JPS63292644A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63292644A
JPS63292644A JP12900187A JP12900187A JPS63292644A JP S63292644 A JPS63292644 A JP S63292644A JP 12900187 A JP12900187 A JP 12900187A JP 12900187 A JP12900187 A JP 12900187A JP S63292644 A JPS63292644 A JP S63292644A
Authority
JP
Japan
Prior art keywords
groove
crystal silicon
single crystal
silicon layer
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12900187A
Other languages
Japanese (ja)
Inventor
Masayuki Takeda
正行 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP12900187A priority Critical patent/JPS63292644A/en
Publication of JPS63292644A publication Critical patent/JPS63292644A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE:To form an element isolation region, which can be flattened and miniaturized by simple steps, by digging the bottom part of a groove, and embedding a single crystal silicon layer in the groove by using a selective epitaxial method in the fourth step. CONSTITUTION:Ions of specified impurity species such as As<+>, B<+>, P<+> and the like are implanted in a groove 4, in which a thermal oxide film 5 is formed, and a channel cutting layer 6 is formed. Only the thermal oxide film 5 at the bottom part of the groove 4 undergoes anisotropic etching by an RIE method in a mixed gas atmosphere. The bottom part of the groove 4 is further etched. The bottom part of the groove 4 is further dug as shown by a numeral 8. Thereafter, a single crystal silicon layer 9 is embedded in the groove 4 by a selective epitaxial method. Finally, the surface is oxidized, and a flat oxide film 10 is formed on the surface of the single crystal silicon layer 9 in the groove 4. Since the oxide films 5 and 10 are insulating films and the channel cutting layer 6 is also an insulating region in this constitution, an element isolation region including the single crystal silicon layer 9 in the groove 4 is formed.

Description

【発明の詳細な説明】 〔概要〕 本発明は素子分離技術に関する半導体装置の製造方法に
おいて、 半導体基板に形成した溝の側壁に絶縁体膜を形成した後
、溝の底部のエツチングを行なってから溝内に単結晶シ
リコンを選択1ピタキシヤル成長法を利用して成長させ
ることにより、 表面が平坦な素子分離領域を有する半導体装置を製造で
きるようにしたものである。
[Detailed Description of the Invention] [Summary] The present invention provides a method for manufacturing a semiconductor device related to element isolation technology, which includes: forming an insulating film on the sidewalls of a trench formed in a semiconductor substrate, etching the bottom of the trench, and then etching the bottom of the trench. By growing single-crystal silicon in the groove using a selective pitaxial growth method, it is possible to manufacture a semiconductor device having an element isolation region with a flat surface.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置の製造方法に係り、特に絶縁体膜が
側壁に形成された溝を素子分離領域とする半導体装置の
製造方法に関する。
The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device in which a trench having an insulating film formed on the sidewall is used as an element isolation region.

半導体集積回路において、回路素子を構成する半導体島
領域を互いに電気的に分離するための素子分離技術は、
半導体集積回路の高集積化の要請から、素子分離領域を
平坦化し、微細化することが必要とされる。
In semiconductor integrated circuits, element isolation technology for electrically isolating semiconductor island regions constituting circuit elements from each other is as follows:
Due to the demand for higher integration of semiconductor integrated circuits, it is necessary to planarize and miniaturize element isolation regions.

〔従来の技術〕[Conventional technology]

従来より素子分離技術に関する半導体装置は神々提案さ
れているが、代表的なものとして選択酸化弁@ (lo
cal oxidation of 5ilicon:
l0cO3)方式が知られている。このものは、シリコ
ン基板に窒化シリコン膜(Si3N4膜)を形成し、こ
れを耐酸化マスクとして熱酸化処理を行ない、基板露出
部に厚い酸化シリコン膜(Sin2膜)を形成するもの
である。熱酸化により形成されたS!02膜は絶縁f1
−が高く、素子分離領域を構成する。
Semiconductor devices related to element isolation technology have been proposed in the past, but a representative one is the selective oxidation valve @ (lo
Cal oxidation of 5ilicon:
10cO3) method is known. In this method, a silicon nitride film (Si3N4 film) is formed on a silicon substrate, and a thermal oxidation process is performed using this film as an oxidation-resistant mask to form a thick silicon oxide film (Sin2 film) on the exposed portion of the substrate. S formed by thermal oxidation! 02 film is insulation f1
- is high and constitutes an element isolation region.

また、仙の製造方法として、半導体基板に猫を掘り、こ
の溝を絶縁物で充填して素子分離領域を形成する方式も
知られている。この13式にも溝形状など色々あるが、
例えば断面が(1字状の渦を形成し、次に溝内側壁にS
iO2膜を形成した後0字状溝内に多結晶シリコン層を
充填し、その後バックエツチングによって溝内にのみ多
結晶シリコン層を残し、最後に表面を酸化して平坦な素
子分離領域を得る、所謂U溝方式が知られている。
Furthermore, as a method for manufacturing a semiconductor device, a method is known in which a trench is dug in a semiconductor substrate and the trench is filled with an insulating material to form an element isolation region. This type 13 also has various groove shapes,
For example, the cross section forms a (1-shaped vortex), then S
After forming the iO2 film, fill the 0-shaped groove with a polycrystalline silicon layer, then back-etch to leave the polycrystalline silicon layer only in the groove, and finally oxidize the surface to obtain a flat element isolation region. A so-called U-groove system is known.

〔発明が解決しようと1−る問題点〕 しかるに、前記したl 0CO8方式では、熱酸化によ
り形成されたルいS ! 02膜の両端部が高く形成さ
れてしまい(所謂バーズヘッド)、完全に平j−p化で
きず、微細化が困難であるという問題点があった。
[1-Problem to be Solved by the Invention] However, in the above-mentioned 10CO8 method, the 1-S! There was a problem in that both ends of the 02 film were formed high (so-called bird's head) and could not be completely flattened, making it difficult to miniaturize.

また、前記したU tM方式では、l 0COSプノ式
に比べて絶縁層を、」;り狭い領域により深く埋没する
ことができるので、集積回路の高集積化を実現できるが
、多結晶シリコン層のバックエツチングなど、工程が複
雑であるという問題点があった。
In addition, in the UtM method described above, the insulating layer can be buried more deeply in a narrow area than in the L0COS method, so high integration of integrated circuits can be achieved. There was a problem that the process was complicated, such as back etching.

本発明は上記の点に鑑みて創作されたしのぐ、簡単なT
稈で平坦化及び微細化可能な素子弁1i111γ1域を
形成することができる半導体装置の製造方法を提供する
ことを目的とする。
The present invention has been created in view of the above points, and has a simple T.
It is an object of the present invention to provide a method for manufacturing a semiconductor device that can form an element valve 1i111γ1 region that can be flattened and miniaturized using a culm.

〔問題点を解決するための手段) 本発明の半導体装置の製造方法は、半導体シリコン基板
に渦を形成する第1の工程と、渦の側壁及び底部に熱酸
化膜を形成Jる第2の工程と、満の底部の熱酸化膜を除
去した後、底部を一定長だ【プ更に掘り■げる第3の工
程と、選択Tピタギシャル法にて溝の内部を単結晶シリ
コン層で埋め込む第4の工程と、単結晶シリコン層の表
面に絶縁体膜を形成する第5の■稈とからなる。
[Means for Solving the Problems] The method for manufacturing a semiconductor device of the present invention includes a first step of forming a vortex on a semiconductor silicon substrate, and a second step of forming a thermal oxide film on the side walls and bottom of the vortex. After removing the thermal oxide film at the bottom of the trench, a third step is to further dig the bottom to a certain length. 4 and a fifth step (2) of forming an insulating film on the surface of the single crystal silicon layer.

〔作用〕[Effect]

第3の工程により渦の底部が掘り下げられ、溝の側壁の
底部イ」近及び底部は熱酸化膜が除去される。この状態
の溝内に第4の工程において選択]−ピタキシャル法を
用いて単結晶シリコン層が埋め込まれるから、素子分前
領域となる溝の幅に影響されることなく、77セツトが
発生しない素子弁#を領域が形成できる。
In the third step, the bottom of the vortex is dug down, and the thermal oxide film is removed near and at the bottom of the sidewall of the groove. In the trench in this state, a single crystal silicon layer is embedded using the pitaxial method, so the device is not affected by the width of the trench that is the front region of the device, and 77 sets do not occur. A region can form a valve #.

〔実施例〕〔Example〕

第1図(A)〜(G)は夫々本発明方法の一実施例を示
す各製造工程での装置縦断面図を示す。
FIGS. 1(A) to 1(G) each show a vertical cross-sectional view of an apparatus at each manufacturing step showing an embodiment of the method of the present invention.

図中、同一構成部分には同一符号を付し、その説明を省
略する。まず、第1図(A)に示す如く、半導体基板で
ある+1を結晶シリコン基板1の表面にS!02膜2及
びS!3N4膜3が順次積層されている半導体装置に対
して、反応性イオンエツチング(reactive i
on etching:RIB)法により、例えばフレ
オンガス(CF4)に5%酸素ガスを混合してなる混合
ガス雰囲気中で」1結晶シリ]ン基板1.SiO2膜2
及びSi3N4膜3の異ブラ性エツチングを行ない、S
i3N4膜3.S!02膜2を夫々員いて単結晶シリコ
ン基板1の内部にまで到る、間口が狭く、かつ、深さの
深い満4を形成する。溝4の深さdは形成する索子によ
り種々異なるが、−例として1,0μm程度である。
In the drawings, the same components are denoted by the same reference numerals, and their explanations will be omitted. First, as shown in FIG. 1(A), a semiconductor substrate +1 is placed on the surface of a crystalline silicon substrate 1. 02 membrane 2 and S! Reactive ion etching is applied to a semiconductor device in which 3N4 films 3 are sequentially stacked.
on etching (RIB) method in a mixed gas atmosphere of, for example, Freon gas (CF4) mixed with 5% oxygen gas. SiO2 film 2
Then, the Si3N4 film 3 is subjected to heterogeneous etching, and the S
i3N4 membrane 3. S! 02 films 2 and reach the inside of the single crystal silicon substrate 1, forming a 4-hole with a narrow width and a deep depth. The depth d of the groove 4 varies depending on the cord to be formed, but is approximately 1.0 μm, for example.

次に、5iaN4膜3を耐酸化マスクとして、例えばH
Ceガス雰囲気中で950℃の温度による熱酸化処理を
行ない、第1図(B)に示す如く、溝4の側壁及び底部
に夫々熱酸化膜(S ! 02膜)5を厚さ1000人
程度に被着形成覆る。
Next, using the 5iaN4 film 3 as an oxidation-resistant mask, for example, H
A thermal oxidation treatment is performed at a temperature of 950° C. in a Ce gas atmosphere, and a thermal oxide film (S!02 film) 5 is formed on the side walls and bottom of the groove 4 to a thickness of approximately 1000° C., as shown in FIG. 1(B). Cover the adhesion.

次に、第1図(C)に示す如くイオン注入法によりΔs
+、B”、P”等、所定の不純動程を、熱酸化膜5が形
成されている満4内にイオ−ン注入してチャネルカット
層6を形成する。
Next, as shown in FIG. 1(C), Δs is
A channel cut layer 6 is formed by ion-implanting a predetermined range of impurities such as +, B'', and P'' into the area where the thermal oxide film 5 is formed.

次に、例えばCF4に5%酸素ガスを混合し、更にCH
F3を混合してなる混合ガス雰囲気中で、RIE法によ
り溝4の底部の熱酸化膜5に対してのみ異方性エツチン
グを行なって、熱酸化膜5のうち溝4の底部のもののみ
を除去し、側壁の熱酸化膜を残す。これにより、第1図
(D>に7で示す如く、溝4の底部は単結晶シリコン基
板1が露出することになる。
Next, for example, 5% oxygen gas is mixed with CF4, and further CH
In a mixed gas atmosphere containing F3, anisotropic etching is performed only on the thermal oxide film 5 at the bottom of the trench 4 by RIE, and only the thermal oxide film 5 at the bottom of the trench 4 is etched. Remove, leaving a thermal oxide film on the sidewalls. As a result, the single-crystal silicon substrate 1 is exposed at the bottom of the groove 4, as shown by 7 in FIG.

次にRIE法により溝4の底部をエツチングして、第1
図(E)に8で示す如く、溝4の底部を例えば2800
〜3000人程度掘り下げる。従って、溝4の底部から
2800〜3000人程度の深さの溝4の側壁には熱酸
化膜5が無く、単結晶シリコン基板1が露出することに
なる。このように、溝4の底部を第1図(F)に8で示
す如く掘り下げるのは、後述する選択エピタキシャル法
による単結晶シリコン層9のファセットの発生を殆ど無
くすためである。
Next, the bottom of the groove 4 is etched using the RIE method, and the first
As shown at 8 in Figure (E), the bottom of the groove 4 is, for example, 2800 mm.
~ Dig into about 3,000 people. Therefore, there is no thermal oxide film 5 on the side wall of the trench 4 at a depth of about 2,800 to 3,000 depth from the bottom of the trench 4, and the single crystal silicon substrate 1 is exposed. The reason why the bottom of the groove 4 is dug down as shown by 8 in FIG. 1(F) is to almost eliminate the occurrence of facets in the single crystal silicon layer 9 due to the selective epitaxial method described later.

次に、第1図(F)に示す如く、選択エピタキシャル法
により14の内部に単結晶シリコン層9を埋め込む。こ
の選択エピタキシャル法による単結晶シリコン層9の成
長は、例えば950℃、トリクロロシランガス(S i
 HCea )雰囲気中、o、grorr程度の圧力下
で500人/分程度の割合で行なわれる。
Next, as shown in FIG. 1(F), a single crystal silicon layer 9 is buried inside 14 by selective epitaxial method. The single crystal silicon layer 9 is grown by this selective epitaxial method at 950°C, for example, using trichlorosilane gas (Si
The test is carried out at a rate of about 500 people/minute in an atmosphere of HCea) under a pressure of about 0.05 oz./grorr.

これにより、単結晶シリコン層9は単結晶シリコン基板
1の上にのみ成長し、熱酸化膜5の上には成長せず、溝
4内には11結晶シリコン層9が充填された状態となる
As a result, the single-crystal silicon layer 9 grows only on the single-crystal silicon substrate 1 and does not grow on the thermal oxide film 5, and the groove 4 is filled with the 11-crystal silicon layer 9. .

最後に、通常の熱酸化処理により第1図(G)に示す如
く、表面を酸化して溝4内の単結晶シリコン層9の表面
上に平坦な酸化膜10が形成される。これにより、酸化
膜5.10は絶縁体膜であり、またチャネルカット層6
も絶縁領域であるので、溝4内の単結晶シリコン層9も
含めて素子分離領域が形成される。
Finally, the surface is oxidized by a normal thermal oxidation process to form a flat oxide film 10 on the surface of the single crystal silicon layer 9 in the groove 4, as shown in FIG. 1(G). As a result, the oxide film 5.10 is an insulator film, and the channel cut layer 6.
Since both are insulating regions, an element isolation region is formed including the single crystal silicon layer 9 in the groove 4.

本実施例によれば、選択エピタキシャル法により成長さ
れた単結晶シリコン層9のファセットの発生は殆どなく
すことができる。また、溝4はRIE法により間口を極
めて狭くできる。
According to this embodiment, the occurrence of facets in the single crystal silicon layer 9 grown by the selective epitaxial method can be almost eliminated. Furthermore, the width of the groove 4 can be made extremely narrow by the RIE method.

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明によれば、溝内に充填される単結晶
シリコン層のファセットの発生を殆どなくすことができ
るので、素子分離領域の表面を平坦化でき、しかもバッ
クエツチング等が不要で、工程が前記したU満方式より
簡単であり、以上より微細な素子分離領域を有する半導
体装置を簡単に製造することができる等の特長を有する
ものである。
As described above, according to the present invention, the occurrence of facets in the single crystal silicon layer filled in the trench can be almost eliminated, so the surface of the element isolation region can be flattened, and back etching etc. are not required. The process is simpler than the above-mentioned U-man method, and it has the advantage that a semiconductor device having a finer element isolation region can be easily manufactured.

【図面の簡単な説明】 第1図は本発明方法の一実施例を示す各製造工程での装
置給断面図である。 図において、 1は単結晶シリコン基板、 4は溝、 5は熱酸化膜(S f 02膜)、 6はチャネルカット層、 9は単結晶シリコン層、 10M化膜である。 本、発明方法の一実膣かIC ’= 19UbA臼゛欄に細菌 第1図
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view of an apparatus in each manufacturing process showing an embodiment of the method of the present invention. In the figure, 1 is a single crystal silicon substrate, 4 is a groove, 5 is a thermal oxide film (S f 02 film), 6 is a channel cut layer, 9 is a single crystal silicon layer, and 10M film. Figure 1 shows the bacteria in the vagina IC' = 19UbA column of the method of the present invention.

Claims (1)

【特許請求の範囲】 シリコン基板(1)上に溝(4)を形成する第1の工程
と、 該溝(4)の側壁及び底部に熱酸化膜(5)を形成する
第2の工程と、 該溝(4)の底部の熱酸化膜(5)をエツチングして除
去した後、該溝(4)の底部を一定長だけ更に掘り下げ
る第3の工程と、 該第3の工程で形成された該溝(4)の内部を、選択エ
ピタキシャル法により成長させた単結晶シリコン層(9
)で埋め込む第4の工程と、 該第4の工程により形成された該溝(4)内の該単結晶
シリコン層(9)の表面上に絶縁体膜(10)を形成す
る第5の工程とよりなることを特徴とする半導体装置の
製造方法。
[Claims] A first step of forming a groove (4) on a silicon substrate (1), and a second step of forming a thermal oxide film (5) on the side walls and bottom of the groove (4). , a third step of etching and removing the thermal oxide film (5) at the bottom of the trench (4), and further digging the bottom of the trench (4) by a certain length; A single crystal silicon layer (9) grown by selective epitaxial method is placed inside the groove (4).
), and a fifth step of forming an insulating film (10) on the surface of the single crystal silicon layer (9) in the groove (4) formed in the fourth step. A method for manufacturing a semiconductor device, characterized by:
JP12900187A 1987-05-26 1987-05-26 Manufacture of semiconductor device Pending JPS63292644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12900187A JPS63292644A (en) 1987-05-26 1987-05-26 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12900187A JPS63292644A (en) 1987-05-26 1987-05-26 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS63292644A true JPS63292644A (en) 1988-11-29

Family

ID=14998690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12900187A Pending JPS63292644A (en) 1987-05-26 1987-05-26 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS63292644A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5057443A (en) * 1988-06-29 1991-10-15 Texas Instruments Incorporated Method for fabricating a trench bipolar transistor
JP2014138084A (en) * 2013-01-17 2014-07-28 Tokyo Electron Ltd Method for forming silicon film and device for forming the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119118A (en) * 1984-07-05 1986-01-28 Nec Corp Manufacture of semiconductor substrate
JPS6131386A (en) * 1984-07-23 1986-02-13 Nec Corp Vapor phase epitaxial growth process
JPS6223128A (en) * 1985-07-24 1987-01-31 Hitachi Ltd Method for forming element isolating region

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119118A (en) * 1984-07-05 1986-01-28 Nec Corp Manufacture of semiconductor substrate
JPS6131386A (en) * 1984-07-23 1986-02-13 Nec Corp Vapor phase epitaxial growth process
JPS6223128A (en) * 1985-07-24 1987-01-31 Hitachi Ltd Method for forming element isolating region

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5057443A (en) * 1988-06-29 1991-10-15 Texas Instruments Incorporated Method for fabricating a trench bipolar transistor
JP2014138084A (en) * 2013-01-17 2014-07-28 Tokyo Electron Ltd Method for forming silicon film and device for forming the same

Similar Documents

Publication Publication Date Title
USRE35294E (en) Polysilicon encapsulated localized oxidation of silicon
US5321298A (en) Soi wafer fabrication by selective epitaxial growth
US20010042871A1 (en) Silicon-on-insulator islands
EP0354226B1 (en) Process for forming isolation regions in a semiconductor substrate
JPS6175540A (en) Making of integrated circuit
JPH0237745A (en) Manufacture of semiconductor device
JP2000058802A (en) Manufacture of soi wafer
US6506663B1 (en) Method for producing an SOI wafer
JPS63292644A (en) Manufacture of semiconductor device
JPH09129631A (en) Separate oxide formation for silicon skill on insulator
JPH06232247A (en) Manufacturing of semiconductor layer isolated on insulation layer
JPH08236611A (en) Element separation method of semiconductor device
JPS60208843A (en) Manufacture of semiconductor device
JPH05304202A (en) Fabrication of semiconductor device
EP0239384A3 (en) Process for isolating semiconductor devices on a substrate
US6350657B1 (en) Inexpensive method of manufacturing an SOI wafer
EP0019456A1 (en) Semiconductor devices and method for producing the same
JPS5893252A (en) Semiconductor device and manufacture thereof
JPH0661343A (en) Manufacture of semiconductor device
JP2783200B2 (en) Method for manufacturing semiconductor device
JPS61229339A (en) Semiconductor
JP2766000B2 (en) Method for manufacturing semiconductor device
JPH0529310A (en) Manufacture of semiconductor device
JPS60189235A (en) Production of semiconductor device
JPS6025247A (en) Manufacture of semiconductor device