JPS63289443A - Moisture sensing element - Google Patents

Moisture sensing element

Info

Publication number
JPS63289443A
JPS63289443A JP12616487A JP12616487A JPS63289443A JP S63289443 A JPS63289443 A JP S63289443A JP 12616487 A JP12616487 A JP 12616487A JP 12616487 A JP12616487 A JP 12616487A JP S63289443 A JPS63289443 A JP S63289443A
Authority
JP
Japan
Prior art keywords
sensitive film
substrate
sensitive
film
water vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12616487A
Other languages
Japanese (ja)
Inventor
Takashi Sugihara
孝志 杉原
Kazutaka Uda
和孝 宇田
Hiroki Tabuchi
宏樹 田渕
Yasuhiko Inami
井波 靖彦
Masaya Hijikigawa
正也 枅川
Terue Kataoka
片岡 照栄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP12616487A priority Critical patent/JPS63289443A/en
Priority to US07/078,741 priority patent/US4928513A/en
Priority to DE3724966A priority patent/DE3724966C3/en
Priority to GB8717919A priority patent/GB2194845B/en
Publication of JPS63289443A publication Critical patent/JPS63289443A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To achieve a higher sensitivity sensitivity and response and a lower power consumption in detection, by arranging an element construction using a microbridge, cantilever or diaphragm structure while a sensitive film having several protrusions and recesses is provided. CONSTITUTION:A bridge-shaped thin film insulation layer 2 is formed on an Si substrate 1 and then, a microbridge 3 is formed having a hollow construction between a portion below an insulation layer bridge section and a substrate 1 by crystal axis anisotropic etching of Si as substrate 1 to make an element construction excellent in a lower heat capacity. Ideal for an insulation layer material is those lower in the heat capacity and close in the modulus of thermal expansion to the substrate 1, for example, SiO2, Si3N4, Al2O3 and ZrO2 and a cantilever or diaphragm structure is applicable in the shape. Moreover, a sensitive film 4 having protrusions and recesses on the surface thereof is formed on the microbridge 3 by performing a microprocessing using chemical and physical methods to increase the surface area of the sensitive film per unit area. The sensitive film material can employ Ge, SiC, TaN or the like as thin film material with a large thermistor constant.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、湿度計測において直接水蒸気量を検知しうる
絶対湿度センサに係り、特に高感度な検出能力、高速応
答特性さらには低消費電力を得る感湿素子に関するもの
である。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to an absolute humidity sensor that can directly detect the amount of water vapor in humidity measurement. The present invention relates to a moisture sensitive element.

〈従来の技術とその問題点〉 従来より感湿素子あるいは湿度センサとしては多種類の
ものが開発されており、特に雰囲気中の相対湿度を検出
するセンサとしては感湿材料の電気抵抗値あるいは静電
容量が雰囲気中に湿気あるいは水蒸気に感応して変化す
ることを利用し、主に次に上げるものが知られている。
<Conventional technology and its problems> Many types of humidity sensing elements or humidity sensors have been developed in the past, and in particular sensors for detecting relative humidity in the atmosphere are based on the electrical resistance value or static The following methods are mainly known, which take advantage of the fact that capacitance changes in response to moisture or water vapor in the atmosphere.

■酸化鉄(Fe2O3+Fe304) 、酸化錫(Sn
02)などの金属酸化物の焼結体あるいは金属酸化膜を
用いたもの、■親水性高分子膜あるいは高分子電解質さ
らには繊維高分子を用いたもの、■塩化ソリチウム L
iC1)等の電解質塩な用いたもの及び■吸湿性樹脂あ
るいは吸湿性高分子膜などに炭素等の導電性粒子又は繊
維を分散させたものなどである。
■Iron oxide (Fe2O3+Fe304), tin oxide (Sn
02) etc., ■Those using a hydrophilic polymer membrane or polymer electrolyte, or even fiber polymer, ■Solithium chloride L
Examples include those using electrolyte salts such as iC1), and (2) those in which conductive particles or fibers such as carbon are dispersed in a hygroscopic resin or a hygroscopic polymer membrane.

以上のセンサは検出湿度領域、検出感度及び精度、応答
速度、信頼性、耐環境性等大々に長所・短所を有するが
、例えば、電子レンジ内の動作時における雰囲気の様に
雰囲気温度が急激に変化する環境下での微量な水蒸気検
知には温度の関数である相対湿度の変化が以下の様に考
えられるため、上記感湿素子あるいは湿度センサを用い
た湿度計測には大きな問題がある。すなわち、検出雰囲
気内の水蒸気量が一定であると仮定し、この雰囲気の温
度のみが上昇する場合、相対湿度は水蒸気量が一定であ
っても飽和水蒸気圧の関係で低下し、さらに、温度の上
昇が急激であれば微量の水蒸気の増加は相対湿度として
は温度変化に相殺されるかやはり低下してしまうことが
予想され丙寅的な水蒸気量の変化を反映した結果が得ら
れない。従って、前述した様な環境の湿度計測には相対
湿度検知よりも直接水蒸気量を検出可能な絶対湿度検知
が有利と考えられる。
The above sensors have many advantages and disadvantages, such as detection humidity range, detection sensitivity and accuracy, response speed, reliability, and environmental resistance. When detecting a small amount of water vapor in an environment that changes rapidly, the following changes in relative humidity as a function of temperature can be considered, so there is a big problem in measuring humidity using the above-mentioned humidity sensing element or humidity sensor. In other words, assuming that the amount of water vapor in the detection atmosphere is constant and only the temperature of this atmosphere increases, the relative humidity will decrease due to the saturated water vapor pressure even if the amount of water vapor is constant; If the rise is rapid, it is expected that the slight increase in water vapor will be offset by the temperature change or the relative humidity will actually decrease, making it impossible to obtain results that reflect large changes in the amount of water vapor. Therefore, absolute humidity detection, which can directly detect the amount of water vapor, is considered to be more advantageous than relative humidity detection for measuring the humidity in the environment as described above.

絶対湿度(水蒸気量)の検知手段としては、従来より水
蒸気によるマイクロ波の減衰や赤外線の吸収等を応用し
た計測装置が用いられている。これらは物理的手法によ
り直接水蒸気を検出可能であることから前述の急激な温
度変化を伴う様な環境においても水蒸気の少量変化検出
に有利となる反面、温度補償をも含めた装置の構成は大
がかりでありコストもかなり高いものとなる。又、湿り
空気と乾き空気の熱伝導率差を利用し、特性のそろった
2個のサーミスタを用いる熱伝導式の絶対湿度センサが
あり、小型で耐環境性にも優れているが、従来のものは
水蒸気量の微小変化に対して良好な出力が得られず検出
感度の高感度化、高速応答性という点で問題があった。
As means for detecting absolute humidity (amount of water vapor), measurement devices that utilize the attenuation of microwaves by water vapor, the absorption of infrared rays, etc. have been conventionally used. Since these devices can directly detect water vapor using physical methods, they are advantageous for detecting small changes in water vapor even in environments that involve sudden temperature changes as mentioned above, but on the other hand, the configuration of the device including temperature compensation is large-scale. Therefore, the cost is also quite high. There is also a thermal conduction type absolute humidity sensor that uses two thermistors with the same characteristics, making use of the difference in thermal conductivity between humid air and dry air.It is small and has excellent environmental resistance, but compared to conventional However, it was not possible to obtain good output against minute changes in the amount of water vapor, and there were problems in terms of high detection sensitivity and high-speed response.

〈発明の概要〉 本発明は、以上に述べた様な従来の感湿素子が有してい
た欠点を解消するためになされたもので、あり、湿度計
測において絶対湿度を検出する方式とし、特に検出感度
の高感度化と高速応答化さらには低消費電力化を図るも
のである。
<Summary of the Invention> The present invention has been made in order to eliminate the drawbacks of the conventional moisture sensing elements as described above. The aim is to achieve higher detection sensitivity, faster response, and lower power consumption.

絶対湿度の検出手法としては、前述の空気の熱伝導率が
空気中に含有される水蒸気量に依存することを利用し、
雰囲気の熱伝導率変化に伴う素子からの放散熱量の変化
により生ずる素子温度の変化から水蒸気量を検出する。
The method for detecting absolute humidity uses the aforementioned fact that the thermal conductivity of air depends on the amount of water vapor contained in the air.
The amount of water vapor is detected from the change in element temperature caused by the change in the amount of heat dissipated from the element as the thermal conductivity of the atmosphere changes.

すなわち、一定温度に自己加熱された2つの素子を用い
一方(第1の素子)は検出雰囲気に露出し、他方(第2
の素子)は一定湿度雰囲気に密閉することにより、検出
雰囲気内の水蒸気量変化を第2素子の素子温度変化の差
出力として雰囲気温度の影響を受けず高精度に検知可能
とする。従って、高感度、高速応答及び低消費電力を実
現するためには素子の熱容量を極力低減し、且つ良好な
る熱放散の得られる素子構造とする必要がある。
That is, using two elements that are self-heated to a constant temperature, one (the first element) is exposed to the detection atmosphere, and the other (the second element) is exposed to the detection atmosphere.
By sealing the element in a constant humidity atmosphere, it is possible to detect a change in the amount of water vapor in the detection atmosphere with high precision as a differential output of a change in element temperature of the second element without being affected by the ambient temperature. Therefore, in order to achieve high sensitivity, high-speed response, and low power consumption, it is necessary to reduce the heat capacity of the element as much as possible and to provide an element structure that provides good heat dissipation.

そこで、本発明の感湿素子は従来の熱伝導式絶対湿度セ
ンサの小型化を図るばかりでなく、マイクロマシニング
技術を駆使して作製したブリッジ。
Therefore, the humidity sensing element of the present invention not only miniaturizes the conventional thermal conduction type absolute humidity sensor, but also has a bridge fabricated by making full use of micromachining technology.

カンチレバーあるいはダイヤフラム上に感応膜を形成す
ることで熱容量の低減を図り、さらに感応膜表面あるい
は感応膜を形成する基体の表面に微細加工技術により複
数個の凹凸を設は素子放熱面積の飛躍的増大を図った素
子構造としている。又、感応膜としてGe、SiC,T
aN 等のサーミスタ定数の大きい材料の薄膜を用い、
素子の温度変化を感応膜の抵抗変化として良好に出力で
きる。さら   ゛に、物理的手法による検出であるた
め、水分の吸脱着に伴う電気特性の変化を利用する化学
的手法による検出に比較して感応膜等の汚染に対しても
安定であり、耐環境性にも優れたものとなる。素子作製
においても、マイクロマシニング技術、感応膜の微細加
工技術等すべてのプロセスを通常の半導体プロセスまた
はその応用プロセスによるバッチ処理が可能であるため
、素子の再現性、互換性に優れ、又安価な素子とするこ
とができる。
By forming a sensitive film on the cantilever or diaphragm, we aim to reduce the heat capacity, and furthermore, by creating multiple irregularities on the surface of the sensitive film or the surface of the substrate on which the sensitive film is formed using microfabrication technology, we can dramatically increase the heat dissipation area of the element. The device structure is designed to achieve this. In addition, as a sensitive film, Ge, SiC, T
Using a thin film of a material with a large thermistor constant such as aN,
Temperature changes in the element can be effectively output as resistance changes in the sensitive film. Furthermore, since detection is performed using a physical method, it is more stable against contamination of sensitive membranes and has better environmental resistance than detection using chemical methods that utilize changes in electrical properties due to adsorption and desorption of moisture. It also has excellent sex. In device manufacturing, all processes such as micromachining technology and sensitive film microfabrication technology can be batch-processed using normal semiconductor processes or their applied processes, resulting in excellent device reproducibility, compatibility, and low cost. It can be an element.

以上述べた様に、本発明は、上記幾多の利点を有し、特
に、水蒸気検出感度の高感度化、高速応答性に優れ、電
子レンジにおける食品仕上りセンサ等としての応用に適
した感湿素子を提供することを目的とするものである。
As described above, the present invention has a number of advantages as described above, and in particular, is excellent in high water vapor detection sensitivity and high-speed response, and is suitable for application as a food finishing sensor in a microwave oven. The purpose is to provide the following.

〈実施例1.〉 第1同人)β)は本発明の1実施例を示す感湿素子の構
造模式斜視図及び断面図である。Si基板l上にブリッ
ジ形状の薄膜絶縁層2を形成した後、基板lであるSi
の結晶軸異方性エツチングを行うことにより絶縁層ブリ
ッジ部下のエツチングにて基板1−絶縁層ブリッジ部3
(以下マイクロブリッジと称す。)間に中空構造を有し
、熱絶縁すなわち低熱容量化に優れた素子構造とし、さ
らに、マイクロブリッジ3上に化学的、物理的手法によ
り微細加工された感応膜4を形成し単位面積当りの感応
膜表面積を増大している。又、5は感応膜の自己加熱あ
るいは感応膜の電気抵抗評価に用いる電極である。
<Example 1. 〉 1st Doujin) β) is a schematic structural perspective view and a sectional view of a moisture-sensitive element showing one embodiment of the present invention. After forming the bridge-shaped thin film insulating layer 2 on the Si substrate l,
By performing crystal axis anisotropic etching, the substrate 1-insulating layer bridge portion 3 is etched under the insulating layer bridge.
(hereinafter referred to as a microbridge) The element structure has a hollow structure in between and is excellent in thermal insulation, that is, low heat capacity.Furthermore, a sensitive film 4 is microfabricated by chemical and physical methods on the microbridge 3. This increases the surface area of the sensitive film per unit area. Further, 5 is an electrode used for self-heating the sensitive film or evaluating the electrical resistance of the sensitive film.

この素子の作製プロセスについて詳細に述べると、まず
、結晶軸の方位により化学エツチングの速度が異なる5
iを基板とし、基板上と基板裏面、側面に、マイクロブ
リッジ3となり、且つ、化学エツチング時のマスクとな
る薄膜絶縁層2を材料に応じて熱酸化法、スパッタ法、
CVD法等により形成し、ホトリソグラフィー技術と化
学エツチング手法あるいはドライエツチング手法により
ブリッジ形状に微細加工を行う。又、ブリッジの強度等
を考慮し、ブリッジ部の絶縁層下に所定の厚みのSiを
残し、絶縁層と基板材料の2層から成るブリッジを形成
することも有用であり、その場合は基板のブリッジ部に
あらかじめボロン(B1等を高濃度に拡散あるいはドー
プすることにより、その部分を異方性エツチング(化学
エツチング)時のストップ層とし、結果として絶縁層と
基板材料からなるブリッジが形成される。尚、絶縁層材
料としてはS i02 、S I 3N45AN20B
 、Z r02等低熱容量にて基板1と比較的熱膨張率
の近いものが良く、形状としてもカンチレバー構造も有
用であり、カンチレバーを絶縁層と基板材料の2層材料
にて形成しても良い。次に、感応膜4を真空蒸着法。
To describe the manufacturing process of this device in detail, first, the rate of chemical etching differs depending on the orientation of the crystal axis.
i is a substrate, and a thin film insulating layer 2, which will become a micro bridge 3 and a mask during chemical etching, is formed on the substrate, the back surface, and the side surface of the substrate by thermal oxidation method, sputtering method, or depending on the material.
It is formed by a CVD method or the like, and microfabricated into a bridge shape by photolithography, chemical etching, or dry etching. In addition, considering the strength of the bridge, it is also useful to leave a predetermined thickness of Si under the insulating layer at the bridge part to form a bridge consisting of two layers, the insulating layer and the substrate material. By pre-diffusing or doping boron (B1, etc.) into the bridge part at a high concentration, that part becomes a stop layer during anisotropic etching (chemical etching), and as a result, a bridge made of the insulating layer and the substrate material is formed. In addition, the insulating layer materials are S i02 and S I 3N45AN20B.
, Z r02, etc., which have a low heat capacity and a coefficient of thermal expansion relatively similar to that of the substrate 1 are preferable, and a cantilever structure is also useful in terms of shape, and the cantilever may be formed of a two-layer material of an insulating layer and a substrate material. . Next, the sensitive film 4 is formed by vacuum evaporation.

スパッタ法、CVD法にて絶縁層ブリッジ部に作製する
。この後、感応膜を所定の形状1寸法に微細加工し、さ
らにフォトリングラフィ技術と化学エツチング手法ある
いはプラズマエツチング等のドライエツチング手法を用
いて感応膜7を第2図に示す様な波形状に微細加工する
。形状は必ずしも第2同人)の様な台形状突起である必
要はなく、多角錐2円錐、半球状または第3国人)に示
す平頭波形状であっても良く、第2図(B)、第3図β
)のような一定周期を有する凹凸でもよい。又、第4図
に示す様に感応膜を加工する以外に絶縁層表面あるいは
ブリッジが基板材料と絶縁層の2層から成る場合は、基
板材料の感応膜を形成する基体9表面に凹凸形状の微細
加工をし、この上に凹凸に沿って感応膜を堆積すること
により感応膜を周期的な凹凸形状に成形しても良い。さ
らには、感応膜を所定の形状9寸法に微細加工をする際
、第5図に示す如くフォトリングラフィ技術と化学的も
しくは物理的エツチング手法により、所定の線幅。
The insulating layer is formed on the bridge portion by sputtering or CVD. Thereafter, the sensitive film 7 is microfabricated into a predetermined shape with one dimension, and the sensitive film 7 is shaped into a wave shape as shown in FIG. Perform fine processing. The shape does not necessarily have to be a trapezoidal protrusion like that shown in Figure 2 (B), but may also be a polygonal pyramid, a hemisphere, or a flat wave shape as shown in Figures 2 (B) and 3. Figure 3 β
) may have irregularities having a constant period. In addition to processing the sensitive film as shown in FIG. 4, if the insulating layer surface or the bridge is composed of two layers, the substrate material and the insulating layer, the surface of the base 9 on which the sensitive film of the substrate material is formed is processed to have an uneven shape. The sensitive film may be formed into a periodic uneven shape by performing microfabrication and depositing the sensitive film thereon along the unevenness. Furthermore, when the sensitive film is microfabricated into a predetermined shape and nine dimensions, a predetermined line width is obtained using photolithography technology and chemical or physical etching techniques, as shown in FIG.

線間から成るジグザグ(ミアンダリング)状12に微細
加工することも有用であり、第6図には絶縁層カンチレ
バー15上に感応膜16をミアンダリング状に形成した
状態で模式的に示している。
It is also useful to perform fine processing in a zigzag (meandering) shape 12 consisting of lines, and FIG. 6 schematically shows a state in which a sensitive film 16 is formed in a meandering shape on an insulating layer cantilever 15. .

又、前述した様に感応膜を設ける基体自体を凹凸形状に
微細加工しておき、その凹凸に沿って感応膜を堆積した
後、感応膜をミアンダリング状に微細加工したものも良
い。尚、感応膜材料としてはサーミスタ定数の大きい薄
膜材料として、Ge。
Alternatively, as described above, the substrate itself on which the sensitive film is to be provided may be micro-processed into an uneven shape, the sensitive film may be deposited along the unevenness, and then the sensitive film may be micro-processed into a meandering shape. In addition, as a sensitive film material, Ge is used as a thin film material with a large thermistor constant.

SiC、TaN等を用いることができ、ここでは、Ge
を用いている。微細加工による凹凸が形成された感応膜
上に、真空蒸着法、スパッタ法、C■法等にて金属材料
から成る薄膜電極5をオーミック接触が得られる様に形
成する。電極形状は必ずしも第1図の様な1対の対向電
極である必要はなく、感応膜の比抵抗等によっては櫛歯
状電極等でも良く、感応膜に接していれば感応膜の上面
、下面のいずれに形成しても良い。又、感応膜をミアン
ダリング形状にパターン化した場合は、電極は第7図に
模式的に示すパッド20部分のみで良い。
SiC, TaN, etc. can be used, and here Ge
is used. A thin film electrode 5 made of a metal material is formed by vacuum evaporation, sputtering, C2 method, etc. on the sensitive film on which the unevenness is formed by micromachining so as to obtain ohmic contact. The shape of the electrodes does not necessarily have to be a pair of opposing electrodes as shown in Figure 1. Depending on the specific resistance of the sensitive membrane, it may be a comb-shaped electrode, etc., and if it is in contact with the sensitive membrane, it can cover the upper and lower surfaces of the sensitive membrane. It may be formed in any of the following. Further, when the sensitive film is patterned in a meandering shape, the electrode only needs to be provided at the pad 20 portion schematically shown in FIG.

以上の工程の後、基板1であるSlを所定の時間E、P
、W (エチレンジアミンーピロカテコー/’ −水)
等の溶液を用いて化学エツチングすなわち、結晶軸異方
性エツチングを行うとエツチング液のマスクとなる絶縁
層のない部分から優先結晶軸方向にSiのエツチングが
進行していき、絶縁層ブリッシバターン下のStが除か
れ結果として、感応膜表面に微細な凹凸を形成すること
により放熱面積の増大を図ったマイクロブリッジ構造の
微小チップ感湿素子が得られる。
After the above steps, the substrate 1 (Sl) is heated for a predetermined period of time E, P.
, W (ethylenediamine-pyrocatechol/'-water)
When chemical etching, that is, crystal axis anisotropic etching, is performed using a solution such as Etching Solution, Si etching progresses in the preferential crystal axis direction from the part where there is no insulating layer that serves as a mask for the etching solution, and the insulating layer bridge pattern is As a result of removing the lower St, a microchip moisture sensing element having a microbridge structure is obtained in which the heat dissipation area is increased by forming fine irregularities on the surface of the sensitive film.

次に、絶対湿度センサとしての詳細な動作機構は以下の
如くである。前述した様に、検出(測定)雰囲気の熱伝
導率が含有される水蒸気の量によって変化することを利
用した熱伝導式の絶対湿度センサを構成する2つの感湿
素子からなり、第1の素子は検出雰囲気に露出して設置
し、検出雰囲気の水蒸気量変化が熱伝導率の変化として
素子に伝搬される。一方、第2の素子は一定湿度雰囲気
具体的には乾燥窒素等を封入し密閉した状態とし、外部
からの水蒸気の混入のない構造とする。この状態にて第
1、第2の素子を同一温度に加熱し水蒸気量の検出を行
なう。この時、検出雰囲気の水蒸気量が一定と仮定し、
雰囲気の温度が変化した場合、第1、第2の素子ではと
もに同一変化幅の素子温度変化を生じる。ところが、雰
囲気中の水蒸気量の変化に関しては、第1と第2の素子
とでは夫々の素子の周囲雰囲気の熱伝導率が水蒸気によ
って異なるため、2つの素子夫々の素子温度変化幅は異
なり且つ雰囲気温度による影響は第1、第2素子とも同
様であるため、結果としてその素子温度変化幅の差分は
水蒸気量に依存するものとなる。従って、2つの素子の
差出力を得ることにより雰囲気温度の変動に依らず高精
度に水蒸気量の検出が可能となる。又、素子からの出力
信号としては素子温度変化による感応膜の抵抗変化によ
り得ることができる。
Next, the detailed operating mechanism as an absolute humidity sensor is as follows. As mentioned above, a thermal conduction type absolute humidity sensor that utilizes the fact that the thermal conductivity of the detection (measurement) atmosphere changes depending on the amount of water vapor contained in the atmosphere is comprised of two humidity sensing elements. is installed exposed to the detection atmosphere, and changes in the amount of water vapor in the detection atmosphere are propagated to the element as changes in thermal conductivity. On the other hand, the second element is kept in a constant humidity atmosphere, specifically, sealed with dry nitrogen or the like, and has a structure that prevents water vapor from entering from the outside. In this state, the first and second elements are heated to the same temperature and the amount of water vapor is detected. At this time, assuming that the amount of water vapor in the detection atmosphere is constant,
When the temperature of the atmosphere changes, the element temperature changes with the same width in both the first and second elements. However, regarding changes in the amount of water vapor in the atmosphere, the thermal conductivity of the surrounding atmosphere of the first and second elements differs depending on the water vapor. Since the influence of temperature is the same for both the first and second elements, as a result, the difference in the width of temperature change of the elements depends on the amount of water vapor. Therefore, by obtaining the differential output of the two elements, it is possible to detect the amount of water vapor with high accuracy regardless of fluctuations in ambient temperature. Further, an output signal from the element can be obtained by a change in the resistance of the sensitive film due to a change in the element temperature.

以上の如き動作機構を基本とするため、特性の高感度化
、高速応答性及び低消費電力を得るためには、熱絶縁に
優れた基体上に感応膜を形成することにより素子の熱容
量を極めて小さくし、且つ基体単位面積あたりの感応膜
の放熱面積増大を図ることが重要であり、本実施例の素
子は異方性エツチングを中心としたマイクロマシニング
技術及びホトリソグラフィ技術と化学エツチング、ドラ
イエツチング等を駆使した微細加工技術により水蒸気検
出感度の従来にない高感度化、高速応答化。
Based on the above operating mechanism, in order to obtain high sensitivity characteristics, high-speed response, and low power consumption, the heat capacity of the device must be maximized by forming a sensitive film on a substrate with excellent thermal insulation. It is important to reduce the size and increase the heat dissipation area of the sensitive film per unit area of the substrate, and the device of this example uses micromachining technology centered on anisotropic etching, photolithography technology, chemical etching, and dry etching. Micro-fabrication technology that makes full use of these techniques has enabled unprecedented water vapor detection sensitivity and high-speed response.

低消費電力化を実現可能とするものである。This makes it possible to achieve lower power consumption.

この様に、上記実施例の感湿素子は熱伝導式のための直
接水蒸気量を検知することができ絶対湿度センサへの応
用に適し、従来にない高い検出感度と高速応答性さらに
は低消費電力を有するものであり、又物理的手法によっ
て水蒸気を検出するため耐環境性にも優れており電子レ
ンジの食品仕上りセンサ等への応用に有益である。
In this way, the humidity sensing element of the above example can directly detect the amount of water vapor for a thermal conduction type, and is suitable for application to an absolute humidity sensor, and has unprecedented high detection sensitivity and high-speed response, as well as low consumption. Since it has electric power and detects water vapor using a physical method, it has excellent environmental resistance and is useful for applications such as food finishing sensors in microwave ovens.

〈実施例2.〉 第8図へ)β)C1は本発明の第2の実施例を示す感湿
素子の構造模式斜視図と断面図である。Si基板上と基
板裏面及び側面に薄膜絶縁層を形成し、且つ裏面の絶縁
層はダイヤフラム形成に必要なパターンに応じ異方性エ
ツチングのマスクとして所定の形状1寸法にてエツチン
グしておき、絶縁層の形成されていないSlの異方性エ
ツチングを行うことにより、Si基板21に設けられた
絶縁層22とSi基板材料の2層より成るダイヤフラム
23を形成している。さらに、ダイヤフラム上に所定形
状1寸法にパターン化された感応膜24を有し、且つ感
応膜表面には微細加工技術により所定の形状1寸法にて
複数個の凹凸が形成され、櫛歯電極25により感応膜2
4の抵抗が得られる構造である。素子の作製法の詳細は
ほぼ上記実施例1、に準じるが、ダイヤフラム部の基板
材料のストップ層としては、予めB等を高濃度にドープ
することにより得ている。従って、ダイヤフラムはこの
Bドープされた基板材料と絶縁層の2層によって形成さ
れている。又、ダイヤフラム部の基板材料の厚みは必ず
しもB等をドープすることで制御する必要はなく、異方
性エツチングの時間のみによって制御することも可能で
あり、さらには、基板材料をすべてエツチングし絶縁層
のみによりダイヤフラムを形成することも良い。又、感
応膜表面の凹凸形状あるいは凹凸の形成方法も実施例1
゜に準じミアンダリング形状も有用である。
<Example 2. >> Go to FIG. 8) β) C1 is a schematic structural perspective view and a cross-sectional view of a moisture-sensitive element showing a second embodiment of the present invention. A thin film insulating layer is formed on the Si substrate and on the back and side surfaces of the substrate, and the insulating layer on the back side is etched in a predetermined shape with one dimension as a mask for anisotropic etching according to the pattern required to form the diaphragm. By performing anisotropic etching of Sl on which no layer is formed, a diaphragm 23 consisting of two layers, an insulating layer 22 provided on a Si substrate 21 and a Si substrate material, is formed. Further, the diaphragm has a sensitive film 24 patterned in a predetermined shape and one dimension, and a plurality of concave and convex portions in a predetermined shape and one dimension are formed on the surface of the sensitive film by microfabrication technology. Sensitive membrane 2
This structure provides a resistance of 4. The details of the device manufacturing method are almost the same as in Example 1 above, but the stop layer of the substrate material of the diaphragm portion is obtained by doping B or the like at a high concentration in advance. The diaphragm is therefore formed by two layers: this B-doped substrate material and an insulating layer. Furthermore, the thickness of the substrate material of the diaphragm part does not necessarily have to be controlled by doping with B or the like, but can also be controlled only by the anisotropic etching time. It is also possible to form a diaphragm using only layers. In addition, the uneven shape or the method for forming unevenness on the surface of the sensitive film is also described in Example 1.
A meandering shape similar to ゜ is also useful.

この様にして得られるダイヤフラム型の感湿素子は、従
来の熱伝導式の感湿素子に比較して、感応膜の熱絶縁す
なわち素子の熱容量低減、又素子からの熱放散では飛躍
的向上が得られるものの、ブリッジあるいはカンチレバ
ー型の素子と比較すると若干劣る。しかし、ダイヤフラ
ム部の機械的強度を考えるとブリッジあるいはカンチレ
バーに比較して有利であり、従って、高感度、高速応答
The diaphragm-type moisture-sensing element obtained in this way has a dramatic improvement in thermal insulation of the sensitive film, that is, a reduction in the heat capacity of the element, and heat dissipation from the element, compared to conventional heat-conduction type moisture-sensing elements. However, it is slightly inferior to bridge or cantilever type elements. However, considering the mechanical strength of the diaphragm, it is advantageous compared to bridges or cantilevers, and therefore has high sensitivity and fast response.

低消費電力を有し、機械的強度を要求される使用環境へ
の適用に有益である。
It has low power consumption and is useful for applications where mechanical strength is required.

〈発明の効果〉 本発明に係る感湿素子は、以下に示す実用上極めて有益
な利点を有する。
<Effects of the Invention> The moisture-sensitive element according to the present invention has the following practically extremely useful advantages.

fi+  熱伝導式の絶対湿度センサに応用でき水蒸気
量を直接検知可能であり、特に検出雰囲気の温度が急激
な変化を伴う様な場合の湿度計測に際して相対湿度検知
より有利となる。
fi+ It can be applied to a thermal conduction type absolute humidity sensor and can directly detect the amount of water vapor, which is more advantageous than relative humidity detection especially when measuring humidity when the temperature of the detection atmosphere is accompanied by rapid changes.

(2)  マイクロブリッジ、カンチレバーあるいはダ
イヤフラム構造を用いた素子構成であるため感応膜の熱
絶縁に優れすなわち素子の熱容量を極力低減し、且つ感
応膜表面に複数個の凹凸を設けることにより素子の放熱
面積の飛躍的増大を図ることで、従来にない水蒸気検出
の高感度化。
(2) The element configuration uses a microbridge, cantilever, or diaphragm structure, which provides excellent thermal insulation of the sensitive film, which means that the heat capacity of the element is minimized, and the heat dissipation of the element is improved by providing multiple irregularities on the surface of the sensitive film. By dramatically increasing the surface area, water vapor detection has become more sensitive than ever before.

高速応答性及び低消費電力化を達成している。Achieves high-speed response and low power consumption.

(3)物理的手法により水蒸気を検出するため素子表面
の汚染等に対して安定であり良好なる耐環境性を有して
いる。
(3) Since water vapor is detected by a physical method, it is stable against contamination of the element surface and has good environmental resistance.

(4)  素子の作製が通常の半導体プロセスあるいは
その応用プロセスにてバッチ処理可能であり再現性、互
換性に優れており、又安価な素子とすることができる。
(4) The device can be manufactured by batch processing using a normal semiconductor process or an application process thereof, has excellent reproducibility and compatibility, and can be an inexpensive device.

以上詳述した如く本発明の感湿素子は絶対湿度の検出に
有効であり、安価に作製できるとともに良好なる耐環境
性を有し、大幅な熱容量の低減と放熱面積の増加を図っ
た素子構造により、高感度な検出特性、高速応答性さら
には低消費電力動作等多くの優れた特性を有し、電子レ
ンジの食品仕上りセンサ等多方面への応用に適し1.感
湿素子として実用上極めて有益である。
As detailed above, the humidity sensing element of the present invention is effective in detecting absolute humidity, can be manufactured at low cost, has good environmental resistance, and has an element structure that significantly reduces heat capacity and increases heat dissipation area. 1. It has many excellent characteristics such as high sensitivity detection characteristics, high speed response, and low power consumption operation, making it suitable for many applications such as food finishing sensors in microwave ovens. It is extremely useful in practice as a moisture-sensitive element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(At(B+は本発明の1実施例を示すブリッジ
型感湿素子の構造模式斜視図及び断面図である。 第2図W)03+ 、第3図(3)β)及び第4図は第
1図に示す感湿素子の感応膜要部を拡大して示した模式
斜視図である。 第5図は本発明による感応膜の微細加工構造の一例とし
てミアンダリング形状にパターン化された感応膜要部を
示す模式斜視図である。 第6図K)CBl[C)は本発明の1実施例の説明に供
するカンチレバー型感湿素子の模式斜視図及び断面図で
ある。 第7図はブリッジ上で感応膜をミアンダリング形状に微
細加工した際の電極パッドの1実施例を示す平面図であ
る。 第8図1)βIcIは本発明の1実施例を示すダイヤフ
ラム型感湿素子の模式斜視図及び断面図である。 1.13.21・・・基板、2.14.22・・・絶縁
層、6,61,9.11・・・基体、3,18・・・ブ
リッジ、4.7,71.8,81,10.24・・・感
応膜、5,25・・・電極、12,16.19・・・感
応膜(ミアンダリング形状)、15・・・カンチレバー
、17.20・・・電極パッド、23・・・ダイヤフラ
ム。 代理人 弁理士 杉 山 毅 至(他1名)燭う 0 
凶 一’;’Q!”1− (A’) (B) 第8図
Fig. 1 (At(B+ is a schematic structural perspective view and cross-sectional view of a bridge type moisture sensing element showing one embodiment of the present invention. Fig. 2 W) 03+, Fig. 3 (3) β) and Fig. 4 This figure is a schematic perspective view showing an enlarged main part of the sensitive membrane of the moisture sensitive element shown in FIG. 1. FIG. 5 is a schematic perspective view showing a main part of a sensitive film patterned in a meandering shape as an example of the microfabricated structure of a sensitive film according to the present invention. FIG. 6K) CBl[C] is a schematic perspective view and a sectional view of a cantilever type moisture sensing element for explaining one embodiment of the present invention. FIG. 7 is a plan view showing one embodiment of the electrode pad when the sensitive film is microfabricated into a meandering shape on the bridge. FIG. 8 1) βIcI is a schematic perspective view and a sectional view of a diaphragm type moisture sensing element showing one embodiment of the present invention. 1.13.21...Substrate, 2.14.22...Insulating layer, 6,61,9.11...Base, 3,18...Bridge, 4.7,71.8,81 , 10.24... Sensitive film, 5, 25... Electrode, 12, 16. 19... Sensitive film (meandering shape), 15... Cantilever, 17.20... Electrode pad, 23 ...Diaphragm. Agent Patent Attorney Takeshi Sugiyama (and 1 other person) 0
Kyouichi';'Q! "1- (A') (B) Figure 8

Claims (4)

【特許請求の範囲】[Claims] 1.基板上に積層された絶縁層に橋梁形状もしくは片持
ち梁形状またはダイヤフラム構造の素子搭載部が成形さ
れ、該素子搭載部に蒸気量の変化によって電気的性質が
変化する感応膜が配設され、該感応膜表面は凹凸状に成
形されてなることを特徴とする感湿素子。
1. An element mounting portion having a bridge shape, a cantilever shape, or a diaphragm structure is formed on the insulating layer laminated on the substrate, and a sensitive film whose electrical properties change depending on a change in the amount of vapor is disposed on the element mounting portion, A moisture sensing element characterized in that the surface of the sensing film is formed into an uneven shape.
2.前記感応膜がミアンダリング形状にパターン化され
ている特許請求の範囲第1項記載の感湿素子。
2. The moisture-sensitive element according to claim 1, wherein the sensitive film is patterned in a meandering shape.
3.感応膜を層設する下地面に凹凸面が加工され、該凹
凸面に積層される感応膜の表面が凹凸状を呈する特許請
求の範囲第1項または第2項記載の感湿素子。
3. 3. The moisture sensing element according to claim 1, wherein the underlying surface on which the sensitive film is layered is processed to have an uneven surface, and the surface of the sensitive film laminated on the uneven surface exhibits an uneven surface.
4.感応膜が検出雰囲気に露呈された第1の膜と一定湿
度雰囲気器に密閉されかつ検出雰囲気温度の伝達される
第2の膜との組み合わせによって構成される特許請求の
範囲第1項、第2項または第3項記載の感湿素子。
4. Claims 1 and 2 in which the sensitive film is constituted by a combination of a first film exposed to the detection atmosphere and a second film sealed in a constant humidity atmosphere vessel and to which the detection atmosphere temperature is transmitted. Moisture-sensitive element according to item 1 or 3.
JP12616487A 1986-07-29 1987-05-21 Moisture sensing element Pending JPS63289443A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP12616487A JPS63289443A (en) 1987-05-21 1987-05-21 Moisture sensing element
US07/078,741 US4928513A (en) 1986-07-29 1987-07-28 Sensor
DE3724966A DE3724966C3 (en) 1986-07-29 1987-07-28 sensor
GB8717919A GB2194845B (en) 1986-07-29 1987-07-29 A sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12616487A JPS63289443A (en) 1987-05-21 1987-05-21 Moisture sensing element

Publications (1)

Publication Number Publication Date
JPS63289443A true JPS63289443A (en) 1988-11-25

Family

ID=14928263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12616487A Pending JPS63289443A (en) 1986-07-29 1987-05-21 Moisture sensing element

Country Status (1)

Country Link
JP (1) JPS63289443A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03135702A (en) * 1989-08-16 1991-06-10 Internatl Business Mach Corp <Ibm> Sensor and manufacture thereof
JPH03162602A (en) * 1989-08-16 1991-07-12 Internatl Business Mach Corp <Ibm> Manufacture of micromechanical sensor for use in afm/stm profilometry and micromechanical afm/stm sensor head
JP2010236865A (en) * 2009-03-30 2010-10-21 Citizen Finetech Miyota Co Ltd Gas sensor
CN103196955A (en) * 2013-04-10 2013-07-10 中国人民解放军国防科学技术大学 Silicon carbide nano paper sensor as well as production method and application thereof
EP2210287A4 (en) * 2008-09-26 2015-09-02 Lg Innotek Co Ltd Light emitting device and a method of manufacturing the same
JP2016145756A (en) * 2015-02-09 2016-08-12 三菱マテリアル株式会社 Temperature sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03135702A (en) * 1989-08-16 1991-06-10 Internatl Business Mach Corp <Ibm> Sensor and manufacture thereof
JPH03162602A (en) * 1989-08-16 1991-07-12 Internatl Business Mach Corp <Ibm> Manufacture of micromechanical sensor for use in afm/stm profilometry and micromechanical afm/stm sensor head
EP2210287A4 (en) * 2008-09-26 2015-09-02 Lg Innotek Co Ltd Light emitting device and a method of manufacturing the same
JP2010236865A (en) * 2009-03-30 2010-10-21 Citizen Finetech Miyota Co Ltd Gas sensor
CN103196955A (en) * 2013-04-10 2013-07-10 中国人民解放军国防科学技术大学 Silicon carbide nano paper sensor as well as production method and application thereof
JP2016145756A (en) * 2015-02-09 2016-08-12 三菱マテリアル株式会社 Temperature sensor

Similar Documents

Publication Publication Date Title
Lee et al. Humidity sensors: a review
US4928513A (en) Sensor
Rittersma Recent achievements in miniaturised humidity sensors—a review of transduction techniques
US7104113B2 (en) Miniaturized multi-gas and vapor sensor devices and associated methods of fabrication
JP4873659B2 (en) Method for directly determining the boiling point of a fluid
EP0376721B1 (en) Moisture-sensitive device
EP2141490B1 (en) Chemical sensing microbeam device
JP3926395B2 (en) Gas sensor electrode device
JP4913032B2 (en) Electrostatic measurement of chemical reactions based on stress
KR20100053082A (en) The capacitance type humidity sensor and fabrication method thereof
CN212843774U (en) MEMS thermal type flow sensor
US5623147A (en) Radiation-sensitive detector
CN112114005A (en) Hydrogen sensor, method for producing the same, measuring device, and method for measuring hydrogen concentration
US6936496B2 (en) Nanowire filament
JPS63289443A (en) Moisture sensing element
CN111579012A (en) MEMS thermal flow sensor and manufacturing method thereof
JP7356486B2 (en) High speed humidity sensor and method for calibrating a high speed humidity sensor
JPS589056A (en) Moisture sensitive resistance element
JPH02179459A (en) Structure of moisture sensitive element and humidity sensor
JPS63145954A (en) Moisture sensitive element
JP2860086B2 (en) Microcap for humidity sensor and humidity sensor
JPH0196549A (en) Sensor element
JPS63293459A (en) Detecting element
JPH06105235B2 (en) Humidity detection element
Lee et al. A micromachined robust humidity sensor for harsh environment applications