JPS6327867B2 - - Google Patents

Info

Publication number
JPS6327867B2
JPS6327867B2 JP54169331A JP16933179A JPS6327867B2 JP S6327867 B2 JPS6327867 B2 JP S6327867B2 JP 54169331 A JP54169331 A JP 54169331A JP 16933179 A JP16933179 A JP 16933179A JP S6327867 B2 JPS6327867 B2 JP S6327867B2
Authority
JP
Japan
Prior art keywords
region
mask
layer
conductivity type
semiconductor region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54169331A
Other languages
Japanese (ja)
Other versions
JPS5694673A (en
Inventor
Hideo Tanbara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16933179A priority Critical patent/JPS5694673A/en
Publication of JPS5694673A publication Critical patent/JPS5694673A/en
Publication of JPS6327867B2 publication Critical patent/JPS6327867B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/92Capacitors with potential-jump barrier or surface barrier
    • H01L29/93Variable capacitance diodes, e.g. varactors

Description

【発明の詳細な説明】 本発明は半導体接合可変容量装置(バリキヤツ
プ)に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to semiconductor junction variable capacitance devices (varicaps).

半導体の表面の超階段接合を利用した可変容量
装置を製造する場合、例えば第1図aに示すよう
にn+Si(シリコン)基板(ウエハ)1の上にエピ
タキシヤルn-層2を形成し、このn-層表面に
SiO2マスク3を通してP(リン)、As(ヒ素)等の
ドナ不純物をイオン打込みしてn+領域4を形成
し、次いで同図bのように新たに形成したSiO2
マスク5を通してB(ホウ素)等のアクセプタを
拡散してp+領域6を形成する。このp+領域6は
n+領域4よりも拡散深さが浅くつくられ、両者
の間のpn接合が容量として利用される。この半
導体接合の断面における不純物濃度分布は第2図
のように示され、pn接合に対して逆バイアスを
かけた場合に超階段状のC−V特性を得ることに
なる。
When manufacturing a variable capacitance device using a superstep junction on the surface of a semiconductor, for example, as shown in FIG. 1a, an epitaxial n - layer 2 is formed on an n + Si (silicon) substrate (wafer) 1. , on this n - layer surface
Donor impurities such as P (phosphorous) and As (arsenic) are ion-implanted through the SiO 2 mask 3 to form the n + region 4, and then the newly formed SiO 2
A p + region 6 is formed by diffusing an acceptor such as B (boron) through a mask 5 . This p + region 6 is
The diffusion depth is made shallower than that of the n + region 4, and the pn junction between the two is used as a capacitor. The impurity concentration distribution in the cross section of this semiconductor junction is shown in FIG. 2, and when a reverse bias is applied to the pn junction, a super-step-like CV characteristic is obtained.

このような半導体接合容量装置において、p+
拡散領域6がn+拡散領域4よりも内側に形成さ
れるとその表面不純物濃度が高いために耐圧が小
さいものとなる。例えば1SV70の場合、第1図
a,bを参照し、窓穴の幅a=180μmのマスクを
用いてn+拡散を行ない、その後b=190μmのマス
クの目合せを行なつてp+拡散を行なう。しかし
ながらマスク合せの誤差をなくすためb−aの差
cを大きくするとn+領域からのp+領域のはみ出
し部分8が大きくなりその部分の容量はバリキヤ
ツプの容量変化比を減少させる浮遊容量であり、
このため高周波直列抵抗Rsが設計上不利になる
という結果を招くことになつた。
In such a semiconductor junction capacitor device, p +
If the diffusion region 6 is formed inside the n + diffusion region 4, its surface impurity concentration will be high, resulting in a low breakdown voltage. For example, in the case of 1SV70, referring to Figure 1 a and b, perform n + diffusion using a mask with window hole width a = 180 μm, then align the mask with b = 190 μm and perform p + diffusion. Let's do it. However, if the b-a difference c is increased to eliminate errors in mask alignment, the protruding portion 8 of the p + region from the n + region becomes larger, and the capacitance of that portion is a stray capacitance that reduces the capacitance change ratio of the varicap.
This resulted in the high frequency series resistance R s being disadvantageous in terms of design.

本発明は上記した問題点を解決するためになさ
れたものであり、その目的はホトエツチング工程
を少なくしてしかも耐圧、歩留りを向上できる半
導体接合容量装置の製造方法を提供することにあ
る。
The present invention has been made to solve the above-mentioned problems, and its purpose is to provide a method of manufacturing a semiconductor junction capacitor device that can reduce the number of photo-etching steps and improve breakdown voltage and yield.

その目的達成のための本発明の要旨は、第1導
電型高比抵抗半導体領域(例えば、n-エピタキ
シヤル層)の表面に酸化膜よりなり、窓開部を有
する単一のマスクを通して第1導電型不純物をイ
オン打込みすることにより前記半導体領域と同じ
導電型の低比抵抗の第1領域を形成し、次いで前
記マスク表面のエツチングを行うことにより前記
イオン打込みによつて損傷を受けた前記マスクの
表面層及び前記窓開部の側面層を除去し、その後
前記マスクを通して第2導電型不純物を前記半導
体領域表面に導入することを特徴とする半導体接
合容量装置の製造方法にある。
The gist of the present invention for achieving this purpose is to apply a first conductivity type high resistivity semiconductor region (for example, an n-epitaxial layer) through a single mask made of an oxide film and having a window opening on the surface of the first conductivity type high resistivity semiconductor region (for example, an n - epitaxial layer). A first region of the same conductivity type and low resistivity as the semiconductor region is formed by ion-implanting conductivity-type impurities, and then the mask surface damaged by the ion implantation is removed by etching the mask surface. The method of manufacturing a semiconductor junction capacitor device is characterized in that the surface layer and the side layer of the window opening are removed, and then a second conductivity type impurity is introduced into the surface of the semiconductor region through the mask.

第3図a〜cは本発明の一実施例を半導体接合
容量装置の製造プロセスにそつて示すものであ
る。
3a to 3c show an embodiment of the present invention along the manufacturing process of a semiconductor junction capacitor device.

(a) n+Si基板(ウエハ)1上にエピタキシヤル
n-層2を成長させたものを用意し、表面の酸
化膜(SiO2)3をホトエツチ処理して一辺の
長さa180μm角の窓開部を有するマスクとし、
P(リン)又はAs(ヒ素)等のドナ不純物のイ
オン打込みによりn-Si層表面にn+領域4を形
成する。このイオン打込みの際にイオンはSi層
表面のみならず酸化膜の側面にも打込まれ深さ
0.2〜0.4μmのダメージ(損傷)層7がつくられ
る。
(a) Epitaxial on n + Si substrate (wafer) 1
Prepare a layer on which the n - layer 2 has been grown, and photo-etch the oxide film (SiO 2 ) 3 on the surface to make a mask having a window opening with a side length a of 180 μm square.
An n + region 4 is formed on the surface of the n - Si layer by ion implantation of a donor impurity such as P (phosphorus) or As (arsenic). During this ion implantation, ions are implanted not only on the surface of the Si layer but also on the sides of the oxide film, resulting in a deep
A damage layer 7 of 0.2 to 0.4 μm is created.

(b) 次にフツ酸系エツチ液により酸化膜の全面を
かるくエツチ(ライトエツチ)する。ところで
前工程のイオン打込みでダメージを受けた酸化
膜表面のダメージ層7はそれを受けない部分の
エツチ速度より数倍速いエツチ速度で侵され
る。そこでウエハを短時間エツチするとダメー
ジ層は急速にエツチされ、ダメージを受けない
部分が現れるとエツチ速度は緩やかになり、従
つてマスク開口部側面ではエツチ完了後180μm
よりもダメージ層部分c′だけサイドエツチが進
行する。
(b) Next, lightly etch the entire surface of the oxide film using a hydrofluoric acid etchant (light etch). By the way, the damaged layer 7 on the surface of the oxide film, which has been damaged by the ion implantation in the previous step, is etched at an etch rate several times faster than the etch rate of the portion that is not damaged. Therefore, when the wafer is etched for a short time, the damaged layer is rapidly etched, and when undamaged areas appear, the etching speed slows down.
The side etch progresses by more than the damaged layer portion c'.

(c) ライトエツチ後の酸化膜3′をそのままマス
クとしてB(ホウ素)拡散を行ないp+拡散領域
6′を形成する。前の(b)工程で酸化膜のダメー
ジを受けた部分がc′=0.5〜1.0μmだけサイドエ
ツチされているため、マスクの開口部の幅b′は
c′分だけ広がることになり、p+領域6′のn+
域4よりのはみ出し部分8は極くわずかですむ
ことになる。
(c) Using the light-etched oxide film 3' as a mask, B (boron) is diffused to form a p + diffusion region 6'. Since the damaged part of the oxide film in the previous step (b) is side-etched by c′ = 0.5 to 1.0 μm, the width b′ of the mask opening is
It is expanded by c', and the protruding portion 8 of the p + region 6' from the n + region 4 is extremely small.

以上実施例で述べた本発明によれば、(1)p+
域のn+領域よりのはみ出し部分がイオン打込み
時のダメージ層の幅に限定されるため、はみ出し
たp+拡散層により浮遊容量を減少させることが
でき、したがつてRsの改良の効果は大きい、(2)
p+拡散のためのホトエツチ工程が不要であり、
セルフアライン化ができる、(3)従来は2回のホト
エツチによるマスク工程のためマスク位置決め誤
差を考慮し、p+拡散のはみ出し量を大きくとる
必要があつたが、本発明でははみ出し量を限定で
きしかも確実にできる、(4)上記(1)〜(3)より耐圧歩
留りを向上し製造原価低減できる等の諸効果が得
られる。さらに本発明によれば、単一の酸化膜マ
スクでセルフアラインができるので製造工程等を
単純化することができる。
According to the present invention described in the above embodiments, (1) the protruding portion of the p + region from the n + region is limited to the width of the damaged layer during ion implantation, so the stray capacitance is caused by the protruding p + diffusion layer. Therefore, the effect of improving R s is large, (2)
No photoetch step is required for p + diffusion,
(3) In the past, the mask process involved two photo-etches, so it was necessary to take mask positioning errors into account and increase the amount of protrusion of the p + diffusion, but with the present invention, the amount of protrusion can be limited. Moreover, various effects such as (4) improvement in pressure yield and reduction in manufacturing cost from the above (1) to (3) can be obtained. Further, according to the present invention, self-alignment can be performed using a single oxide film mask, so that the manufacturing process etc. can be simplified.

本発明は前記実施例に限定されない。例えば半
導体領域の導電型を逆にする場合も同様に実施で
きる。
The invention is not limited to the above embodiments. For example, the conductivity type of the semiconductor region can be reversed in the same manner.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは在来の半導体接合容量装置の製
造プロセスの一部工程の断面図、第2図は半導体
接合容量装置の不純物濃度分布曲線図、第3図a
〜cは本発明による半導体接合容量装置の製造プ
ロセスの一部工程の断面図である。 1……n+基板、2……エピタキシヤルn-層、
3……酸化膜マスク、4……n+拡散(イオン打
込み)領域、5……新たな酸化膜マスク、6……
p+拡散領域、7……ダメージ層、8,8′……は
み出し部分。
Figures 1a and b are cross-sectional views of some steps in the manufacturing process of a conventional semiconductor junction capacitor device, Figure 2 is an impurity concentration distribution curve diagram of a semiconductor junction capacitor device, and Figure 3a
-c are cross-sectional views of some steps in the manufacturing process of the semiconductor junction capacitor device according to the present invention. 1...n + substrate, 2...epitaxial n - layer,
3... Oxide film mask, 4... n + diffusion (ion implantation) region, 5... New oxide film mask, 6...
p + diffusion region, 7... Damage layer, 8, 8'... Protruding portion.

Claims (1)

【特許請求の範囲】[Claims] 1 第1導電型高比抵抗半導体領域の表面に酸化
膜よりなり、窓開部を有する単一のマスクを通し
て第1導電型不純物をイオン打込みすることによ
り前記半導体領域と同じ導電型の低比抵抗の第1
領域を形成し、次いで前記マスク表面のエツチン
グを行うことにより前記イオン打込みによつて損
傷を受けた前記マスクの表面層及び前記窓開部の
側面層を除去し、その後前記マスクを通して第2
導電型不純物を前記半導体領域表面に導入するこ
とを特徴とする半導体接合容量装置の製造方法。
1 A first conductivity type impurity is ion-implanted into the surface of the first conductivity type high resistivity semiconductor region through a single mask made of an oxide film and having a window opening, thereby forming a low resistivity semiconductor region of the same conductivity type as the semiconductor region. 1st of
forming a region and then etching the mask surface to remove the surface layer of the mask damaged by the ion implantation and the side layer of the window opening;
A method for manufacturing a semiconductor junction capacitor device, comprising introducing a conductive impurity into the surface of the semiconductor region.
JP16933179A 1979-12-27 1979-12-27 Semiconductor junction capacity device and manufacture thereof Granted JPS5694673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16933179A JPS5694673A (en) 1979-12-27 1979-12-27 Semiconductor junction capacity device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16933179A JPS5694673A (en) 1979-12-27 1979-12-27 Semiconductor junction capacity device and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS5694673A JPS5694673A (en) 1981-07-31
JPS6327867B2 true JPS6327867B2 (en) 1988-06-06

Family

ID=15884560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16933179A Granted JPS5694673A (en) 1979-12-27 1979-12-27 Semiconductor junction capacity device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS5694673A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896774A (en) * 1981-12-04 1983-06-08 Mitsubishi Electric Corp Manufacture of super-stepped type junction diode
JPS5976422A (en) * 1982-10-26 1984-05-01 Oki Electric Ind Co Ltd Manufacture of semiconductor device
JPS6459874A (en) * 1987-08-31 1989-03-07 Toko Inc Manufacture of variable-capacitance diode
US5017950A (en) * 1989-01-19 1991-05-21 Toko, Inc. Variable-capacitance diode element having wide capacitance variation range
US4987459A (en) * 1989-01-19 1991-01-22 Toko, Inc. Variable capacitance diode element having wide capacitance variation range

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4826480A (en) * 1971-08-11 1973-04-07
JPS5269266A (en) * 1975-12-08 1977-06-08 Fujitsu Ltd Production of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4826480A (en) * 1971-08-11 1973-04-07
JPS5269266A (en) * 1975-12-08 1977-06-08 Fujitsu Ltd Production of semiconductor device

Also Published As

Publication number Publication date
JPS5694673A (en) 1981-07-31

Similar Documents

Publication Publication Date Title
US4378630A (en) Process for fabricating a high performance PNP and NPN structure
US4868136A (en) Process of forming an isolation structure
US4339767A (en) High performance PNP and NPN transistor structure
US4641416A (en) Method of making an integrated circuit structure with self-aligned oxidation to isolate extrinsic base from emitter
JPS61259570A (en) Semiconductor device
US4497107A (en) Method of making self-aligned high-frequency static induction transistor
US5026663A (en) Method of fabricating a structure having self-aligned diffused junctions
GB2030002A (en) Semiconductor devices and methods of manufacturing them
US4473941A (en) Method of fabricating zener diodes
GB1332931A (en) Methods of manufacturing a semiconductor device
EP0160255A2 (en) Field effect transistor device and method of making same
US4001048A (en) Method of making metal oxide semiconductor structures using ion implantation
JPH02260660A (en) Manufacture of mos type semiconductor device
US5488002A (en) Method for manufacturing self-aligned bipolar transistors using double diffusion
US5149663A (en) Method for manufacturing a Bi-CMOS semiconductor device
JPS6327867B2 (en)
KR910000020B1 (en) Manufacture of semiconductor device
US5023195A (en) Method for manufacturing a semiconductor integrated circuit including a bipolar transistor
US4468682A (en) Self-aligned high-frequency static induction transistor
JPH07245294A (en) Manufacture of semiconductor device
US5541136A (en) Method of forming a field oxide film in a semiconductor device
KR0144353B1 (en) Method of manufacturing bipolar device
JPH0360128A (en) Semiconductor device
KR930010118B1 (en) Making method of semiconductor device
KR930001565B1 (en) Manufacturing method of c-mos transistor