JPS63283144A - Bump for semiconductor element - Google Patents

Bump for semiconductor element

Info

Publication number
JPS63283144A
JPS63283144A JP62119421A JP11942187A JPS63283144A JP S63283144 A JPS63283144 A JP S63283144A JP 62119421 A JP62119421 A JP 62119421A JP 11942187 A JP11942187 A JP 11942187A JP S63283144 A JPS63283144 A JP S63283144A
Authority
JP
Japan
Prior art keywords
bump
mum
fine particles
conductive resin
resin composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62119421A
Other languages
Japanese (ja)
Other versions
JPH0815154B2 (en
Inventor
Kazuyuki Shimada
和之 嶋田
Junichi Okamoto
準市 岡元
Tatsufumi Ogata
尾形 達文
Nobumasa Oshima
大島 信正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62119421A priority Critical patent/JPH0815154B2/en
Publication of JPS63283144A publication Critical patent/JPS63283144A/en
Publication of JPH0815154B2 publication Critical patent/JPH0815154B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1301Shape
    • H01L2224/13016Shape in side view
    • H01L2224/13018Shape in side view comprising protrusions or indentations
    • H01L2224/13019Shape in side view comprising protrusions or indentations at the bonding interface of the bump connector, i.e. on the surface of the bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/13198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13199Material of the matrix
    • H01L2224/1329Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/13198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13298Fillers
    • H01L2224/13299Base material
    • H01L2224/133Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13344Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/13198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13298Fillers
    • H01L2224/13299Base material
    • H01L2224/133Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13355Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/13198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13298Fillers
    • H01L2224/13299Base material
    • H01L2224/133Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13363Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/13364Palladium [Pd] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/13198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13298Fillers
    • H01L2224/13299Base material
    • H01L2224/133Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13363Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/13373Rhodium [Rh] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/13198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13298Fillers
    • H01L2224/13399Coating material
    • H01L2224/134Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13438Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13444Gold [Au] as principal constituent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

PURPOSE:To prevent cracks for the production of a reliable connection in a thermal contact bonding process by a method wherein a bump constituted of a conductive resin composite is not thinner than 5mum and irregularities on its surface are not lower than 1 mum. CONSTITUTION:A bump 1 for a semiconductor element on an aluminum pad is constituted of a conductive resin composite. The conductive resin composite may be a mixture of such a photosensitive resin as an epoxy, acrylate-based resin or imide resin equipped with an acrylate radical and one or more of conducting fine particles such as Ni fine particles, Ni fine particles plated with gold, fine particles of Au, Pd, and Rh. The diameter of a metal particle should be 0.2-2.0 mum on the average. Such a conductive resin composite will provide a coating on the entire surface of a silicon wafer 4 and viscosity and other conditions will be so set that the coating will be not less than 5mum thick. As for the upper limit of the thickness, 30 mum is desired. As for the height of irregularities (a) on the bump 1, it should preferably be 1 mum or more. This design prevents cracks and results in a reliable connection in a thermal contact bonding process.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は液晶表示パネル等の駆動用半導体装置に係り、
液晶表示パネル上へ容易に実装できる半導体素子のバン
プに関する。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a semiconductor device for driving a liquid crystal display panel, etc.
The present invention relates to bumps for semiconductor devices that can be easily mounted on liquid crystal display panels.

従来の技術 透明電極c以下工τ0という)が形成された2枚のガラ
ス板を、電極面を対向させて配置してなる液晶表示パネ
ルの引出し電極に、直接駆動用半導体素子(以下LSI
チップという)を実装する方法として、現在2つの方法
が提案式れている。
Conventional technology A direct drive semiconductor element (hereinafter referred to as LSI
There are currently two proposed methods for mounting the chip.

その一つは、半田バンプによる7リツプチツプ方式、他
の一つはワイヤボンディング方式である。
One is a 7-lip chip method using solder bumps, and the other is a wire bonding method.

前者の方式はLSIチップのアルミ電極パッドに半田バ
ンプを形成し、ITO上はN1−ムu、Or−五Uなど
でメタライジング処理をし、前記LSIチンブをフェイ
スダウンにより位置合せした後、半田のりフローにより
接続するものである。ワイヤボンディング方式は前者と
同様にITOiメタライジング処理し、ムU線またはム
!線にエフLSIチップとITOを接続するものである
。前者の半田バンプは通常、LSIウェハーの製造プロ
セスが完成した後、ウェハー全面にOrまたはT1など
を蒸着し、さらにOu 、 Pa 、^u、ptのいず
れかを蒸着する。この金属層の上に7オトレジスト金塗
布し、アルミパッド上のみを除去した後、半田メッキを
必要量メッキする。その後不要な金属層をエツチングで
除去し、半田バンプを得るものである。
The former method involves forming solder bumps on the aluminum electrode pads of the LSI chip, metallizing the ITO with N1-mu, Or-5U, etc., aligning the LSI chip face down, and then soldering. It is connected by glue flow. The wire bonding method uses ITOi metallizing treatment like the former, and uses MuU wire or Mu! This is to connect the F LSI chip and ITO to the wire. For the former type of solder bump, usually after the LSI wafer manufacturing process is completed, Or or T1 is deposited on the entire surface of the wafer, and then one of Ou, Pa, ^u, and pt is deposited. On this metal layer, a gold resist is applied, and after removing only the top of the aluminum pad, the necessary amount of solder plating is applied. Thereafter, unnecessary metal layers are removed by etching to obtain solder bumps.

発明が解決しようとする問題点 この様に、ITOの引出し電極上へLSIチップを実装
する方式は、前述の通り現在では2つの方式が提案され
ているが、いずれの方式とも工τO上にメタライジング
処理を施さなければならないことと、LSIチップには
特殊なバンプを形成しなければならない等、複雑なプロ
セスが必要であると共にこのプロセスを実施するために
は高額な設備投資を伴ない、製品の歩留低下やコストア
ップ等、多くの問題点を有する。また近年、液晶表示パ
ネルの大型化に伴い、複数個のLSIチップを同一パネ
ル上に実装しなければならず、1個のLSIチップでも
不良となれば、パネル全体が不良となってしまう。すな
わち、前述の方式では不良LSIチップの交換が不可能
に近く、また交換が可能としても多大の時間を要し、製
品コストのアップをまねく結果となる。
Problems to be Solved by the Invention As mentioned above, two methods have been proposed at present for mounting an LSI chip on an ITO extraction electrode, but both methods require a metallization process on the τO. Complex processes are required, such as the need to undergo rising treatment and the need to form special bumps on LSI chips, and implementing this process requires a large amount of capital investment, resulting in poor product quality. There are many problems such as decreased yield and increased cost. Furthermore, in recent years, as liquid crystal display panels have become larger, a plurality of LSI chips must be mounted on the same panel, and if even one LSI chip becomes defective, the entire panel becomes defective. That is, in the above-mentioned method, it is almost impossible to replace a defective LSI chip, and even if replacement is possible, it takes a lot of time, resulting in an increase in product cost.

また、ワイヤボンディング方式によるLSIチップの実
装においても前記方式と同様の問題点が残る。すなわち
、大型液晶パネルにおいてはワイヤ数が1000〜2o
oO本にもお:び、1箇所のボンディングミスが生じて
も交換しなければならない結果となり、その交換作業に
多大の時間を要する。ま几ワイヤボンディング方式はL
SIチップのアルミ電極パッドを全面覆うことができず
、湿度の介在によりアルミの腐食が発生する危険性もあ
り、信頼性面でも問題点が残る。
Furthermore, the same problems as those of the above-mentioned method remain even when mounting an LSI chip using the wire bonding method. In other words, in a large LCD panel, the number of wires is 1000 to 2000.
Also, even if a bonding error occurs in one place, it will have to be replaced, and the replacement work will take a lot of time. The wire bonding method is L.
It is not possible to completely cover the aluminum electrode pad of the SI chip, and there is a risk that the aluminum will corrode due to the presence of humidity, and problems remain in terms of reliability.

本発明は以上、述べたような問題点を解決するものであ
る。
The present invention solves the above-mentioned problems.

問題点を解決するための手段 上記問題点を解決するために本発明は、半導体素子のア
ルミパッド上のバンプが感光性樹脂と導電性粉体から々
る導電性樹脂組成物からなυ、液晶表示パネルのITO
引出し電極はメタライジング処理することなく、上記L
SIチップを接着剤を介し、フェイスダウンで信頼性良
く、実装することが可能となるものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention proposes that the bumps on the aluminum pads of the semiconductor element be made of a conductive resin composition consisting of a photosensitive resin and conductive powder, and a liquid crystal display. Display panel ITO
The extraction electrode is not metallized and the above L
This makes it possible to reliably mount an SI chip face-down using an adhesive.

作用 以上の構成に、B、LSIチップのアルミパッド上に導
電性樹脂バンプを形成することにより、I’l’O上に
メタライジング処理することなく、接着剤を介し熱圧着
するのみで確実な接続が可能となり、取付け、取外しが
容易となる。
B. By forming conductive resin bumps on the aluminum pads of the LSI chip, it is possible to securely bond the I'l'O by thermocompression only with an adhesive, without metalizing the I'l'O. Connection is possible, and installation and removal are easy.

実施例 本発明による半導体素子用バンプは、導電性樹脂組成物
により形成されるもので、樹脂組成物は感光性を有する
樹脂、例えばエポキシアクリレート系樹脂、アクリレー
ト基を有するイミド樹脂などが使用できる。結合剤とな
る樹脂に感光性を持たせることは、LSIチップにバン
プを形成するプロセスにおいてファインパターンを作ら
なければならないことと、プロセスが簡素化できること
にある。すなわち本発明によるバンプはフォトリソ工程
により形成するものである。また導電性粉体としてはニ
ッケル粉あるいはニッケル粉に金メッキを施したものや
、ムu 、 Pd 、 Rhなどの貴金属粉を単独また
は複合して用いることができる。これらの金属粉として
平均粒径が0.2〜2.0μmの範囲のものを用いると
前述のようなバンプ表面の凹凸が形成され導電性の面で
良好な結果が得られる。上記ニッケル粉に0.1〜10
wt%のムUメッキを施しても良く、この場合は更に電
気的な安定性が得られる。ムUメッキがQ、1 wt%
以下であると導電性の点でメッキの効果がなくニッケル
粉と同程度となり、また感光性樹脂中に分散させたとき
均一な分散が困難となる。またIQwt%以上になると
導電性、耐酸化性の点で優れたものとなるが経済的に不
利となり、適宜調整することが必要である。また上記ニ
ッケル粉は樹脂組成物100重量部に対し、50〜12
0重量部の範囲で配合することができる。ニッケル粉が
60重量部以下になると導電性が悪くなると共に、バン
プ表面が平滑となりITO上への良好な接続に対し不利
となってくる。また120重量部以上になると塗料化し
たときの性状(粘性、チクソトロピー)が悪く均一な塗
膜を得ることが困難となると同時に透光性が悪くなり光
群像度が充分得られなくなる。
EXAMPLE The bump for a semiconductor device according to the present invention is formed from a conductive resin composition, and the resin composition can be a photosensitive resin such as an epoxy acrylate resin or an imide resin having an acrylate group. The reason for imparting photosensitivity to the resin used as the binder is that a fine pattern must be created in the process of forming bumps on an LSI chip, and the process can be simplified. That is, the bump according to the present invention is formed by a photolithography process. Further, as the conductive powder, nickel powder, nickel powder plated with gold, and noble metal powders such as Mu, Pd, and Rh can be used alone or in combination. If these metal powders have an average particle diameter in the range of 0.2 to 2.0 μm, the bump surface will be uneven as described above, and good results will be obtained in terms of conductivity. 0.1 to 10 to the above nickel powder
It is also possible to apply U plating of wt%, and in this case, even more electrical stability can be obtained. MuU plating is Q, 1 wt%
If it is below, the plating effect will be ineffective in terms of conductivity and it will be on the same level as nickel powder, and when it is dispersed in a photosensitive resin, it will be difficult to disperse it uniformly. Moreover, if it exceeds IQwt%, it will be excellent in terms of conductivity and oxidation resistance, but it will be economically disadvantageous, so it is necessary to adjust it appropriately. Further, the above nickel powder is 50 to 12 parts by weight per 100 parts by weight of the resin composition.
It can be blended in a range of 0 parts by weight. When the amount of nickel powder is less than 60 parts by weight, the conductivity deteriorates and the bump surface becomes smooth, which is disadvantageous for good connection to ITO. If the amount exceeds 120 parts by weight, the properties (viscosity, thixotropy) of the paint will be poor, making it difficult to obtain a uniform coating, and at the same time, the light transmittance will be poor, making it impossible to obtain a sufficient degree of optical grouping.

また、導電粉であるニッケル粉は前述の通りバンプ表面
の凹凸を形成することと、導電性の面から樹枝状のもの
が良い。樹枝状粉は電解法により作られるもので、これ
を使用することによって粒子同士のからみ合いが生じ、
電気的に接触点が多く導電性が改善される。ま之、塗膜
表面は凹凸が適度に生じ、本発明の目的でもあるITO
との接触が良好となるものである。
Further, as the conductive powder, nickel powder is preferably dendritic in order to form unevenness on the bump surface as described above, and in terms of conductivity. Dendritic powder is made by electrolytic method, and by using it, particles become entangled with each other.
There are many electrical contact points and conductivity is improved. However, the surface of the coating film has moderate unevenness, which is the purpose of the present invention.
This provides good contact with the

図に本発明の実施例による半導体素子用バンプを示す。The figure shows a bump for a semiconductor device according to an embodiment of the present invention.

感光性樹脂組成物と導電性粉体からなる導電性樹脂組成
物は半導体素子が形成されたシリコンウェハー4上へ全
面コーティングし、その厚みが6μm以上になるよう粘
度やコーティング条件を決める。厚みが6μm以下にな
るような条件を選ぶとバンプ1表面の凹凸aが小さくな
ることと、ITO上へ熱圧着したときの垂直方向の歪量
が少なく信頼性面で不安定となってくる。5μm以上で
あれば上記問題はなく安定した接続が得られる。また厚
みの上限としては30μmまでが好ましく、これ以上に
なると垂直方向の抵抗値が高くなり、実装後の電圧損失
が大きく実用的でない。
A conductive resin composition composed of a photosensitive resin composition and conductive powder is coated on the entire surface of the silicon wafer 4 on which semiconductor elements are formed, and the viscosity and coating conditions are determined so that the thickness thereof becomes 6 μm or more. If conditions are selected such that the thickness is 6 μm or less, the unevenness a on the surface of the bump 1 will be small and the amount of distortion in the vertical direction when thermocompression bonded onto ITO will be small, resulting in instability in terms of reliability. If the thickness is 5 μm or more, the above problem will not occur and a stable connection can be obtained. Further, the upper limit of the thickness is preferably up to 30 μm; if it exceeds this value, the resistance value in the vertical direction becomes high and the voltage loss after mounting becomes large, making it impractical.

一方、バンプ表面の凹凸aは1μm以上が好ましく、こ
れ以下になると、熱圧着時に1個のLSIチップ内のバ
ンプ高さのばらつきを吸収することができず、接続不良
のバンプが生ずる。凹凸aの上限は特になく、バンプ厚
みまでの凹凸aでも接続は可能であるが、実用上、1μ
m前後が好ましい結果となる。
On the other hand, the unevenness a on the bump surface is preferably 1 μm or more; if it is less than this, variations in bump height within one LSI chip cannot be absorbed during thermocompression bonding, resulting in bumps with poor connections. There is no particular upper limit for the unevenness a, and it is possible to connect even if the unevenness a is up to the thickness of the bump, but in practical terms, 1μ
A preferable result is around m.

次に本発明により形成されたバンプ付LSIチップ1I
To上へメタライズすることなく実装する方法について
述べる。これまで一般に用いられている方法は例えば合
成樹脂(熱可塑性樹脂またはBステージとなり得る熱硬
化性樹脂)中に導電性粉体を均一に分散させ、シート状
にした、いわゆる異方導電性接着剤(水平方向に絶縁性
を示し、垂直方向に導電性を示す)’1ITo上あるい
はLSIチップ上へ仮止めし、LSIチップの裏面から
加圧、加熱することにエフバンブとITO間に導電性粉
体の粒子が挾み込まれ垂直方向に導通する。前記合成樹
脂は冷却すると固着または硬化によリガラス上へLSI
チップが強固に接続される。本発明によるバンプを使用
すれば前述のような異方導電性接着剤を使用しなくとも
接続は可能である。すなわち絶縁性樹脂であっても熱圧
着時にバンプとITO間に介在する極く薄い絶縁被膜全
LsIチップ上のバンプ表面の凸部によって突き破り、
凸部で電気的接触、凹部に介在する樹脂により固着が十
分おこなわれることによって、ITOと直接信頼性の高
い接続がとれる。バンプ表面に凹凸がなく平滑な場合は
絶縁被膜が間に介在することにより導通不良となる。
Next, a bumped LSI chip 1I formed according to the present invention
A method of mounting without metalizing on To will be described. The method commonly used so far is, for example, by uniformly dispersing conductive powder in a synthetic resin (thermoplastic resin or thermosetting resin that can be B-staged) and forming it into a sheet using a so-called anisotropic conductive adhesive. (Exhibiting insulating properties in the horizontal direction and conductive properties in the vertical direction) '1 Temporarily fixed on ITo or LSI chip, and applying pressure and heat from the back side of the LSI chip. particles are intercalated and conduction occurs in the vertical direction. When the synthetic resin is cooled, it solidifies or hardens and is transferred onto the glass to form an LSI.
The chip is firmly connected. If the bump according to the present invention is used, connection can be made without using an anisotropic conductive adhesive as described above. In other words, even if the insulating resin is used, the very thin insulating coating interposed between the bump and the ITO during thermocompression bonding is pierced by the convex portion of the bump surface on the entire LsI chip.
A direct and reliable connection with ITO can be achieved by electrical contact at the convex portions and sufficient adhesion by the resin interposed in the concave portions. If the bump surface is smooth and has no irregularities, poor conductivity will occur due to the presence of an insulating film between the bumps.

(以下余 白) 表1に本発明による導電性樹脂組成物の配合を示す。各
実施例の組成物はセラミック三本ロール機により混練し
均質な塗料とした。これら各塗料をシリコンウェハー上
ヘスピンナーにより大体6μm、IQμm、30μmの
厚みになるよう塗布した。アルミパッドは100μm角
のものを使用し、塗布面積がアルミパッド面積より大き
くなるようマスクを設計、使用した。全面コーティング
されたウェハー上へ上記マスクを位置合せし紫外光にエ
フ露光、現像しパンダを得た。さらにウエノ・−はチッ
プの所定寸法にダイシングしバンプ付LSIチップを得
た。このLSIチップを異方導電性接着剤((株)スリ
ーボンド製TB−s3了0)を用い、ITO上へ位置合
せし熱圧着した。熱圧着はLSIチップ裏面よりほぼチ
ップサイズと同一+7)加熱ツールにより180℃、1
0秒、 1sKV′afの条件で圧着した。それぞれの
実施例で1チツプ1oOパツドのものiloチップ実施
し、そのときの接続不良(電気的オープン)数を表2に
示す。
(The following is a blank space) Table 1 shows the formulation of the conductive resin composition according to the present invention. The compositions of each example were kneaded using a ceramic three-roll machine to form a homogeneous coating. Each of these paints was applied onto a silicon wafer using a spinner to a thickness of approximately 6 μm, IQ μm, and 30 μm. A 100 μm square aluminum pad was used, and a mask was designed and used so that the coating area was larger than the area of the aluminum pad. The above mask was positioned on the wafer coated on the entire surface, exposed to ultraviolet light, and developed to obtain a panda. Further, Ueno was diced into a predetermined chip size to obtain an LSI chip with bumps. This LSI chip was aligned and thermocompression bonded onto ITO using an anisotropic conductive adhesive (TB-s3ry0, manufactured by Three Bond Corporation). Thermocompression bonding is performed from the back side of the LSI chip at 180℃ using a heating tool (approximately the same size as the chip + 7).
The pressure bonding was carried out under the conditions of 0 seconds and 1 sKV'af. In each example, one chip with 100 pads was used, and the number of connection failures (electrical open) at that time is shown in Table 2.

表    2 比較例1として、バンプ厚み3μmとし、表面が平滑(
凹凸は0.3μm)なものを上記と同様て熱圧着した。
Table 2 As Comparative Example 1, the bump thickness was 3 μm and the surface was smooth (
The unevenness was 0.3 μm) and thermocompression bonded in the same manner as above.

また比較例2としてバンプにムu=2使用しその厚みが
16μmで表面粗さ0.2μmのものを同様に圧着した
。その結果を表2に示す。
Further, as Comparative Example 2, a bump having a thickness of 16 μm and a surface roughness of 0.2 μm was bonded in the same manner using mu=2. The results are shown in Table 2.

さらに、実施例5お工び6に示したLSIチップを実際
の液晶表示パネルの引出し電極へ前述の異方導電性接着
剤を用い接続し、液晶表示パネルを動作させ、完全動作
することを確認し念。
Furthermore, the LSI chip shown in Example 5 and Step 6 was connected to the extraction electrode of an actual liquid crystal display panel using the above-mentioned anisotropic conductive adhesive, the liquid crystal display panel was operated, and complete operation was confirmed. I regret it.

発明の効果 以上のように本発明による半導体素子用バンプは従来の
半田バンプのように蒸着、メッキ、エツチングなどの複
雑なプロセスと設備を必要とせず単なるフォトリソ工程
のみで形成できる。また、本発明にエフ得たパンダとそ
の実装方法は有機材料が構造体となっているため、熱ス
トレスなどによるガラスとシリコンの熱膨張係数の差を
吸収できるため、半田バンプのようなりラックの発生は
ない。さらにバンプ表面の凹凸により、熱圧着時に確実
な接続ができ複数個を同一パネル上へ実装する大型の液
晶表示パネルに対し、非常に大きな特徴を有するもので
ある。しかも、もし実装不良となった場合でも局部的に
加熱することにエフ簡単に取外すことができ、再度圧着
するという部分的補修が可能となり高価な液晶表示パネ
ルを廃棄することなく使用でき、製造上の効果大である
Effects of the Invention As described above, bumps for semiconductor devices according to the present invention do not require complicated processes and equipment such as vapor deposition, plating, and etching unlike conventional solder bumps, and can be formed by a simple photolithography process. In addition, since the panda and its mounting method obtained from the present invention have a structure made of organic material, they can absorb the difference in thermal expansion coefficient between glass and silicon due to heat stress, etc. There have been no outbreaks. Furthermore, the unevenness of the bump surface allows reliable connection during thermocompression bonding, which is a very important feature for large-sized liquid crystal display panels in which a plurality of bumps are mounted on the same panel. Moreover, even if a mounting defect occurs, it can be easily removed by applying local heat, and it can be partially repaired by crimping it again, allowing it to be used without having to discard an expensive LCD panel. is highly effective.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例を示す断面図である。 1・・・・・・バンプ、2・・・・・・アルミパッド、
3・・・・・・絶縁膜、4・・・・・・シリコンウェハ
ー。
The figure is a sectional view showing an embodiment of the present invention. 1...Bump, 2...Aluminum pad,
3... Insulating film, 4... Silicon wafer.

Claims (1)

【特許請求の範囲】[Claims] 半導体素子のアルミパッド上のバンプが、感光性樹脂と
導電性粉体からなる導電性樹脂組成物からなり、厚み5
μm以上で表面の凹凸が1μm以上であることを特徴と
する半導体素子用バンプ。
The bump on the aluminum pad of the semiconductor element is made of a conductive resin composition consisting of a photosensitive resin and conductive powder, and has a thickness of 5.
A bump for a semiconductor device, characterized in that the bump has a surface roughness of 1 μm or more.
JP62119421A 1987-05-15 1987-05-15 Bump for semiconductor element Expired - Fee Related JPH0815154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62119421A JPH0815154B2 (en) 1987-05-15 1987-05-15 Bump for semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62119421A JPH0815154B2 (en) 1987-05-15 1987-05-15 Bump for semiconductor element

Publications (2)

Publication Number Publication Date
JPS63283144A true JPS63283144A (en) 1988-11-21
JPH0815154B2 JPH0815154B2 (en) 1996-02-14

Family

ID=14761041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62119421A Expired - Fee Related JPH0815154B2 (en) 1987-05-15 1987-05-15 Bump for semiconductor element

Country Status (1)

Country Link
JP (1) JPH0815154B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5196371A (en) * 1989-12-18 1993-03-23 Epoxy Technology, Inc. Flip chip bonding method using electrically conductive polymer bumps
US5879761A (en) * 1989-12-18 1999-03-09 Polymer Flip Chip Corporation Method for forming electrically conductive polymer interconnects on electrical substrates
WO2005045919A1 (en) * 2003-11-11 2005-05-19 Toray Engineering Co.,Ltd. Non-contact id card and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5196371A (en) * 1989-12-18 1993-03-23 Epoxy Technology, Inc. Flip chip bonding method using electrically conductive polymer bumps
US5879761A (en) * 1989-12-18 1999-03-09 Polymer Flip Chip Corporation Method for forming electrically conductive polymer interconnects on electrical substrates
US5918364A (en) * 1989-12-18 1999-07-06 Polymer Flip Chip Corporation Method of forming electrically conductive polymer interconnects on electrical substrates
WO2005045919A1 (en) * 2003-11-11 2005-05-19 Toray Engineering Co.,Ltd. Non-contact id card and manufacturing method thereof
US7332798B2 (en) 2003-11-11 2008-02-19 Toray Engineering Company, Limited Non-contact ID card and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0815154B2 (en) 1996-02-14

Similar Documents

Publication Publication Date Title
DE69737375T2 (en) Method for mounting an electronic component on a printed circuit board and system for carrying out the method
WO2010101236A1 (en) Bump, method for forming bump, and method for mounting substrate having the bump formed thereon
JPWO2006123478A1 (en) Flip chip mounting method and flip chip mounting apparatus
JP2002026070A (en) Semiconductor device and its manufacturing method
US20210210454A1 (en) Prevention of bridging between solder joints
CN100492627C (en) Chip structure, chip package structure and its process
JPS63160352A (en) Method for packaging semiconductor device
JPS63283144A (en) Bump for semiconductor element
JP2755696B2 (en) Semiconductor device and manufacturing method thereof
JPH09246319A (en) Flip chip mounting method
JP5075569B2 (en) Wiring board and IC chip mounting method
JPH09306231A (en) Conductive particulate and substrate
JPH063821B2 (en) Double-sided protective coat type TAB tape carrier
JP2003188212A (en) Semiconductor device and manufacturing method thereof
JPS63122155A (en) Connecting bump of semiconductor chip
JPH05166879A (en) Ic mounting method
JPS63168028A (en) Fine connection structure
JP2009032948A (en) Ic chip, and method of mounting ic chip
JP2541284B2 (en) Semiconductor chip mounting method
JP3032111B2 (en) Display device mounting structure
KR100310037B1 (en) Method for fabricating flexible printed circuit boad with a plurality of chip
JP3272889B2 (en) Method for manufacturing semiconductor device
JP2511909B2 (en) Method for micro-forming electrical connection material
JPS63181450A (en) Bump for semiconductor device and its manufacture
JPS61158163A (en) Formation of bump

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees