JPS63288044A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS63288044A
JPS63288044A JP9811088A JP9811088A JPS63288044A JP S63288044 A JPS63288044 A JP S63288044A JP 9811088 A JP9811088 A JP 9811088A JP 9811088 A JP9811088 A JP 9811088A JP S63288044 A JPS63288044 A JP S63288044A
Authority
JP
Japan
Prior art keywords
film
substrate
oxide film
layer
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9811088A
Other languages
Japanese (ja)
Inventor
Yoichi Tamaoki
玉置 洋一
Hisayuki Higuchi
樋口 久幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9811088A priority Critical patent/JPS63288044A/en
Publication of JPS63288044A publication Critical patent/JPS63288044A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the warpage of an Si substrate and a possibility that crystal defect is generated without applying excessive stress to the substrate by a method wherein a thick Si dioxide film is formed only on the end parts of a poly Si layer and the thick Si dioxide film is not formed on the central part of the poly Si layer. CONSTITUTION:An oxide film 3 is formed on the surface of an Si substrate 1 comprising a collector buried layer 2 provided therein and the substrate 1 is etched to form a groove 4 which penetrates the layer 2. After the film 3 is removed, the surface is oxidized to form an oxide film 5 on the whole surface and an Si3N4 film 6 is formed thereon. Then, a polySi layer 7 of a thickness equivalent to the depth of the groove 4 is formed, its surface is oxidized to form an oxide film 8 and an Si3N4 film 9 is formed. A resist pattern 10 is formed, the films 9 and 8 are selectively etched using the pattern 10 as a mask and the film 6 is etched until its surface is exposed using these films 8 and 9 as masks. The layer 7 is oxidized using the films 6 and 9 as masks to form an oxide film 11. Then, an etching is performed to complete an isolation process.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体集積回路の製造方法に関し、詳しくは、
Siをエッチすることによって形成された溝中に、絶縁
物を介して、多結晶シリコンを埋込み、アイソレーショ
ンを行なう方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor integrated circuit.
The present invention relates to a method of burying polycrystalline silicon through an insulator into a trench formed by etching Si to perform isolation.

[従来の技術] 各種半導体集積回路の集積度が向上するにともなって、
各素子間の絶縁すなわちアイソレーションが、大きな問
題となっている。
[Prior Art] As the degree of integration of various semiconductor integrated circuits improves,
Insulation between each element, that is, isolation, has become a major problem.

すなわち、各素子間のフイソレ゛−ジョンに一般に用い
られた接合分層は、所要面積が大きい、寄生容量が発生
する、などの問題がある。そのため。
That is, the junction layer generally used for the isolation between each element has problems such as requiring a large area and generating parasitic capacitance. Therefore.

現在は、U字型の溝を基板に形成し、この溝中に誘電体
や多結晶シリコンなどを充填してアイソレーションを行
なう方法が提案されている。
Currently, a method has been proposed in which a U-shaped groove is formed in the substrate and this groove is filled with a dielectric material, polycrystalline silicon, or the like to achieve isolation.

従来は、上記溝に埋込みれた多結晶SLの表面を全面酸
化してアイソレーション領域の表面を絶縁していた。
Conventionally, the surface of the polycrystalline SL embedded in the groove was completely oxidized to insulate the surface of the isolation region.

[発明が解決しようとする課題] しかし、このように多結晶Siの全表面を酸化すると、
酸化膜の成長に伴って基板に大きな応力が加おり基板が
反ったり基板に結晶欠陥が発生したりする欠点があった
[Problem to be solved by the invention] However, when the entire surface of polycrystalline Si is oxidized in this way,
As the oxide film grows, a large stress is applied to the substrate, causing the substrate to warp and crystal defects to occur in the substrate.

[課題を解決するための手段] 本発明はこのような従来の問題を解決するために行なわ
れたもので、アイソレーション領域の端部のみ選択的に
酸化することによって基板に大きな応力が加わるのを防
止し、端部の厚い酸化膜と中心部の薄い酸化膜(または
CVD等で形成した絶縁III)の組合せによって良好
な電気的Ma性と微細加工性(セルフアライメント)を
確保するものである。
[Means for Solving the Problems] The present invention has been made to solve such conventional problems, and it is possible to avoid applying large stress to the substrate by selectively oxidizing only the edges of the isolation region. The combination of a thick oxide film at the edges and a thin oxide film at the center (or insulation III formed by CVD, etc.) ensures good electrical Ma properties and microprocessability (self-alignment). .

[作用] 多結晶シリコンの端部上のみに厚い二酸化シリコン膜が
形成され、中央部には厚い二酸化シリコン膜は形成され
ていないので、シリコン基板に過大な応力が印加されな
い、そのため、基板の反りや結晶欠陥の生ずる恐れは著
しく減少する。
[Function] A thick silicon dioxide film is formed only on the edges of the polycrystalline silicon, and no thick silicon dioxide film is formed in the center, so excessive stress is not applied to the silicon substrate, which prevents the substrate from warping. The risk of crystal defects occurring is significantly reduced.

[実施例] 以下、バイポーラ集積回路の製造に適用した実施例を用
いて、本発明の詳細な説明する。
[Example] The present invention will be described in detail below using an example applied to the manufacture of a bipolar integrated circuit.

まず、第1図に示すように、コレクタ埋込層2を設けた
Si基板1の表面に酸化膜3を形成し、これを通常のホ
トエツチング法でパターニングし。
First, as shown in FIG. 1, an oxide film 3 is formed on the surface of a Si substrate 1 provided with a collector buried layer 2, and this is patterned by a normal photoetching method.

さらにこの酸化膜3をマスクにしてSi基板1をエッチ
して、埋込層2を突き抜いた溝4を形成した。つぎに、
第2図に示すように、酸化膜3を除去した後表面を酸化
して酸化膜5を全面に形成し、その上にSi3N、膜6
を形成した0次に上記溝4の深さに相当する厚さの多結
晶Si層7をCVDなど公知の方法によって形成し、そ
の表面を酸化して酸化膜8を形成した後、Si3N4膜
9を形成した。レジスト膜を全面に塗布し、先の工程に
おいて溝4を形成したときに使用したホト・マスクを用
いてレジスト膜をパターニングして、レジストパターン
10を形成した。(第3図)このレジストパターン1o
をマスクにしてSi3N4膜9と酸化膜8を選択的にエ
ツチングし、さらに、このiI8,9をマスクにして多
結晶Si7をその下にあるSi3N4膜6の表面が出る
までエッチする。
Furthermore, using this oxide film 3 as a mask, the Si substrate 1 was etched to form a groove 4 penetrating the buried layer 2. next,
As shown in FIG. 2, after removing the oxide film 3, the surface is oxidized to form an oxide film 5 on the entire surface, and on top of that, Si3N and a film 6 are formed.
Next, a polycrystalline Si layer 7 having a thickness corresponding to the depth of the groove 4 is formed by a known method such as CVD, and after oxidizing the surface to form an oxide film 8, a Si3N4 film 9 is formed. was formed. A resist film was applied to the entire surface, and the resist film was patterned using the photomask used when forming the grooves 4 in the previous step to form a resist pattern 10. (Figure 3) This resist pattern 1o
Using as a mask, the Si3N4 film 9 and the oxide film 8 are selectively etched, and further, using these iI8 and 9 as a mask, the polycrystalline Si7 is etched until the surface of the underlying Si3N4 film 6 is exposed.

Si3N、膜6,9をマスクにして多結類Si7を酸化
して、多結晶Si7の表面に厚さ約500nmの酸化膜
11を形成した(第4図)6次にSi3N4膜6,9と
酸化膜5,8をエッチして除去し。
The polycrystalline Si7 was oxidized using the Si3N films 6, 9 as masks to form an oxide film 11 with a thickness of about 500 nm on the surface of the polycrystalline Si7 (Fig. 4).6 Next, the Si3N4 films 6, 9 and The oxide films 5 and 8 are etched and removed.

アイソレーション工程が完了した(第5図)、この際、
酸化膜11も若干エッチされて膜厚が減少するが、酸化
膜11の膜厚は、除去された酸化膜5.8の膜厚よりは
るかに大きいので、完全に除去されることはなく、多結
晶シリコン7上に残る。
The isolation process has been completed (Figure 5), at this time,
The oxide film 11 is also slightly etched and its thickness is reduced, but since the thickness of the oxide film 11 is much larger than the thickness of the removed oxide film 5.8, it is not completely removed and many It remains on the crystalline silicon 7.

この後埋込みれた多結晶Si7の表面を薄く酸化(約1
00100n、さらに分離されたSi基板1の島12の
中にトランジスタ(図示せず)を形成した。
After this, the surface of the buried polycrystalline Si7 is lightly oxidized (approximately 1
00100n, and a transistor (not shown) was further formed in the isolated island 12 of the Si substrate 1.

[発明の効果] 本発明を用いてバイポーラ集積回路を形成すれば1分離
容量が小さいため高速であり、かつ結晶欠陥の発生が少
なくて歩留りが良好であった。また、端部の厚い酸化膜
11を用いてトランジスタを形成する際に、セルフアラ
イメントが可能で集積度を高くすることも可能である。
[Effects of the Invention] When a bipolar integrated circuit was formed using the present invention, the single-separation capacitance was small, so high speed was achieved, and the yield was good due to less occurrence of crystal defects. Furthermore, when forming a transistor using the thick oxide film 11 at the end, self-alignment is possible and the degree of integration can be increased.

また1本発明によって形成されたアイソレーションは埋
込層2をエツチングで突き抜けているので、そのままで
も素子間の絶縁性を保たれるが、酸化!115の表面電
荷等によりチャネルが発生する恐れもある。そのため、
第1図の状態で拡散法あるいはイオン打込み法によって
B等のP形不純物を溝4内に充填された多結晶シリコン
中にチャネル・ストッパーとして導入しておけば、素子
間の分離はさらに完全になる。
Furthermore, since the isolation formed according to the present invention penetrates through the buried layer 2 by etching, insulation between elements can be maintained as is, but oxidation! There is also a possibility that a channel may be generated due to the surface charge of 115, etc. Therefore,
If a P-type impurity such as B is introduced as a channel stopper into the polycrystalline silicon filled in the groove 4 by diffusion or ion implantation in the state shown in Fig. 1, the isolation between elements can be further improved. Become.

第5図から明らかなように、本発明によれば、厚い酸化
膜11は、アイソレーション領域の端部表面上にのみ被
着され、中央部近傍に厚い酸化膜は被着されていない、
そのため、シリコン基板1に応力が加わる恐れはなく、
基板に反りや結晶欠陥の生ずる恐れはない。
As is clear from FIG. 5, according to the present invention, the thick oxide film 11 is deposited only on the end surface of the isolation region, and no thick oxide film is deposited near the center.
Therefore, there is no risk of stress being applied to the silicon substrate 1.
There is no risk of warpage or crystal defects occurring in the substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第5図は1本発明の一実施例を示す工程図で
ある。 1・・・シリコン基板、3,5,8,11・・・酸化膜
、6.9・・・チッ化シリコン膜、7・・・多結晶シリ
コン膜。
1 to 5 are process diagrams showing one embodiment of the present invention. 1... Silicon substrate, 3, 5, 8, 11... Oxide film, 6.9... Silicon nitride film, 7... Polycrystalline silicon film.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板のアイソレーション領域に形成された溝と、
該溝の内面上に積層して形成された二酸化シリコン膜お
よびチッ化シリコン膜と、上記溝を充填する多結晶シリ
コンと、該多結晶シリコンの表面に形成された二酸化シ
リコン膜を少なくともそなえ、上記多結晶シリコンの表
面に形成された二酸化シリコン膜は、上記溝の端部近傍
における膜厚が上記溝の中央部における膜厚よりも大き
いことを特徴とする半導体装置。
A groove formed in an isolation region of a semiconductor substrate,
at least a silicon dioxide film and a silicon nitride film laminated on the inner surface of the groove, polycrystalline silicon filling the groove, and a silicon dioxide film formed on the surface of the polycrystalline silicon; A semiconductor device characterized in that a silicon dioxide film formed on a surface of polycrystalline silicon has a thickness larger near an end of the groove than at a center of the groove.
JP9811088A 1988-04-22 1988-04-22 Semiconductor device Pending JPS63288044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9811088A JPS63288044A (en) 1988-04-22 1988-04-22 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9811088A JPS63288044A (en) 1988-04-22 1988-04-22 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP14890379A Division JPS5671950A (en) 1979-11-19 1979-11-19 Manufacture of integrated semiconductor circuit

Publications (1)

Publication Number Publication Date
JPS63288044A true JPS63288044A (en) 1988-11-25

Family

ID=14211188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9811088A Pending JPS63288044A (en) 1988-04-22 1988-04-22 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS63288044A (en)

Similar Documents

Publication Publication Date Title
JPH0513566A (en) Manufacture of semiconductor device
JPH0355984B2 (en)
JPH06318634A (en) Isolating method for element in semiconductor device
JPS6015944A (en) Semiconductor device
JP3039978B2 (en) Method of forming an electric field isolation structure and a gate structure in an integrated MISFET device
US4885261A (en) Method for isolating a semiconductor element
JPH02277253A (en) Manufacture of semiconductor device
JPS6038831A (en) Semiconductor device and manufacture thereof
JPS63207177A (en) Manufacture of semiconductor device
JPS60258957A (en) Manufacture of soi type semiconductor device
JPS61289642A (en) Manufacture of semiconductor integrated circuit device
JPS63288044A (en) Semiconductor device
JPS58200554A (en) Manufacture of semiconductor device
JPS6234147B2 (en)
JP2890550B2 (en) Method for manufacturing semiconductor device
KR0140734B1 (en) Method of semiconductor device
JPS5839026A (en) Semiconductor device and manufacture thereof
JPS59177940A (en) Manufacture of element isolation region
JPH01214064A (en) Insulated gate field effect transistor and its manufacture
JPS6115372A (en) Semiconductor device and manufacture thereof
JPH01274448A (en) Method for forming element isolating region
JPH0522387B2 (en)
JPS58175843A (en) Manufacture of semiconductor integrated circuit
JPH01223741A (en) Semiconductor device and manufacture thereof
JPH05211230A (en) Manufacture of semiconductor device