JPS5896774A - Manufacture of super-stepped type junction diode - Google Patents

Manufacture of super-stepped type junction diode

Info

Publication number
JPS5896774A
JPS5896774A JP19826381A JP19826381A JPS5896774A JP S5896774 A JPS5896774 A JP S5896774A JP 19826381 A JP19826381 A JP 19826381A JP 19826381 A JP19826381 A JP 19826381A JP S5896774 A JPS5896774 A JP S5896774A
Authority
JP
Japan
Prior art keywords
layer
type
aperture
opening
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19826381A
Other languages
Japanese (ja)
Inventor
Ideo Maeyama
前山 出男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP19826381A priority Critical patent/JPS5896774A/en
Publication of JPS5896774A publication Critical patent/JPS5896774A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/92Capacitors with potential-jump barrier or surface barrier
    • H01L29/93Variable capacitance diodes, e.g. varactors

Abstract

PURPOSE:To obtain the super-stepped type junction diode having no deterioration in reverse withstand voltage and a creeping phenomenon by a method wherein after an N<+> type ion implanted layer has been formed using an SiO2 film having an aperture in an N<-> type layer which was grown on a semiconductor substrate, the aperture is widened in width and a P<+> type diffusion layer is formed at the surface layer part of the ion implantation layer in such a manner that it is overhanged into the N<-> type layer. CONSTITUTION:An N<-> type layer 2 is epitaxially grown on an N<++> type Si substrate 1, a thick SiO2 film 3 is generated on the surface layer part of the layer 2 by performing a heat treatment, and an aperture is provided in the center part of the film 3. Then, an N<+> type implanted layer 4 is formed by implanting an ion into the layer 2, which is exposed on the inside of the aperture, using the film 3 as a mask, the SiO2 film 3' which was grown on the layer when the ion implantation is performed is removed and, at the same time, the aperture provided on the film 3 is widened in width. Subsequently, a P<+> type layer 5 is formed by diffusion on the surface layer part of the layer 4 using the widened aperture 5'' in such a manner that the layer 5 will be overhanged into the layer 2, and the super-stepped junction diode is composed of layers 2, 4 and 5.

Description

【発明の詳細な説明】 この発明は超階段型接合ダイオードの製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a super-step junction diode.

一般に超階段型接合ダイオードは、パリキャップダイオ
ードとしての容量−バイアス特性を利用し、テレビ、ラ
ジオ、その他通信機の周波数をマツチングさせる可変容
量素子として広く使用されている。
In general, super-stepped junction diodes are widely used as variable capacitance elements for frequency matching in televisions, radios, and other communication devices by utilizing the capacitance-bias characteristics of pariscapacitor diodes.

そしてこのダイオードを製造するために、従来は次の2
つの手段が採用されている。すなわち。
In order to manufacture this diode, the following two steps were conventionally required.
Two methods have been adopted. Namely.

第1の方法は第1図(8)〜(8に示すように、まずn
形シリコンの高濃度ウェハ(n+十中層(1)を準備し
て、その主表面側にエピタキシャル法によりn形像濃度
層(n一層)(2)を成長させ(同図人)、かつこのn
形像濃度層(2)の表面を高温(1000−1200°
0)処理してシリコン酸化膜(SiQ [) (3)を
形成する(同図B)。ついでこのシリコン酸化膜(3)
の一部を除去開口させ、こ\からn形不純物をイオン注
入してn+イオン注入層(n中層)(4)を形成しく同
図O)、さらにこのn+イオン層(4)よりも巾が広く
なるように開口部(5′)を形成すると共に(同図D)
、この開口部(5′)よりP形不純物を拡散(もしくは
イオン注入)してP十拡散/[5)を形成する(同図E
)。
The first method is as shown in Figure 1 (8) to (8).
A high-concentration silicon wafer (n+ layer (1)) is prepared, and an n-type image concentration layer (n layer) (2) is grown on the main surface side of the wafer (n layer) (2) by an epitaxial method (same figure).
The surface of the image density layer (2) is heated to a high temperature (1000-1200°
0) Process to form a silicon oxide film (SiQ [) (3) (Figure B). Next, this silicon oxide film (3)
A part of the n+ ion implanted layer (n middle layer) (4) is formed by removing and opening a part of the n+ ion layer (4) by ion-implanting n-type impurities from this part. While forming the opening (5') to make it wider (D in the same figure)
, P-type impurity is diffused (or ion-implanted) through this opening (5') to form a P+ diffusion/[5] (see E in the same figure).
).

従ってこの第1の従来方法によって得られる超階段接合
の逆方向耐圧は、エピタキシャル法により形成したn形
像濃度層(2)とP+拡散層(5)とによって決定され
るために、その逆方向耐圧が向上されることになるが、
一方、この方法の場合には、写真製版工程が1回増加す
ることからその作業工程が煩雑化する不都合がある。
Therefore, the reverse breakdown voltage of the hyperstep junction obtained by this first conventional method is determined by the n-type image concentration layer (2) and the P+ diffusion layer (5) formed by the epitaxial method. Although the pressure resistance will be improved,
On the other hand, this method has the disadvantage that the photolithography process is increased by one time, making the work process complicated.

そしてこの欠点を除くために、イオン注入によりn+イ
オン注入層(4)を形成する場合には、イオン注入の利
点としてシリコンの表面側で濃度が低くなるという特性
があり、この利点を活用したのが第2の方法で、これを
第2図(5)〜(ト)に示しである。
In order to eliminate this drawback, when forming the n+ ion implantation layer (4) by ion implantation, the advantage of ion implantation is that the concentration is lower on the silicon surface side, and this advantage can be utilized. The second method is shown in FIG. 2 (5) to (g).

すなわち、同第2図(Al−(Qまでは前記第1回置〜
(Qと同様であるが、この第2の方法では同図(DJに
みられるn+イオン注入層(4)の形成時にその高温処
理によって形成されるシリコン酸化膜(3′)を、フッ
酸系の溶液により除去することでシリコン表面、を露出
させ、さらに同図(匂のようにこの露出されたシリコン
表面からP形不純物を拡散してP+拡散層(5)を形成
するようにしている。
That is, in FIG. 2 (Al-(Q is the first position to
(Similar to Q, this second method uses a hydrofluoric acid-based The silicon surface is exposed by removing it with a solution of 1, and then P type impurities are diffused from this exposed silicon surface to form a P+ diffusion layer (5) as shown in the same figure.

従ってこの第2の従来方法では、前記g1の従来方法で
の開口部(5′)を形成させるための写真製版工程を省
略し得るのであるが、一方、この方法の場合には、fi
+、jオン注入層(4)のn中濃度がシリコン表面近く
で低くなるが、開口部付近でのシリコン酸化膜(3)と
シリコンとの境界部分では、このn+44度が高くなる
こともあって、こ\で逆方向耐圧が低下したり、あるい
はクリープ現象が発生したりする不都合がある。
Therefore, in this second conventional method, the photolithography step for forming the opening (5') in the conventional method g1 can be omitted, but on the other hand, in the case of this method, the fi
+, j The concentration of n in the ion injection layer (4) is low near the silicon surface, but this n+44 degree may be high at the boundary between the silicon oxide film (3) and silicon near the opening. Therefore, there is a problem that the reverse withstand voltage decreases or a creep phenomenon occurs.

この発明方法は従来のこれらの各方法の欠点を改善しよ
うとするものであり、写真製版を用いずにn+イオン注
入層よりもP+拡散層の巾を大きくさせて、逆方向耐圧
の劣化、ならびにクリープ現象を避けるようにしたもの
である。
This inventive method attempts to improve the drawbacks of each of these conventional methods, and by making the width of the P+ diffusion layer larger than the N+ ion implantation layer without using photolithography, the deterioration of reverse breakdown voltage and This is to avoid the creep phenomenon.

以下、この発明方法の一実施例を第3図(5)〜(縛に
ついて詳細に説明する。
Hereinafter, one embodiment of the method of this invention will be described in detail with respect to FIGS. 3(5) to (5).

この実施例方法においても、まず前記第1.第2の従来
方法と同様にn形シリコンの高濃度ウェハ(n+十中層
(1)を準備しく同図A)、その表面側にエピタキシャ
ル法によりn形像濃度層(n一層)(2)を成長させ(
同図B)、かつこのn形像濃度層(2)の表面を高温(
tooo〜1200°C)処理してシリコン酸化膜(s
io、 [)(3)を形成するが、このときこのシリコ
ン酸化膜(3)は前記従来の各方法よりも厚く形成して
おき、さらにこのシリコン酸化膜(3)の一部を除去開
口させ、こ\からリン、ヒ素などのn形不純物を注入し
たのち、高温処理によりn+イオン注入層(4)を形成
する(同図0)っこ\でこの高温処理時にはシリコン酸
化膜(3′)が同時に形成されるから(同図D)、続い
てこのシリコン酸化膜(3′)を前記と同様にフッ酸系
の溶液で除去することになるが、このときシリコン酸化
膜(3′)が完全に除去された後も、そのま\この除去
処理を継続することにより、あらかじめ厚く形成されて
いるシリコン酸化膜(3)の開口端面がより一層開口中
を拡げるように除去されてゆき、前記n+イオン注入層
(4)よりも巾の拡い開口部(5”)を形成できるもの
で、その後この開口部(5“)よりボロンなどのP形不
純物を拡散することにより、回申相当のP+拡散層(5
)を形成し得るのである(同図E)。
In the method of this embodiment as well, the first step is as follows. Similarly to the second conventional method, prepare a high concentration n-type silicon wafer (n+1 layer (1) (see figure A)) and form an n-type image concentration layer (n single layer) (2) on its surface side by epitaxial method. Let it grow (
B) in the same figure, and the surface of this n-type image density layer (2) is heated to a high temperature (
tooo ~ 1200°C) to form a silicon oxide film (s
io, [) (3) is formed, but at this time, this silicon oxide film (3) is formed thicker than in each of the conventional methods described above, and a part of this silicon oxide film (3) is removed and opened. After implanting n-type impurities such as phosphorus and arsenic from here, an n+ ion implantation layer (4) is formed by high temperature treatment (Figure 0). At this high temperature treatment, a silicon oxide film (3') is formed. is formed at the same time (D in the same figure), so next, this silicon oxide film (3') is removed with a hydrofluoric acid solution in the same way as above, but at this time, the silicon oxide film (3') By continuing this removal process even after it has been completely removed, the opening end face of the silicon oxide film (3), which has been thickly formed in advance, will be removed so as to further expand the opening. It is possible to form an opening (5") wider than the n+ ion implantation layer (4), and then by diffusing P-type impurities such as boron through this opening (5"), a layer equivalent to recirculation is formed. P+ diffusion layer (5
) can be formed (E in the same figure).

従ってこの実施例の場合は、n+イオン注入層(4)上
に形成されるP+拡散層(5)は、同層(4)よりも巾
が拡がってその端間はそれぞれにn形像濃度層(2)の
部分に形成されることになり、前記従来の第1の方法で
の写真製版工程を一工程だけ省略し得て作業を簡略化で
き、かつ従来の第2の方法で問題となった逆方向耐圧の
劣化、クリープ現象をそれぞれに完全除去できるのであ
る。
Therefore, in the case of this embodiment, the P+ diffusion layer (5) formed on the n+ ion-implanted layer (4) is wider than the same layer (4), and the n-type image concentration layer is formed between each end thereof. (2), it is possible to omit one step of the photolithography process in the conventional first method, simplifying the work, and avoiding the problems in the conventional second method. In addition, deterioration in reverse breakdown voltage and creep phenomena can be completely eliminated.

以上詳述したようにこの発明によれば、作業方法を簡略
化できると共に、併せて電気的特性の安定した超階段型
接合ダイオードを提供できる特長がある。
As described in detail above, the present invention has the advantage of simplifying the working method and providing a super-step junction diode with stable electrical characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(5)〜(口および第2図(5)〜(lは従来の
各側倒による超階段型接合ダイオードの製造工程を順次
に示す断面図、第3図(A)〜(縛はこの発明の一実施
例方法を適用し九同超階段型接合ダイオードの製造工程
を順次に示す断面図である。 (1)・・・・n形シリコ/高濃度ウェハ、(2)・・
・・n形像濃度層、(3)・・・・シリコン酸化膜、(
4)・・・・n+イオン注入層、(5)・・・・P中波
散層、(5”) 、 (5”)・・・・開口部。 代 理 人   葛 野 信 −(はが1名)副因  
      纜2図 323− 戸3図
Figures 1 (5) to (1) and Figures 2 (5) to (1) are cross-sectional views sequentially showing the manufacturing process of conventional ultra-step junction diodes by side tilting, and Figures 3 (A) to (1). These are cross-sectional views sequentially illustrating the manufacturing process of a nine-domain super-stepped junction diode by applying an embodiment method of the present invention. (1)...N-type silicon/high concentration wafer, (2)...
...N-type image concentration layer, (3)...Silicon oxide film, (
4)...N+ ion implantation layer, (5)...P medium scattering layer, (5"), (5")...opening. Agent Shin Kuzuno - (1 person) Secondary cause
Figure 2 323- Figure 3

Claims (1)

【特許請求の範囲】[Claims] 第1導電型の高濃度シリコンウェハの主表面上に、第1
導電型の低濃度層を成長させたのち、その表面を高温処
理してシリコン酸化膜を形成させると共に、このシリコ
ン酸化膜の一部を選択的に除去して開口させ、ついでこ
の開口部からのイオン注入により第1導電型のイオン注
入層を形成し、かつこのイオン注入によって開口部に形
成されるシリコン酸化膜のエツチング除去に際し、その
エツチング時間を長くとって開口部酸化膜の除去に併せ
て、同開口部を形成している酸化膜の開口端面を拡巾さ
せ、さらにこの拡巾された開口部からの不純物拡散によ
り前記第1導電型イオン注入層よりも巾の広い第2導電
型拡散層を形成することを特徴とする超階段型接合ダイ
オードの製造方法。
On the main surface of the high concentration silicon wafer of the first conductivity type, a first
After growing a conductive type low concentration layer, its surface is treated at high temperature to form a silicon oxide film, a part of this silicon oxide film is selectively removed to form an opening, and then a An ion-implanted layer of the first conductivity type is formed by ion implantation, and when the silicon oxide film formed in the opening by this ion implantation is removed by etching, the etching time is lengthened so that the oxide film in the opening is removed. , the opening end face of the oxide film forming the opening is widened, and impurity diffusion from the widened opening results in a second conductivity type diffusion having a width wider than the first conductivity type ion implantation layer. A method for manufacturing a super-step junction diode, characterized by forming a layer.
JP19826381A 1981-12-04 1981-12-04 Manufacture of super-stepped type junction diode Pending JPS5896774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19826381A JPS5896774A (en) 1981-12-04 1981-12-04 Manufacture of super-stepped type junction diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19826381A JPS5896774A (en) 1981-12-04 1981-12-04 Manufacture of super-stepped type junction diode

Publications (1)

Publication Number Publication Date
JPS5896774A true JPS5896774A (en) 1983-06-08

Family

ID=16388221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19826381A Pending JPS5896774A (en) 1981-12-04 1981-12-04 Manufacture of super-stepped type junction diode

Country Status (1)

Country Link
JP (1) JPS5896774A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5694673A (en) * 1979-12-27 1981-07-31 Hitachi Ltd Semiconductor junction capacity device and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5694673A (en) * 1979-12-27 1981-07-31 Hitachi Ltd Semiconductor junction capacity device and manufacture thereof

Similar Documents

Publication Publication Date Title
JPS60175453A (en) Manufacture of transistor
CN209843715U (en) Power device for improving UIS through connecting hole
JPS5896774A (en) Manufacture of super-stepped type junction diode
JPS5969943A (en) Manufacture of semiconductor device
JPS5816571A (en) Manufacture of semiconductor device
JP2953020B2 (en) Method for manufacturing semiconductor device
JP3218599B2 (en) Method for manufacturing junction field effect transistor
JP3297102B2 (en) Method of manufacturing MOSFET
JPH01108772A (en) Manufacture of bipolar transistor
JPS63273317A (en) Manufacture of semiconductor device
JPH05102173A (en) Manufacture of semiconductor substrate
JPS60175416A (en) Manufacture of semiconductor device
JPH05175443A (en) Semiconductor device and manufacture thereof
JPS6350062A (en) Semiconductor device
JPH04250632A (en) Manufacture of semiconductor device
JPS62243361A (en) Manufacture of semiconductor device
JPS63157474A (en) Manufacture of semiconductor device
JPS6149469A (en) Manufacture of semiconductor device
JPS60102731A (en) Manufacture of semiconductor device
JPS5987862A (en) Manufacture of semiconductor device
JPS60257572A (en) Manufacture of semiconductor device
JPH0233932A (en) Manufacture of semiconductor device
JPH04213834A (en) Manufacture of bipolar integrated circuit
JPH02207549A (en) Manufacture of semiconductor device
JPS61225857A (en) Manufacture of complementary semiconductor device