JPH06281610A - Humidity sensor, alcohol sensor or ketone sensor - Google Patents

Humidity sensor, alcohol sensor or ketone sensor

Info

Publication number
JPH06281610A
JPH06281610A JP29449193A JP29449193A JPH06281610A JP H06281610 A JPH06281610 A JP H06281610A JP 29449193 A JP29449193 A JP 29449193A JP 29449193 A JP29449193 A JP 29449193A JP H06281610 A JPH06281610 A JP H06281610A
Authority
JP
Japan
Prior art keywords
sensor
poly
film
propyne
trimethylsilyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29449193A
Other languages
Japanese (ja)
Inventor
Ryuji Kojima
隆二 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP29449193A priority Critical patent/JPH06281610A/en
Publication of JPH06281610A publication Critical patent/JPH06281610A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a humidity sensor, alcohol sensor, or ketone sensor which can be easily manufactured and has excellent responsiveness. CONSTITUTION:The sensor is constituted by successively piling up a set of an electrode and poly(1-(trimethylsilil)propyn) film on an insulating substrate. The sensor can be also constituted by successively forming a lower electrode, poly(1trimethylsilil)-1-propyn) film, and upper electrode on an insulating substrate or a poly(1-(trimethylsilil)-1-propyn) film and upper electrode on a conductive substrate which is used as a lower electrode also.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、湿度センサ、アルコー
ルセンサまたはケトンセンサに関する。更に詳しくは、
製作性および応答性にすぐれた湿度センサ、アルコール
センサまたはケトンセンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a humidity sensor, alcohol sensor or ketone sensor. For more details,
The present invention relates to a humidity sensor, an alcohol sensor, or a ketone sensor which is excellent in manufacturability and responsiveness.

【0002】[0002]

【従来の技術】湿度センサを検出原理別に大別すると、
機械式センサ、乾湿球センサ、電磁式センサ、インピー
ダンス変化式センサの4つに分けられ、これらの中では
インピーダンス変化式センサが注目されており、これに
は抵抗変化型と容量変化型の2種類のものがある。
2. Description of the Related Art A humidity sensor is roughly classified according to its detection principle.
There are four types of mechanical sensors, dry and wet bulb sensors, electromagnetic sensors, and impedance change type sensors. Among these, impedance change type sensors are drawing attention, and there are two types: resistance change type and capacitance change type. There is one.

【0003】このインピーダンス変化式センサを感湿材
料の面から分類すると、セラミックス系のものと高分子
系のものに大別される。セラミックス系のものには、T
i、Sn、Zr、Mg、Cr、Si、Vなどの酸化物が用いられてお
り、従って耐熱性が高く、使用温度範囲も広いが、感湿
特性がセラミックスの多孔構造に由来しているために再
現性に乏しく、また吸着水分のキャピラリコンデンセー
ションによる経時変化も避けられないなどの問題点を有
する。
The impedance change type sensor is roughly classified into a ceramic type and a polymer type in terms of the moisture sensitive material. For ceramics, T
Oxides such as i, Sn, Zr, Mg, Cr, Si, and V are used. Therefore, they have high heat resistance and a wide operating temperature range, but their moisture-sensitive properties are derived from the porous structure of ceramics. However, it has a problem of poor reproducibility and inevitable change of adsorbed water with time due to capillary condensation.

【0004】一方、高分子系のものとしては、ポリアク
リル酸、ポリスチレンスルホン酸、ポリメチルアミノエ
チルメタクリレート塩、スチレン-ジビニルベンゼン共
重合体のカルボン酸(塩)誘導体などが挙げられ、これら
は高分子自体の吸湿性、イオン導電性に由来する感湿特
性を示すため再現性が良好であり、また汚染に強く、他
のガス種の影響も受け難いなどの利点があるが、耐熱性
が低いという問題がある。耐熱性を有する高分子系のも
のには、ポリイミドを用いたものもあるが、これはポリ
アミック酸の形で基板上に塗布した後加熱して、縮重合
反応させてポリイミドとするものであり、生産性の点で
問題がある。
On the other hand, examples of high molecular weight compounds include polyacrylic acid, polystyrene sulfonic acid, polymethylaminoethyl methacrylate salt, carboxylic acid (salt) derivative of styrene-divinylbenzene copolymer, and the like. It has good reproducibility because it exhibits hygroscopicity due to the hygroscopicity and ionic conductivity of the molecule itself, and has the advantage that it is resistant to contamination and is not easily affected by other gas species, but its heat resistance is low. There is a problem. Polymers having heat resistance include those using polyimide, which is applied to a substrate in the form of polyamic acid and then heated to cause a polycondensation reaction to form a polyimide, There is a problem in terms of productivity.

【0005】また、アルコールセンサ、ケトンセンサな
どのガスセンサとして、実用化または研究されているセ
ンサ素子は、半導体式のものと接触燃焼式のものに大別
される。
Further, sensor elements which have been put to practical use or studied as gas sensors such as alcohol sensors and ketone sensors are roughly classified into semiconductor type and catalytic combustion type.

【0006】半導体式のセンサ素子は、被検ガスがセン
サ素子表面に吸着することで、センサの抵抗値が変化す
る特性を利用してガスを検知しており、このタイプの素
子は、経時的に感度が変化することが最大の問題点とな
っている。その原因は、素子を400℃程度に加熱して使
用しなければならないので、素子の焼結状態や表面状態
が熱的に変化するためであるとされている。一方、接触
燃焼式のセンサ素子は、白金線の抵抗値変化をガス検知
に応用したものである。このため、ガスの選択性が殆ん
どないという欠点を有している。
The semiconductor type sensor element detects gas by utilizing the characteristic that the resistance value of the sensor changes when the test gas is adsorbed on the surface of the sensor element. The biggest problem is the change in sensitivity. It is said that the reason is that the element must be heated to about 400 ° C. before it is used, so that the sintered state and surface state of the element are thermally changed. On the other hand, the catalytic combustion type sensor element applies a change in resistance of a platinum wire to gas detection. Therefore, it has a drawback that the gas selectivity is almost nonexistent.

【0007】これらのガスセンサの使用に際しては、素
子の感度を向上させるために加熱する必要があり、熱エ
ネルギーの一部が素子の外部に放熱されて、熱損失が大
きい点も問題である。また、これらのセンサを製作する
場合には、素子の絶縁性基板上への製膜、焼成、電極お
よびヒータの形成など多数の工程を必要としている。
When using these gas sensors, it is necessary to heat them in order to improve the sensitivity of the element, and a part of heat energy is radiated to the outside of the element, resulting in a large heat loss, which is also a problem. Further, when these sensors are manufactured, many steps such as film formation on an insulating substrate of an element, firing, formation of electrodes and heaters are required.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、高分
子系の感湿材料を用いたインピーダンス変化式の湿度セ
ンサであって、製作性および応答性の点ですぐれたもの
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an impedance change type humidity sensor using a polymer type moisture sensitive material, which is excellent in manufacturability and responsiveness. It is in.

【0009】本発明の他の目的は、各種の有機物質蒸気
中、アルコールまたはケトンに対して選択性があり、ま
た素子を加熱する必要がなく、しかも製作性および応答
性の点ですぐれたアルコールセンサまたはケトンセンサ
を提供することにある。
Another object of the present invention is that alcohol is selective to alcohols or ketones in various organic vapors, does not require heating of the element, and is excellent in manufacturability and responsiveness. To provide a sensor or a ketone sensor.

【0010】[0010]

【課題を解決するための手段】かかる本発明の諸目的
は、次のような構成をとる湿度センサ、アルコールセン
サまたはケトンセンサによって達成される。 (1)絶縁性基板、1組の電極およびポリ[1-(トリメチル
シリル)-1-プロピン]被覆膜を順次積層した湿度セン
サ、アルコールセンサまたはケトンセンサ (2)絶縁性基板、下部電極、ポリ[1-(トリメチルシリル)
-1-プロピン]膜および上部電極を順次積層させた湿度セ
ンサ、アルコールセンサまたはケトンセンサ (3)下部電極を兼ねた導電性基板、ポリ[1-(トリメチル
シリル)-1-プロピン]膜および上部電極を順次積層させ
た湿度センサ、アルコールセンサまたはケトンセンサ
The various objects of the present invention are achieved by a humidity sensor, an alcohol sensor, or a ketone sensor having the following configurations. (1) Insulating substrate, one set of electrodes and a poly [1- (trimethylsilyl) -1-propyne] coating film sequentially laminated on humidity sensor, alcohol sensor or ketone sensor (2) Insulating substrate, lower electrode, poly [ 1- (trimethylsilyl)
Humidity sensor, alcohol sensor or ketone sensor in which -1-propyne] film and upper electrode are laminated in sequence (3) Conductive substrate that also serves as lower electrode, poly [1- (trimethylsilyl) -1-propyne] film and upper electrode Humidity sensor, alcohol sensor or ketone sensor that are sequentially stacked

【0011】まず、第1の態様の湿度センサについて説
明する。絶縁性基板としては、ガラス、アルミナ、石
英、表面が絶縁処理されたシリコンウェハなどが用いら
れ、その基板上には1組の電極、一般に対向電極が形成
されている。電極材料としては、Au、Pt、Alなどの薄膜
化し得る導体が用いられ、薄膜化は蒸着法、スパッタリ
ング法などによって行われる。また、それのパターニン
グは、フォトリソグラフィーによるレジストパターンの
形成およびエッチングにより行われる。形成される1組
の電極間の近接距離は、約0.01〜1mm程度であることが
好ましい。この距離が小さい程、また近接した部分の長
さの総和が長い程、抵抗変化または容量変化が大きくな
り、湿度検出、アルコール検出またはケトン検出に好ま
しいので、一般にはくし形対向電極が用いられる。
First, the humidity sensor of the first aspect will be described. As the insulating substrate, glass, alumina, quartz, a silicon wafer whose surface is insulated, or the like is used, and a pair of electrodes, generally a counter electrode, is formed on the substrate. As the electrode material, a conductor such as Au, Pt, or Al that can be thinned is used, and the thinning is performed by a vapor deposition method, a sputtering method, or the like. The patterning is performed by forming a resist pattern by photolithography and etching. The close distance between the pair of electrodes formed is preferably about 0.01 to 1 mm. The smaller the distance is, or the longer the total length of the adjacent portions is, the larger the resistance change or the capacitance change is, which is preferable for humidity detection, alcohol detection, or ketone detection. Therefore, the comb-shaped counter electrode is generally used.

【0012】絶縁性基板上に形成された1組の電極は、
ポリ[1-(トリメチルシリル)-1-プロピン]膜によって被
覆される。被覆膜の形成は、ポリ[1-(トリメチルシリ
ル)-1-プロピン](共重合体を含む)またはそれを主体と
する他のアルキル置換ポリアセチレン樹脂との混合物を
それの可溶性溶媒、例えばキシレン、トルエン、ベンゼ
ンなどの芳香族炭化水素、n-ヘキサン、n-ヘプタン、n-
オクタンなどの脂肪族炭化水素、シクロヘキサン、シク
ロペンタンなどの脂環式炭化水素、クロロホルムなどの
ハロゲン化炭化水素、ジオキサンなどの環状エーテルな
どに、約0.1〜5重量%、好ましくは約0.5〜3重量%の濃度
で溶解させた溶液を基板上に塗布し、乾燥させることに
よって行われる。形成される被覆膜の膜厚は、約0.01〜
100μm、好ましくは約0.1〜10μmであり、用いられる溶
液濃度に応じて、膜厚を制御することができる。
A pair of electrodes formed on an insulating substrate is
It is covered by a poly [1- (trimethylsilyl) -1-propyne] film. The coating film is formed by mixing poly [1- (trimethylsilyl) -1-propyne] (including a copolymer) or a mixture thereof with other alkyl-substituted polyacetylene resin with its soluble solvent such as xylene, Aromatic hydrocarbons such as toluene and benzene, n-hexane, n-heptane, n-
Aliphatic hydrocarbons such as octane, cyclohexane, cycloaliphatic hydrocarbons such as cyclopentane, halogenated hydrocarbons such as chloroform, cyclic ethers such as dioxane, etc., in an amount of about 0.1 to 5% by weight, preferably about 0.5 to 3% by weight. It is carried out by applying a solution dissolved at a concentration of% onto a substrate and drying. The thickness of the coating film formed is about 0.01-
The thickness is 100 μm, preferably about 0.1 to 10 μm, and the film thickness can be controlled depending on the solution concentration used.

【0013】第2の態様の場合には、下部電極、ポリ[1
-(トリメチルシリル)-1-プロピン]膜、上部電極の絶縁
性基板上への形成が、上記の場合と同様にして順次行わ
れる。上部電極は、外部雰囲気とポリ[1-(トリメチルシ
リル)-1-プロピン]膜との接触を良好ならしめるため
に、くし形電極としたりあるいは電極の厚さを約0.01〜
1μm程度として通気性を確保することが望ましい。
In the case of the second aspect, the lower electrode, poly [1
The-(trimethylsilyl) -1-propyne] film and the upper electrode are sequentially formed on the insulating substrate in the same manner as in the above case. The upper electrode is a comb-shaped electrode or has an electrode thickness of about 0.01 to improve the contact between the outside atmosphere and the poly [1- (trimethylsilyl) -1-propyne] film.
It is desirable to secure air permeability by setting it to about 1 μm.

【0014】また、第3の態様の場合には、下部電極を
兼ねた導電性基板の上に、ポリ[1-(トリメチルシリル)-
1-プロピン]膜および上部電極の形成が、上記第2の態
様の如くにして行われる。下部電極を兼ねた導電性基板
としては、例えば板状乃至膜状のCu、Al、Au、Ag、Ptな
どが用いられる。
In the case of the third embodiment, poly [1- (trimethylsilyl)-is formed on a conductive substrate which also serves as a lower electrode.
The 1-propyne] film and the upper electrode are formed as in the second embodiment. As the conductive substrate that also serves as the lower electrode, for example, plate-shaped or film-shaped Cu, Al, Au, Ag, Pt, or the like is used.

【0015】[0015]

【作用】ポリ[1-(トリメチルシリル)-1-プロピン]の有
機溶媒溶液を室温下で蒸発させると、プラスチック状の
非多孔質膜が形成される。形成されたポリ[1-(トリメチ
ルシリル)-1-プロピン]膜は、CO2、N2、O2などの気体分
子の膜内における拡散係数が、ゴム状高分子膜のそれよ
りも大きい。これは、大きな分子鎖間の間隙とかさ高い
置換基に由来するものと考えられている。
[Function] When a solution of poly [1- (trimethylsilyl) -1-propyne] in an organic solvent is evaporated at room temperature, a plastic non-porous film is formed. The formed poly [1- (trimethylsilyl) -1-propyne] film has a larger diffusion coefficient of gas molecules such as CO 2 , N 2 and O 2 in the film than that of the rubber-like polymer film. It is believed that this is due to the gaps between large molecular chains and bulky substituents.

【0016】このように、ポリ[1-(トリメチルシリル)-
1-プロピン]膜は、その膜内での物質の拡散が速く、ま
た水との接触角が大きく、水によって膨潤することはな
いが、膜内での水蒸気の拡散も速い。更に、ポリ[1-(ト
リメチルシリル)-1-プロピン]は、バルクな膜状態では
電気的に高い絶縁性を示している。
Thus, poly [1- (trimethylsilyl)-
The 1-propyne] membrane diffuses substances rapidly within the membrane, has a large contact angle with water, does not swell with water, and diffuses water vapor within the membrane too. Furthermore, poly [1- (trimethylsilyl) -1-propyne] exhibits a high electrical insulating property in a bulk film state.

【0017】本発明に係る湿度センサでは、このような
ポリ[1-(トリメチルシリル)-1-プロピン]の特徴が有効
に利用されており、即ち薄膜として作製されたポリ[1-
(トリメチルシリル)-1-プロピン]に空気中の水蒸気を勢
いよく接触させると、水蒸気がポリ[1-(トリメチルシリ
ル)-1-プロピン]膜内に素早く拡散し、膜内の分子鎖間
隙あるいは微多孔質内表面に収着される。接触させる水
蒸気の温度は、ポリ[1-(トリメチルシリル)-1-プロピ
ン]が安定な120℃以下、好ましくは約0〜100℃の範囲内
である。
In the humidity sensor according to the present invention, such a characteristic of poly [1- (trimethylsilyl) -1-propyne] is effectively used, that is, poly [1- (triphenylsilyl) -1-propyne] prepared as a thin film.
When water vapor in the air is vigorously brought into contact with (trimethylsilyl) -1-propyne], the water vapor quickly diffuses into the poly [1- (trimethylsilyl) -1-propyne] film, and molecular chain gaps or microporosity in the film It is sorbed on the inner surface. The temperature of the steam to be contacted is in the range of 120 ° C. or lower at which poly [1- (trimethylsilyl) -1-propyne] is stable, preferably about 0 to 100 ° C.

【0018】従って、この状態で膜へ外部から電気的な
刺激を与えると、プロトンの伝播による直流伝導的な性
質またはマックスウェル・ワグナー効果による界面分極
の生成等により、電気信号の変化として水蒸気、即ち湿
度の検出が瞬時に可能となる。電気信号の検出は、直流
の体積抵抗、表面抵抗、交流のインピーダンス変化、容
量変化など任意の方法によって行うことができる。内部
に収着された水蒸気は、濡れ性と拡散性とによって、直
ちに膜外部へと放出される。
Therefore, when an electric stimulus is externally applied to the film in this state, water vapor changes as an electric signal due to direct current conduction due to the propagation of protons or interfacial polarization due to the Maxwell-Wagner effect. That is, the humidity can be instantly detected. The electrical signal can be detected by any method such as direct current volume resistance, surface resistance, alternating current impedance change, and capacitance change. The water vapor sorbed inside is immediately released to the outside of the film due to its wettability and diffusibility.

【0019】また、本発明に係るアルコールセンサまた
はケトンセンサでは、ポリ[1-(トリメチルシリル)-1-プ
ロピン]膜内での物質の拡散の特徴が有効に利用されて
いる。即ち、薄膜として作製したポリ[1-(トリメチルシ
リル)-1-プロピン]にアルコールガスまたはケトンガス
を勢い良く接触させると、アルコールガスまたはケトン
ガスがポリ[1-(トリメチルシリル)-1-プロピン]膜内に
素早く拡散し、膜内の分子鎖間隙あるいは微多孔質内表
面に収着される。接触させるアルコールガスまたはケト
ンガスの温度は、湿度センサの場合と同様に120℃以
下、好ましくは約0〜100℃の範囲内であり、一般には室
温下である。
Further, in the alcohol sensor or the ketone sensor according to the present invention, the characteristic of diffusion of the substance in the poly [1- (trimethylsilyl) -1-propyne] film is effectively used. That is, when alcohol gas or ketone gas is vigorously brought into contact with poly [1- (trimethylsilyl) -1-propyne] prepared as a thin film, the alcohol gas or ketone gas is introduced into the poly [1- (trimethylsilyl) -1-propyne] film. It diffuses quickly and is sorbed on the molecular chain gaps in the membrane or on the inner surface of the microporous layer. The temperature of the alcohol gas or the ketone gas to be contacted is 120 ° C. or lower, preferably in the range of about 0 to 100 ° C. as in the case of the humidity sensor, and generally at room temperature.

【0020】この状態で膜へ外部から電気的な刺激を与
えると、アルコールまたはケトンの膜内への収着量に応
じて、電気信号の変化としてセンシングが可能となる。
電気信号の検出は、直流の体積抵抗、表面抵抗、交流の
インピーダンス変化、容量変化など任意の方法によって
行うことができる。内部に収着されたアルコールまたは
ケトンは、数秒程度の比較的短い時間で膜の外部に放出
されるため、応答性の点でもすぐれたセンシングが可能
となる。
When an electric stimulus is externally applied to the film in this state, it becomes possible to perform sensing as a change in an electric signal according to the sorption amount of alcohol or ketone in the film.
The electrical signal can be detected by any method such as direct current volume resistance, surface resistance, alternating current impedance change, and capacitance change. The alcohol or ketone sorbed inside is released to the outside of the membrane in a relatively short time of about several seconds, which enables excellent sensing in terms of responsiveness.

【0021】なお、観測される電気信号の変化は、アル
コールのOH基またはケトンのCO基に由来するので、アル
コールやケトンの種類については、特に限定されない。
Since the observed change in the electric signal is derived from the OH group of alcohol or the CO group of ketone, the type of alcohol or ketone is not particularly limited.

【0022】[0022]

【発明の効果】本発明の湿度センサ、アルコールセンサ
またはケトンセンサは、ポリ[1-(トリメチルシリル)-1-
プロピン]の特性に応じて、湿度あるいは選択的にアル
コールガスまたはケトンガスを素早く、再現性良く測定
することができ、また複雑な工程を必要とはせず、廉価
に製造することができる。更に、従来のポリイミド感湿
膜のように、それの形成時に加熱処理を必要とはせず、
吸湿による変形もない。また、アルコールセンサまたは
ケトンセンサとしての使用時には、高温に加熱する必要
がない。
The humidity sensor, alcohol sensor or ketone sensor of the present invention is made of poly [1- (trimethylsilyl) -1-
According to the characteristics of propyne, humidity or selectively alcohol gas or ketone gas can be measured quickly and with good reproducibility, and a complicated process is not required, and the manufacturing cost can be reduced. Furthermore, unlike conventional polyimide moisture sensitive films, it does not require heat treatment when it is formed,
No deformation due to moisture absorption. Further, when used as an alcohol sensor or a ketone sensor, it is not necessary to heat it to a high temperature.

【0023】[0023]

【実施例】次に、実施例について本発明を説明する。EXAMPLES The present invention will now be described with reference to examples.

【0024】実施例1 アルミナ基板(5×5×0.5mm)上に、蒸着法により1組の
対向くし形金電極(厚さ約0.5μm)を形成させ、各電極の
一端に金リード線を金ペーストにより固定化させた。こ
の対向くし形電極上に、ポリ[1-(トリメチルシリル)-1-
プロピン]の1重量%トルエン溶液を3滴滴下し、室温下で
自然乾燥することにより、対向くし形電極被覆膜(厚さ
約1μm)を形成させた。得られた素子の室温における直
流抵抗は、520MΩであった。
Example 1 A pair of opposed comb-shaped gold electrodes (thickness: about 0.5 μm) were formed on an alumina substrate (5 × 5 × 0.5 mm) by vapor deposition, and a gold lead wire was formed at one end of each electrode. It was fixed with gold paste. Poly [1- (trimethylsilyl) -1-
3 drops of a 1 wt% toluene solution of propyne] were dropped and naturally dried at room temperature to form a counter-comb-shaped electrode coating film (thickness: about 1 μm). The direct current resistance of the obtained device at room temperature was 520 MΩ.

【0025】(1)この素子に、85℃の水蒸気を吹きかけ
たところ、約2秒でその抵抗値が50MΩに低下した。ま
た、この素子に、室温下の空気(相対湿度95%)を接触さ
せたところ、接触後約0.2秒で抵抗値は170MΩに低下し
た。この操作を、1分間毎に1時間くり返したが、その
再現性は良好であった。
(1) When steam of 85 ° C. was sprayed on this element, its resistance value decreased to 50 MΩ in about 2 seconds. When air (relative humidity 95%) at room temperature was brought into contact with this device, the resistance value decreased to 170 MΩ in about 0.2 seconds after the contact. This operation was repeated every 1 minute for 1 hour, and the reproducibility was good.

【0026】(2)この素子に、室温で10%のメタノール蒸
気を含む空気を勢い良く5秒間吹きかけたところ、約0.2
秒で表面抵抗値は30MΩに低下した。メタノール蒸気含
有空気の吹きかけを中断すると、約5秒で表面抵抗値は
約520MΩに戻った。このような操作を、1分間毎に10時
間くり返したが、再現性は良好であった。
(2) When air containing 10% methanol vapor was vigorously blown onto this device for 5 seconds at room temperature, the result was about 0.2.
The surface resistance value decreased to 30 MΩ in seconds. When the blowing of the air containing methanol vapor was stopped, the surface resistance value returned to about 520 MΩ in about 5 seconds. This operation was repeated every 1 minute for 10 hours, and the reproducibility was good.

【0027】(3)この素子に、室温で10%のアセトン蒸気
を含む空気を勢い良く5秒間吹きかけたところ、約0.2秒
で表面抵抗値は100MΩに低下した。アセトン蒸気含有空
気の吹きかけを中断すると、約5秒で表面抵抗値は約520
MΩに戻った。このような操作を、1分間毎に10時間く
り返したが、再現性は良好であった。
(3) When air containing 10% acetone vapor was vigorously blown onto the device for 5 seconds at room temperature, the surface resistance value decreased to 100 MΩ in about 0.2 seconds. When the blowing of the air containing acetone vapor is interrupted, the surface resistance value is about 520 in about 5 seconds.
Returned to MΩ. This operation was repeated every 1 minute for 10 hours, and the reproducibility was good.

【0028】比較例 実施例1で得られた素子に、室温で15%のn-ヘキサン蒸
気を含む空気を勢い良く吹きかけたが、表面抵抗値に変
化はみられなかった。
Comparative Example The element obtained in Example 1 was vigorously blown with air containing 15% n-hexane vapor at room temperature, but no change was observed in the surface resistance value.

【0029】実施例2 アルミナ基板上(5×5×0.5mm)に、蒸着法によりくし形
金電極(厚さ約0.5μm)を下部電極として形成させ、次い
で実施例1と同様にして、このくし形金電極を覆うポリ
[1-(トリメチルシリル)-1-プロピン]被覆膜を形成させ
た後、下部くし形電極とは直交する位置関係にあるくし
形金電極(厚さ約0.5μm)を上部電極として形成させ、金
リード線をそれぞれ取り付けた。
Example 2 A comb-shaped gold electrode (having a thickness of about 0.5 μm) was formed as a lower electrode on an alumina substrate (5 × 5 × 0.5 mm) by a vapor deposition method, and then the same procedure as in Example 1 was performed. Poly covering the comb-shaped gold electrode
After forming the [1- (trimethylsilyl) -1-propyne] coating film, a comb-shaped gold electrode (thickness: about 0.5 μm) in a positional relationship orthogonal to the lower comb-shaped electrode is formed as the upper electrode, Each gold lead was attached.

【0030】得られた素子の室温における直流抵抗は60
0MΩで、これに85℃の水蒸気を吹きかけると、約2秒で
その抵抗値が50MΩに低下した。
The DC resistance of the obtained device at room temperature was 60.
When it was 0 MΩ and 85 ° C steam was sprayed on it, the resistance value decreased to 50 MΩ in about 2 seconds.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 絶縁性基板、1組の電極およびポリ[1-
(トリメチルシリル)-1-プロピン]被覆膜を順次積層して
なる湿度センサ。
1. An insulating substrate, a pair of electrodes and poly [1-
(Trimethylsilyl) -1-propyne] A humidity sensor made by sequentially laminating coating films.
【請求項2】 絶縁性基板、下部電極、ポリ[1-(トリメ
チルシリル)-1-プロピン]膜および上部電極を順次積層
してなる湿度センサ。
2. A humidity sensor comprising an insulating substrate, a lower electrode, a poly [1- (trimethylsilyl) -1-propyne] film, and an upper electrode, which are sequentially laminated.
【請求項3】 下部電極を兼ねた導電性基板、ポリ[1-
(トリメチルシリル)-1-プロピン]膜および上部電極を順
次積層してなる湿度センサ。
3. A conductive substrate also serving as a lower electrode, poly [1-
(Trimethylsilyl) -1-propyne] film and upper electrode are laminated in this order.
【請求項4】 絶縁性基板、1組の電極およびポリ[1-
(トリメチルシリル)-1-プロピン]被覆膜を順次積層して
なるアルコールセンサ。
4. An insulating substrate, a pair of electrodes and poly [1-
(Trimethylsilyl) -1-propyne] An alcohol sensor formed by sequentially laminating coating films.
【請求項5】 絶縁性基板、下部電極、ポリ[1-(トリメ
チルシリル)-1-プロピン]膜および上部電極を順次積層
してなるアルコールセンサ。
5. An alcohol sensor comprising an insulating substrate, a lower electrode, a poly [1- (trimethylsilyl) -1-propyne] film, and an upper electrode, which are sequentially laminated.
【請求項6】 下部電極を兼ねた導電性基板、ポリ[1-
(トリメチルシリル)-1-プロピン]膜および上部電極を順
次積層してなるアルコールセンサ。
6. A conductive substrate also serving as a lower electrode, poly [1-
(Trimethylsilyl) -1-propyne] film and an upper electrode are laminated in this order.
【請求項7】 絶縁性基板、1組の電極およびポリ[1-
(トリメチルシリル)-1-プロピン]被覆膜を順次積層して
なるケトンセンサ。
7. An insulating substrate, a pair of electrodes and poly [1-
(Trimethylsilyl) -1-propyne] A ketone sensor formed by sequentially laminating coating films.
【請求項8】 絶縁性基板、下部電極、ポリ[1-(トリメ
チルシリル)-1-プロピン]膜および上部電極を順次積層
してなるケトンセンサ。
8. A ketone sensor formed by sequentially laminating an insulating substrate, a lower electrode, a poly [1- (trimethylsilyl) -1-propyne] film, and an upper electrode.
【請求項9】 下部電極を兼ねた導電性基板、ポリ[1-
(トリメチルシリル)-1-プロピン]膜および上部電極を順
次積層してなるケトンセンサ。
9. A conductive substrate also serving as a lower electrode, poly [1-
(Trimethylsilyl) -1-propyne] film and an upper electrode are laminated in this order.
JP29449193A 1993-01-29 1993-10-29 Humidity sensor, alcohol sensor or ketone sensor Pending JPH06281610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29449193A JPH06281610A (en) 1993-01-29 1993-10-29 Humidity sensor, alcohol sensor or ketone sensor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3485193 1993-01-29
JP5-34851 1993-01-29
JP29449193A JPH06281610A (en) 1993-01-29 1993-10-29 Humidity sensor, alcohol sensor or ketone sensor

Publications (1)

Publication Number Publication Date
JPH06281610A true JPH06281610A (en) 1994-10-07

Family

ID=26373715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29449193A Pending JPH06281610A (en) 1993-01-29 1993-10-29 Humidity sensor, alcohol sensor or ketone sensor

Country Status (1)

Country Link
JP (1) JPH06281610A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002071613A (en) * 2000-06-14 2002-03-12 Shinei Kk Resistance detection type humidity sensing element and its manufacturing method
WO2009045733A2 (en) * 2007-10-05 2009-04-09 3M Innovative Properties Company Organic chemical sensor comprising microporous polymer, and method of use
JP2010139269A (en) * 2008-12-09 2010-06-24 Sharp Corp Chemical substance sensing element, gas analyzer, and method for detecting ethanol concentration using the chemical substance sensing element
JP2010540967A (en) * 2007-10-05 2010-12-24 スリーエム イノベイティブ プロパティズ カンパニー Organic chemical sensors including plasma deposited microporous layers, and methods of making and using the same
US20110254568A1 (en) * 2008-12-23 2011-10-20 3M Innovative Properties Company Organic chemical sensor with microporous organisilicate material
US9244008B2 (en) 2011-06-16 2016-01-26 3M Innovative Properties Company Surface plasmon resonance sensor element and sensor including the same
US9279792B2 (en) 2011-04-13 2016-03-08 3M Innovative Properties Company Method of using an absorptive sensor element
US9429537B2 (en) 2011-04-13 2016-08-30 3M Innovative Properties Company Method of detecting volatile organic compounds
US9506888B2 (en) 2011-04-13 2016-11-29 3M Innovative Properties Company Vapor sensor including sensor element with integral heating
US9599583B2 (en) 2011-06-08 2017-03-21 3M Innovative Properties Company Humidity sensor and sensor element therefor
US9658198B2 (en) 2011-12-13 2017-05-23 3M Innovative Properties Company Method for identification and quantitative determination of an unknown organic compound in a gaseous medium
US10228344B2 (en) 2010-09-30 2019-03-12 3M Innovative Properties Company Sensor element, method of making the same, and sensor device including the same

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002071613A (en) * 2000-06-14 2002-03-12 Shinei Kk Resistance detection type humidity sensing element and its manufacturing method
EP2205965A4 (en) * 2007-10-05 2015-01-21 3M Innovative Properties Co Organic chemical sensor comprising microporous polymer, and method of use
WO2009045733A3 (en) * 2007-10-05 2009-05-28 3M Innovative Properties Co Organic chemical sensor comprising microporous polymer, and method of use
US8378694B2 (en) * 2007-10-05 2013-02-19 3M Innovative Properties Company Organic chemical sensor comprising plasma-deposited microporous layer, and method of making and using
EP2205965A2 (en) * 2007-10-05 2010-07-14 3M Innovative Properties Company Organic chemical sensor comprising microporous polymer, and method of use
JP2010540966A (en) * 2007-10-05 2010-12-24 スリーエム イノベイティブ プロパティズ カンパニー Organic chemical sensors containing microporous polymers and methods of use
JP2010540967A (en) * 2007-10-05 2010-12-24 スリーエム イノベイティブ プロパティズ カンパニー Organic chemical sensors including plasma deposited microporous layers, and methods of making and using the same
US20110031983A1 (en) * 2007-10-05 2011-02-10 David Moses M Organic chemical sensor comprising plasma-deposited microporous layer, and method of making and using
AU2008307295B2 (en) * 2007-10-05 2011-09-01 3M Innovative Properties Company Organic chemical sensor comprising microporous polymer, and method of use
US8835180B2 (en) 2007-10-05 2014-09-16 3M Innovative Properties Company Organic chemical sensor comprising microporous polymer, and method of use
WO2009045733A2 (en) * 2007-10-05 2009-04-09 3M Innovative Properties Company Organic chemical sensor comprising microporous polymer, and method of use
KR101476487B1 (en) * 2007-10-05 2014-12-24 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Organic chemical sensor comprising plasma-deposited microporous layer, and method of making and using
JP2010139269A (en) * 2008-12-09 2010-06-24 Sharp Corp Chemical substance sensing element, gas analyzer, and method for detecting ethanol concentration using the chemical substance sensing element
US20110254568A1 (en) * 2008-12-23 2011-10-20 3M Innovative Properties Company Organic chemical sensor with microporous organisilicate material
JP2012513590A (en) * 2008-12-23 2012-06-14 スリーエム イノベイティブ プロパティズ カンパニー Organic chemical sensor with microporous organosilicate material
US8409511B2 (en) * 2008-12-23 2013-04-02 3M Innovative Properties Company Organic chemical sensor with microporous organisilicate material
US10228344B2 (en) 2010-09-30 2019-03-12 3M Innovative Properties Company Sensor element, method of making the same, and sensor device including the same
US9279792B2 (en) 2011-04-13 2016-03-08 3M Innovative Properties Company Method of using an absorptive sensor element
US9429537B2 (en) 2011-04-13 2016-08-30 3M Innovative Properties Company Method of detecting volatile organic compounds
US9506888B2 (en) 2011-04-13 2016-11-29 3M Innovative Properties Company Vapor sensor including sensor element with integral heating
US9599583B2 (en) 2011-06-08 2017-03-21 3M Innovative Properties Company Humidity sensor and sensor element therefor
US9244008B2 (en) 2011-06-16 2016-01-26 3M Innovative Properties Company Surface plasmon resonance sensor element and sensor including the same
US9658198B2 (en) 2011-12-13 2017-05-23 3M Innovative Properties Company Method for identification and quantitative determination of an unknown organic compound in a gaseous medium

Similar Documents

Publication Publication Date Title
Yamazoe et al. Humidity sensors: principles and applications
Sakai et al. Humidity sensors based on polymer thin films
Chen et al. Humidity sensors: a review of materials and mechanisms
EP0578742B1 (en) Sensors based on nano-structured composite films
US5348761A (en) Use of a swellable plastic and process for making a resistive moisture sensor
US6040189A (en) Gas sensor test chip sensing method
KR100351810B1 (en) absolute humidity sensor
JPH06281610A (en) Humidity sensor, alcohol sensor or ketone sensor
US20060099113A1 (en) Compositionally different polymer-based sensor elements and methods for preparing same
KR20100053082A (en) The capacitance type humidity sensor and fabrication method thereof
JPS59202052A (en) Humidity sensitive element
WO1993016377A1 (en) Humidity sensor and its manufacture
US20020014415A1 (en) Sensor fabricating method
Bearzotti et al. Investigations on the response to humidity of an interdigitated electrode structure coated with iodine doped polyphenylacetylene
US6796166B1 (en) All polymer humidity sensor based on laser carbonized polyimide substrate
JP3921800B2 (en) GAS SENSOR, GAS MEASURING DEVICE, AND METHOD FOR MANUFACTURING GAS MEASURING DEVICE
JPH06118045A (en) Humidity sensor
JPH0212048A (en) Production of capacity change type moisture sensitive element
JPH02190754A (en) Humidity sensor
JPH02285242A (en) Humidity sensitive element
JPH03223648A (en) Thin film moisture sensitive element
Korotcenkov et al. Humidity-Sensitive Materials
JPH03202798A (en) Thin film moisture sensitive element
JP2529137B2 (en) Moisture-sensitive element and manufacturing method thereof
JPH03122591A (en) Thin film moisture-sensitive element