿度検知の原理について述べる。
First, the basic structure of the humidity sensing element of the present invention and the principle of humidity sensing will be described.

第1図は本発明に係る湿度検知素子の構成拡大
図であり、タンタル、アルミニウム、ニオブ、チ
タン、ジルコニウム、ハフニウムのような弁作用
金属またはこれらの合金またはシリコン、ゲルマ
ニウムの金属基体1の表面には、誘電体性陽極酸
化皮膜2が形成され、この誘電体性陽極酸化皮膜
2上には二酸化マンガン、酸化鉛、酸化ニツケ
ル、酸化ルテニウムのような半導体性金属酸化物
膜3が形成されている。ただし、誘電体性陽極酸
化皮膜2と半導体性金属酸化物膜3とは、接触部
分5と非接触空間部4とで隣接している。そし
て、この半導体性金属酸化物膜3の上には、カー
ボン層6、および陰極集電層7が設けられてい
る。
FIG. 1 is an enlarged view of the configuration of a humidity sensing element according to the present invention, in which valve metals such as tantalum, aluminum, niobium, titanium, zirconium, and hafnium or alloys thereof, silicon, and germanium are coated on the surface of a metal base 1. A dielectric anodic oxide film 2 is formed, and a semiconductor metal oxide film 3 such as manganese dioxide, lead oxide, nickel oxide, or ruthenium oxide is formed on the dielectric anodic oxide film 2. . However, the dielectric anodic oxide film 2 and the semiconductor metal oxide film 3 are adjacent to each other at the contact portion 5 and the non-contact space portion 4 . A carbon layer 6 and a cathode current collecting layer 7 are provided on this semiconducting metal oxide film 3.

第2図は第1図の誘電体性陽極酸化皮膜2と、
半導体性金属酸化物膜3との接触部分を拡大した
ものである。
FIG. 2 shows the dielectric anodic oxide film 2 of FIG. 1,
This is an enlarged view of the contact portion with the semiconductor metal oxide film 3.

第2図に示すように、誘電体性陽極酸化皮膜2
と半導体性金属酸化物膜3はbで示す範囲で接触
部分5となつており、aで示す範囲で非接触空間
部4となつている。
As shown in FIG. 2, dielectric anodic oxide film 2
The semiconductor metal oxide film 3 forms a contact portion 5 in the range indicated by b, and a non-contact space 4 in the range indicated by a.

今、相対湿度0%の雰囲気中に本発明の湿度検
知素子を配置した場合、半導体性金属酸化物膜3
による水分吸収が0であるため、第2図の接触部
撫5のみの誘電体性陽極酸化皮膜2による静電容
量が検出できる。この時、半導体性金属酸化物膜
3は半導電性を有するため、容量取出用電極とし
ての働きをする。
Now, when the humidity sensing element of the present invention is placed in an atmosphere with a relative humidity of 0%, the semiconductor metal oxide film 3
Since the water absorption by the contact portion 5 is zero, the capacitance due to the dielectric anodic oxide film 2 only on the contact portion 5 in FIG. 2 can be detected. At this time, since the semiconductor metal oxide film 3 has semiconductivity, it functions as an electrode for taking out the capacitance.

次に、本発明の湿度検知素子を湿気中に配置す
ると、半導体性金属酸化物膜3が吸湿性を有する
ため、吸湿された水分が誘電体性陽極酸化皮膜2
の表面にまで達して誘電体性陽極酸化皮膜2と半
導体性金属酸化物膜3との非接触空間部4の表面
に到達する。この半導体性金属酸化物膜3の吸湿
水分量は、空気中の相対湿度に比例するので誘電
体性陽極酸化皮膜2における水分被覆率は相対湿
度に比例することになる。
Next, when the humidity sensing element of the present invention is placed in humidity, since the semiconductor metal oxide film 3 has hygroscopicity, the absorbed moisture is transferred to the dielectric anodic oxide film 2.
and reaches the surface of the non-contact space 4 between the dielectric anodic oxide film 2 and the semiconductor metal oxide film 3. Since the amount of moisture absorbed by the semiconductor metal oxide film 3 is proportional to the relative humidity in the air, the moisture coverage in the dielectric anodic oxide film 2 is proportional to the relative humidity.

このようにして、誘電体性陽極酸化皮膜2まで
到達した水分は空気中の炭酸ガス、半導体性金属
酸化物膜3中のマンガンイオン、その他の不純物
を含んでおり、それ自体電解質としての機能を持
ち、したがつて誘電体性陽極酸化皮膜2の接触部
分5と非接触空間部4中の水分による被覆部とに
よる静電容量を取出すことができる。
In this way, the moisture that has reached the dielectric anodic oxide film 2 contains carbon dioxide gas in the air, manganese ions in the semiconductor metal oxide film 3, and other impurities, and itself functions as an electrolyte. Therefore, the capacitance due to the contact portion 5 of the dielectric anodic oxide film 2 and the portion covered by moisture in the non-contact space 4 can be taken out.

このように、空気中の相対湿度変化が静電容量
変化に変換される。
In this way, changes in relative humidity in the air are converted into changes in capacitance.

一般に、本発明による湿度検知素子は第3図に
示す製造工程図によつて製造され。。すなわち、
弁作用金属の金属基体の表面に誘電体性陽極酸化
皮膜を形成し、半導体性金属酸化物膜を形成し、
さらにカーボン層、および陰極集電層を順次形成
し、高温高湿処理を経て完成品となる。
Generally, the humidity sensing element according to the present invention is manufactured according to the manufacturing process diagram shown in FIG. . That is,
Forming a dielectric anodic oxide film on the surface of the metal base of the valve metal, forming a semiconducting metal oxide film,
Furthermore, a carbon layer and a cathode current collecting layer are sequentially formed, and a finished product is obtained through high temperature and high humidity treatment.

ところで、陰極集電層の形成については、種々
の方法が考えられる。例えば、蒸着や溶射等によ
り金、銀、銅等の電気良導体を直接形成する方法
あるいは、金、銀、白金、銅、アルミニウム等の
電気良導体の微粉末を合成樹脂中に分散させた、
いわゆる導電性ペイントにて形成する方法等が考
えられるが、一般的には取扱い操作が簡便で、安
価な後者の方法つまり導電性ペイントによる陰極
集電層の形成が使用されている。
By the way, various methods can be considered for forming the cathode current collecting layer. For example, a method of directly forming a good electrical conductor such as gold, silver, or copper by vapor deposition or thermal spraying, or a method of dispersing fine powder of a good electrical conductor such as gold, silver, platinum, copper, or aluminum in a synthetic resin.
Although a method of forming the cathode current collecting layer using so-called conductive paint is considered, the latter method is generally used because it is easy to handle and inexpensive, that is, forming the cathode current collecting layer using conductive paint.

導電性ペイントは前述のように、金、銀、白
金、銅、アルミニウム等の電気良導体をアクリル
樹脂、エポキシ樹脂、弗化ビニリデン樹脂、弗素
樹脂等のの合成樹脂中に分散させたもので、熱あ
るいは光等により合成樹脂を硬化させて導電層を
形成するものである。例えば、市販の銀ペイント
は、銀粉をアクリル樹脂中に分散させたもので、
100〜150℃において加熱硬化させるものである。
As mentioned above, conductive paint is made by dispersing good electrical conductors such as gold, silver, platinum, copper, and aluminum into synthetic resins such as acrylic resin, epoxy resin, vinylidene fluoride resin, and fluorine resin. Alternatively, a conductive layer is formed by curing a synthetic resin with light or the like. For example, commercially available silver paint is made by dispersing silver powder in acrylic resin.
It is heat-cured at 100-150°C.

ところで、本発明に係る湿度検知素子では、陰
極集電層を形成して完成品としても湿度検知素子
としての機能を十分に満足するものが得られるが
第4図の特性Aに示すように、高温高湿雰囲気中
に長時間放置すると容量減少する欠点があつた。
By the way, in the humidity sensing element according to the present invention, a cathode current collecting layer is formed and a finished product can be obtained that fully satisfies the function as a humidity sensing element, but as shown in characteristic A in FIG. The drawback was that the capacity decreased when left in a high-temperature, high-humidity atmosphere for a long time.

そこで、本発明は、この容量減少の欠点を除去
するために開発したもので、導電性ペイントによ
り陰極集電層を形成した後、煮沸水中に素子を10
〜180分間浸漬するものであり、第4図の特性B
に示すように高温高湿雰囲気中に長時間放置して
も容量減少の著しく小さいものを得ることができ
る。
Therefore, the present invention was developed to eliminate this drawback of capacity reduction. After forming a cathode current collecting layer with conductive paint, the device was placed in boiling water for 10 minutes.
It is immersed for ~180 minutes, and has characteristic B in Figure 4.
As shown in Figure 3, it is possible to obtain a product with significantly less capacity loss even when left in a high-temperature, high-humidity atmosphere for a long time.

本発明に係る湿度検知素子を高温高湿雰囲気中
に長時間放置すると容量減少を起す原因について
詳細に説明する。
The reason why the capacity decreases when the humidity sensing element according to the present invention is left in a high temperature and high humidity atmosphere for a long time will be explained in detail.

上述のように導電性ペイントは媒体が合成樹脂
であり、この合成樹脂が高温高湿雰囲気中で膨潤
し、その結果、半導体性金属酸化物膜3が、誘電
体性陽極酸化皮膜2より離れるためである。つま
り、陰極集電層7、カーボン層6、半導体性金属
酸化物膜3のそれぞれの接着強度と半導体性金属
酸化物膜3と誘電体性陽極酸化皮膜2の接着強度
を比較した場合、前者の接着強度の方が後者の接
着強度よりもはるかに強く、ここのため導電性ペ
イントの吸湿により、その膨潤により非接触空間
部4が漸増し、容量が減少するのである。
As mentioned above, the medium of conductive paint is synthetic resin, and this synthetic resin swells in a high-temperature, high-humidity atmosphere, and as a result, the semiconducting metal oxide film 3 separates from the dielectric anodic oxide film 2. It is. In other words, when comparing the adhesion strength of each of the cathode current collecting layer 7, carbon layer 6, and semiconducting metal oxide film 3 with the adhesion strength of the semiconducting metal oxide film 3 and dielectric anodic oxide film 2, the former The adhesive strength is much stronger than the latter adhesive strength, and therefore, when the conductive paint absorbs moisture, the non-contact space 4 gradually increases due to its swelling and the capacity decreases.

したがつて本発明の製造方法のように煮沸水中
にて10〜180分間処理すれば、導電性ペイントの
膨潤が均一にしかも短時間で完了するため、その
後の容量変化が著しく小さい素子が得られる。
Therefore, if the conductive paint is treated in boiling water for 10 to 180 minutes as in the manufacturing method of the present invention, the swelling of the conductive paint is completed uniformly and in a short period of time, resulting in an element with significantly small subsequent changes in capacitance. .

以上記載のように、本発明の製造方法によつて
得られる湿度検知素子は、特に経時変化が著しく
小さい長期安定な湿度検知素子であり、従来の湿
度検知素子では得られなかつた優れた効果を具備
させることができるという工業的価値の大なるも
のである。
As described above, the humidity sensing element obtained by the manufacturing method of the present invention is a long-term stable humidity sensing element with particularly small changes over time, and has excellent effects that cannot be obtained with conventional humidity sensing elements. It is of great industrial value that it can be equipped with

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る湿度検知素子の原理構成
を示す断面図、第2図は同動作原理を示すための
要部の拡大断面図、第3図は、本発明の湿度検知
素子の製造方法における製造工程を示す工程図、
第4図は本発明の効果を説明するための容量特性
の経時変化を示す特性図である。 1……弁金属基体、2……誘電体性電極酸化皮
膜、3……半導体性金属酸化物膜、6……カーボ
ン層、7……陰極集電層。
FIG. 1 is a cross-sectional view showing the principle structure of the humidity sensing element according to the present invention, FIG. 2 is an enlarged cross-sectional view of the main parts to show the principle of operation, and FIG. 3 is the manufacturing of the humidity sensing element according to the present invention. A process diagram showing the manufacturing steps in the method,
FIG. 4 is a characteristic diagram showing changes in capacitance characteristics over time to explain the effects of the present invention. DESCRIPTION OF SYMBOLS 1... Valve metal base, 2... Dielectric electrode oxide film, 3... Semiconductor metal oxide film, 6... Carbon layer, 7... Cathode current collecting layer.

Claims (1)

【特許請求の範囲】 1 タンタル、アルミニウム、ニオブ、チタン、
ジルコニウム、ハフニウムのような弁作用金属ま
たはこれらの合金またはシリコン、ゲルマニウム
の金属基体の表面に誘電体性陽極酸化皮膜を形成
する工程と、前記誘電体性陽極酸化皮膜上に半導
体性金属酸化物膜を形成する工程と、前記半導体
性金属酸化物膜上にカーボン属を形成する工程
と、前記カーボン層上に陰極集電層を形成する工
程と、前記陰極集電層を形成した後、煮沸水中に
浸漬する処理工程とからなることを特徴とする湿
度検知素子の製造方法。 2 半導体性金属酸化物膜が二酸化マンガン、酸
化鉛、酸化ニツケル、酸化ルテニウムの少なくと
も1つからなることを特徴とする特許請求の範囲
第1項に記載の湿度検知素子の製造方法。 3 陰極集電層が金属粉末を合成樹脂中に分散さ
せたものであることを特徴とする特許請求の範囲
第1項に記載の湿度検知素子の製造方法。 4 金属粉末が金、銀、白金、銅、アルミニウム
の少なくとも1つであることを特徴とする特許請
求の範囲第3項に記載の湿度検知素子の製造方
法。
[Claims] 1. Tantalum, aluminum, niobium, titanium,
A step of forming a dielectric anodic oxide film on the surface of a valve metal such as zirconium or hafnium or an alloy thereof or a metal substrate of silicon or germanium, and forming a semiconductor metal oxide film on the dielectric anodic oxide film. a step of forming carbon on the semiconducting metal oxide film; a step of forming a cathode current collecting layer on the carbon layer; and after forming the cathode current collecting layer, immersion in boiling water 1. A method for manufacturing a humidity sensing element, comprising a treatment step of immersing it in water. 2. The method for manufacturing a humidity sensing element according to claim 1, wherein the semiconducting metal oxide film is made of at least one of manganese dioxide, lead oxide, nickel oxide, and ruthenium oxide. 3. The method for manufacturing a humidity sensing element according to claim 1, wherein the cathode current collecting layer is made by dispersing metal powder in a synthetic resin. 4. The method for manufacturing a humidity sensing element according to claim 3, wherein the metal powder is at least one of gold, silver, platinum, copper, and aluminum.
JP3042578A 1978-02-20 1978-03-15 Production of humidity detecting element Granted JPS54122195A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP3042578A JPS54122195A (en) 1978-03-15 1978-03-15 Production of humidity detecting element
GB7906032A GB2017924B (en) 1978-02-20 1979-02-20 Humidity sensing element of electric capacitance change type and method of producing same
US06/014,382 US4276128A (en) 1978-02-20 1979-02-21 Humidity sensing element of electric capacitance change type and method of producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3042578A JPS54122195A (en) 1978-03-15 1978-03-15 Production of humidity detecting element

Publications (2)

Publication Number Publication Date
JPS54122195A JPS54122195A (en) 1979-09-21
JPS6130211B2 true JPS6130211B2 (en) 1986-07-11

Family

ID=12303589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3042578A Granted JPS54122195A (en) 1978-02-20 1978-03-15 Production of humidity detecting element

Country Status (1)

Country Link
JP (1) JPS54122195A (en)

Also Published As

Publication number Publication date
JPS54122195A (en) 1979-09-21

Similar Documents

Publication Publication Date Title
CA1116237A (en) Humidity sensor of capacitance change type
GB2064126A (en) Method of making humidity sensors
US3075385A (en) Hygrometer
JPH0242429B2 (en)
US5131990A (en) Fluoropolymer humidity sensors
JPH09229888A (en) Method for forming pyrrhite type tungsten oxide layer on substrate and humidity sensor element containing pyrrhite type tungsten oxide layer
CN105021303A (en) Method for manufacturing temperature sensor of aluminum-based sensitive material
JPS6130211B2 (en)
US3703697A (en) Relative humidity sensor
JPS5814043B2 (en) humidity sensor element
JPS5843894B2 (en) Manufacturing method of humidity sensing element
JPS6151735B2 (en)
JPS6140124B2 (en)
JPS6145367B2 (en)
JPS6020841B2 (en) Humidity detection element
JPS6049863B2 (en) Humidity detection element
JPS6151263B2 (en)
JPS59123B2 (en) Manufacturing method of humidity sensing element
US3294662A (en) ph meter
JPS5843895B2 (en) Manufacturing method of humidity sensing element
JPH0720080A (en) Humidity sensor
JPS62298755A (en) Solid battery measuring oxygen partial pressure and manufacture thereof
CN86102535A (en) Metal-aluminium oxide one silicon structure humidity sensor and preparation technology thereof
JPS6133372B2 (en)
JPS6015121B2 (en) moisture sensing element