JPS63278308A - Superconductive coil and its manufacture - Google Patents

Superconductive coil and its manufacture

Info

Publication number
JPS63278308A
JPS63278308A JP11431487A JP11431487A JPS63278308A JP S63278308 A JPS63278308 A JP S63278308A JP 11431487 A JP11431487 A JP 11431487A JP 11431487 A JP11431487 A JP 11431487A JP S63278308 A JPS63278308 A JP S63278308A
Authority
JP
Japan
Prior art keywords
oxide superconductor
superconducting coil
powder
wire
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11431487A
Other languages
Japanese (ja)
Other versions
JP2523632B2 (en
Inventor
Hisashi Yoshino
芳野 久士
Shin Fukushima
福島 伸
Hiromi Nibu
丹生 ひろみ
Minoru Yamada
穣 山田
Shigeo Nakayama
茂雄 中山
Akira Murase
村瀬 暁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62114314A priority Critical patent/JP2523632B2/en
Publication of JPS63278308A publication Critical patent/JPS63278308A/en
Application granted granted Critical
Publication of JP2523632B2 publication Critical patent/JP2523632B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To enhance productivity and to manufacture a superconductive coil composed of an inorganic material completely, by filling a metallic tube with perovskite type oxide superconductor powder to form superconductor wires and interposing heat-resisting insulating materials among these wires and forming them into a coiled shape and then providing them with heat treatment. CONSTITUTION:A metallic tube is filled with perovskite type oxide superconductor powder so as to form superconductor wires. Heat-resisting insulating materials are interposed among these wires, and they are formed into a coiled shape and then provided with heat treatment. A fiber made of alumina, quartz, and the like can be used as said insulating material, otherwise an inorganic polymer may be impregnated among the wires. Thereafter they are fired in an atmosphere containing oxygen. It is preferable that a superconductive state can be realized by an oxide superconductor which contains rare earth elements and has perovskite type structure. After these raw materials are mixed, they are assumedly fired and pulverized to obtain their desired shape and then fired. Hence, a superconductive coil provided with high temperature heat treatment and inorganic features can be obtained with excellent productivity.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、ペロブスカイト型の酸化物超電導体粉末を用
いた超電導コイルとその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a superconducting coil using perovskite-type oxide superconductor powder and a method for manufacturing the same.

(従来の技術) 近年、Ba−La−Cu−0系の層状ペロブスカイト型
の酸化物が高い臨界温度を有する可能性のあることが発
表されて以来、各所で酸化物超電導体の研究が行われて
いる(2.Phys、B Condensed Mat
ter 64゜189−193(1986))。その中
でもY−Ba−Cu−0系で代表される酸素欠陥を有す
る欠陥べOブスカイト型(ABa、、 Cu3O7−5
型)(Aは、Y、 Wb、 Ho、 Dy、 Eu。
(Prior Art) In recent years, it has been announced that layered perovskite-type oxides based on Ba-La-Cu-0 may have a high critical temperature, and since then, research on oxide superconductors has been carried out in various places. (2. Phys, B Condensed Mat
ter 64°189-193 (1986)). Among them, defective Beskite type (ABa, Cu3O7-5) with oxygen defects represented by Y-Ba-Cu-0 system.
type) (A is Y, Wb, Ho, Dy, Eu.

Er、 Tmおよび[Uから選ばれた元素)の酸化物超
電導体は、臨界温度■ が90に以上と液体窒素以上の
高い温度を示すため非常に有望な材料として注目されて
いる(Phys、Rev、Lett、vol、  58
 No、9,908−910)。
Oxide superconductors of Er, Tm, and [elements selected from U] are attracting attention as very promising materials because they exhibit critical temperatures of 90 or higher, higher than liquid nitrogen (Phys, Rev. , Lett, vol. 58
No. 9, 908-910).

(発明が解決しようとする問題点) しかしながら、この[8体は、結晶性の酸化物であって
、結晶中に酸素空席を有する焼結体また(よ粉末として
得られ、この酸素空席の多い状態では臨界電流密度が小
さいため、上記酸素空席に酸素を導入するために長時間
の熱処理を要するという難点があった。
(Problems to be Solved by the Invention) However, this [8 body] is a crystalline oxide, and is obtained as a sintered body having oxygen vacancies in the crystal or as a powder, and is obtained as a powder with many oxygen vacancies. Since the critical current density is low in this state, there is a problem in that a long heat treatment is required to introduce oxygen into the oxygen vacancies.

一方、超電導コイルは低温流体中で使用されるため、こ
のコイルを構成する材料は、低温流体に溶解せず、しか
も線膨張係数が、超電導体線材とほぼ等しいことが望ま
しいが、従来の超電導コイルは有機ポリマーを用いた含
浸ワニスを使用しているため、これらの特性が充分なも
のとはいえなかった。
On the other hand, since superconducting coils are used in low-temperature fluids, it is desirable that the material constituting the coils not dissolve in the low-temperature fluids and have a coefficient of linear expansion approximately equal to that of superconducting wires, but conventional superconducting coils Since the method uses an impregnated varnish using an organic polymer, these characteristics cannot be said to be sufficient.

本発明は、このような従来の難点を解消ずべくなされた
もので、ペロブスカイト型超aHJ体粉末の結晶中の酸
素空席への酸素の導入をコイル製造工程において行い、
生産性を向上させるとともに、完全に無機物から構成さ
れた超電導コイル−と製造方法を提供することを目的と
する。
The present invention has been made to solve these conventional difficulties, and involves introducing oxygen into the oxygen vacancies in the crystal of perovskite-type super aHJ powder during the coil manufacturing process.
It is an object of the present invention to improve productivity and to provide a superconducting coil made entirely of inorganic materials and a manufacturing method.

[発明の構成] (問題点を解決するための手段) すなわち本発明の超電導コイルは、ペロブスカイト型の
酸化物超電導体粉末を金属管内に充填してなる超電導体
線材を、線材間に耐熱性の絶縁材を介在さUてコイル状
に成形した後熱処理されてなることを特徴としている。
[Structure of the Invention] (Means for Solving the Problems) That is, the superconducting coil of the present invention includes a superconducting wire made by filling a metal tube with perovskite-type oxide superconducting powder, and a heat-resistant wire between the wires. It is characterized by being formed into a coil shape with an insulating material interposed therebetween and then heat-treated.

またその絶縁材としてアルミナあるいは石英等のファイ
バーを用いてもよく、あるいは線材間に無機ポリマーを
含浸させてもよい、しかる侵、酸素存在雰囲気中で、8
00〜940℃の温度で焼成する。
In addition, fibers such as alumina or quartz may be used as the insulating material, or an inorganic polymer may be impregnated between the wires.
Calcinate at a temperature of 00 to 940°C.

ここでいう希土類元素を含有しペロブスカイト型構造を
有する酸化物超電導体は超電導状態を実現できればよく
、ABa2Cu3O7−δ系(δは酸素欠陥を表し通常
1以下、Aは、Y、 Yb、 Ho、 Dy、 Eu。
The oxide superconductor containing a rare earth element and having a perovskite structure is sufficient as long as it can realize a superconducting state, and is an ABa2Cu3O7-δ system (δ represents an oxygen defect and is usually 1 or less, A is Y, Yb, Ho, Dy). , Eu.

Er、 Tm、 Lu ; Baの一部はSr等rib
換可能)等の酸素欠陥を有する欠陥ペロブスカイト型、
5r−La−Cu−0系等の層状ペロごスカイト型等の
広義にペロブスカイト構造を有する酸化物とする。また
希土類元素も広義の定着とし、Sc、Yおよびランタン
系を含むものとする。代表的な系としてY−Ba−cu
−o系の(まかに、5c−Ba−Cu−0系、5r−L
a−Cu−0系、ざらにSrをBa、Caで置換した系
等が挙げられる。 本発明酸化物超電導体は、例えば以
下に示す製造方法により得ることができる。Y、 Ba
、 Cuなとのペロブスカイト型酸化物超電導体の構成
元素を十分混合する。この場合各々の原料はY2 03
 、Bad、 CuO等の酸化物を用いることができる
。また、これらの酸化物のほかに、焼成後酸化物に転化
する炭酸塩、硝酸塩、シュウ酸塩、水酸化物等の化合物
を用いてもよい。ペロブスカイト型酸化物超電導体を構
成する元素は、基本的に化学量論比の組成となるように
混合するが、多少製造条件等との関係等でずれていても
構わない。例えばY−Ba−Cu−0系ではY 1m0
1 に対しBa 2mol 、Cu 3molが標準組
成であるが、実用上はY O,6〜1.4mo1%、 
Ba1.5〜3.0molX、Cu 2.0〜4.0m
o1%程度のずれは問題ない。
Er, Tm, Lu; Some of Ba is Sr etc.rib
defective perovskite type with oxygen vacancies, such as
The oxide is an oxide having a perovskite structure in a broad sense, such as a layered perovskite type such as a 5r-La-Cu-0 system. Rare earth elements are also defined as anchoring in a broad sense, and include Sc, Y, and lanthanum-based elements. Y-Ba-cu as a representative system
-o series (generally, 5c-Ba-Cu-0 series, 5r-L
Examples include a-Cu-0 series, and systems in which Sr is roughly replaced with Ba and Ca. The oxide superconductor of the present invention can be obtained, for example, by the manufacturing method shown below. Y, Ba
, Cu and other constituent elements of the perovskite oxide superconductor are thoroughly mixed. In this case, each raw material is Y2 03
, Bad, CuO, and the like can be used. In addition to these oxides, compounds such as carbonates, nitrates, oxalates, and hydroxides that are converted into oxides after firing may be used. The elements constituting the perovskite-type oxide superconductor are basically mixed so as to have a stoichiometric composition, but there may be a slight deviation depending on the manufacturing conditions, etc. For example, in the Y-Ba-Cu-0 system, Y 1m0
The standard composition is 2 mol of Ba and 3 mol of Cu for 1, but in practice, YO, 6 to 1.4 mol 1%,
Ba1.5-3.0molX, Cu2.0-4.0m
A deviation of about 1% is not a problem.

前述の原料を混合した後、仮焼・粉砕し所望の形状にし
た後、焼成する。仮焼t、1必ずしも必要ではない。焼
成・仮焼は十分な酸素が供給できるような酸素含有雰囲
気で800〜940°C程度で行うことが好ましい。
After mixing the above-mentioned raw materials, they are calcined and pulverized into a desired shape, and then fired. Calcination t, 1 is not necessarily necessary. The firing and calcination are preferably carried out at about 800 to 940°C in an oxygen-containing atmosphere where sufficient oxygen can be supplied.

また、その直径対〃さの比番313〜5であり、その直
径(C面上の長軸)は、1〜5μm程度のものが適して
いる。
Further, the ratio of the diameter to the size is 313 to 5, and the diameter (long axis on the C plane) is suitably about 1 to 5 μm.

本発明の超電導体線材に使用される金属管は、Nb、 
AQ、 Pd、 Cu、ステンレス鋼等からなるもので
あり、特に、八〇、Pd等の金属管は、高温下でも酸化
されないので、本発明に適している。
The metal tube used in the superconductor wire of the present invention includes Nb,
The tube is made of AQ, Pd, Cu, stainless steel, etc., and in particular, metal tubes such as 80, Pd, etc. are suitable for the present invention because they do not oxidize even at high temperatures.

また、本発明に使用する超電導体線材中のペロブスカイ
ト型の酸化物超電導体粉末は、線材の長さ方向に配向し
ていることが好ましい。この配向は、100%行われて
いる必要はなく、少くとも70%程度の配向率があれば
有効である。
Furthermore, the perovskite-type oxide superconductor powder in the superconductor wire used in the present invention is preferably oriented in the length direction of the wire. This orientation does not need to be 100%, and it is effective if the orientation rate is at least about 70%.

なお、上記配向率は、得られた線材の被覆金属を取り除
き、内部の酸化物超電導体をX線回折を用いて回折強度
を測定し0面からの回折強度の変化から求めたものであ
る。
The above-mentioned orientation rate was determined from the change in diffraction intensity from the zero plane by removing the metal coating of the obtained wire and measuring the diffraction intensity of the internal oxide superconductor using X-ray diffraction.

本発明に用いるセミ導体線材を製造するには、まずBa
C03、Y203 、CuO等のペロブスカイト型の酸
化物超電導体の原料を、前述した一般式に対して化学ω
論比の組成となるように混合して、粉砕した後、乾燥し
、粉末のままで800〜1ooo℃の温度で数時間〜3
日程度焼成し反応させて結晶化させる。上記の原料の混
合比は、多少製造条件等との関係で変えることもでき、
例えばY−Ba−Cu−0系では、v1mo+に対して
Ba 2mol 、Cu 3molが標準組成であるが
、実用上はYを基準として他の成分が±3O%程度程度
ずれても問題は生じない1、次に、この焼成物をボール
ミル、ボールミル、1ナンドグラインダ、その他公知の
手段により粉砕する。このどき、ペロブスカイト型の酸
化物超電導体粉末は、へき開面から分割されて微粉末と
なる。
In order to manufacture the semi-conductor wire used in the present invention, first Ba
The raw materials for perovskite-type oxide superconductors such as C03, Y203, and CuO are chemically ω
After mixing to obtain a composition in a theoretical ratio, pulverizing, drying, and drying as a powder at a temperature of 800 to 100°C for several hours to 3
It is fired for about a day to react and crystallize. The mixing ratio of the above raw materials can be changed somewhat depending on the manufacturing conditions, etc.
For example, in the Y-Ba-Cu-0 system, the standard composition is 2 mol of Ba and 3 mol of Cu for v1 mo+, but in practice, no problem will occur even if the other components deviate by about ±30% based on Y. 1. Next, this fired product is pulverized using a ball mill, a ball mill, a 1-Nand grinder, or other known means. Nowadays, the perovskite-type oxide superconductor powder is split from the cleavage plane and becomes fine powder.

粉砕は、平均粒径(C面上の最大の軸の長さ)が1〜5
μm程度、直径対厚さの比が3〜5となるまで行うよう
にする。なお、必要に応じて、粉砕した粉末を上記の範
囲となるように分級して用いてもよい。
When pulverizing, the average particle size (maximum axis length on C-plane) is 1 to 5.
The process is continued until the diameter to thickness ratio is approximately 3 to 5 μm. Note that, if necessary, the pulverized powder may be classified and used so as to fall within the above range.

しかる後、このペロブスカイト型の酸化物超電導体粉末
を、Nb、八g、 Pd、 Cu、ステンレス鋼等から
なる外径201、内径15寵程度の金属管に入れて減面
加工を施し、断面円形または平角状に成形する。このと
き必要に応じて中間で焼鈍を施すようにしてもよい。こ
のようにして、最終線径で成形した後、使用した金属管
に応じた温度および時間の条件下で、焼鈍を行う。この
方法で製造された偏平な超電導体線材は、線引きの過程
でペロブスカイト型の酸化物超電導体粉末の0面が線拐
の長手方向にも配向されているので、線材全体としての
臨界電流容量が大きく向上している。
Thereafter, this perovskite-type oxide superconductor powder was placed in a metal tube made of Nb, 8g, Pd, Cu, stainless steel, etc., with an outer diameter of about 20 mm and an inner diameter of about 15 cm, and the area was reduced to a circular cross section. Or form it into a rectangular shape. At this time, annealing may be performed in the middle if necessary. After forming the wire to the final wire diameter in this manner, annealing is performed under conditions of temperature and time depending on the metal tube used. In the flat superconductor wire manufactured by this method, the zero plane of the perovskite-type oxide superconductor powder is also oriented in the longitudinal direction of the wire during the wire drawing process, so the critical current capacity of the wire as a whole increases. It has improved greatly.

この超電導体線材は、そのままコイルに成形してもよい
が、その多数本を安定化材からなる管中に配列して、さ
らに、スェージング加工、冷間線引き加工等を施して結
晶の0面が偏平な面に平行な偏平形状に成形してマルチ
線材として使用することも可能である。
This superconductor wire may be formed into a coil as it is, but a large number of these wires may be arranged in a tube made of a stabilizing material, and then subjected to swaging, cold drawing, etc., so that the zero face of the crystal is It is also possible to form it into a flat shape parallel to a flat surface and use it as a multi-wire material.

この超電導体線材を用いて超電導コイルを製造するには
、まず公知の方法により任意のコイル形状に成形する。
In order to manufacture a superconducting coil using this superconductor wire, it is first formed into an arbitrary coil shape by a known method.

このとき超電導体線材を多層に巻回するときは、必要に
応じて層間にセラミックペーパーやマイカ紙のような無
機物からなるシート状物を介在させるようにしてもよい
At this time, when the superconductor wire is wound in multiple layers, a sheet-like material made of an inorganic material such as ceramic paper or mica paper may be interposed between the layers as necessary.

次にこのコイルの線材間に無機ポリマー溶液からなるワ
ニスを含浸し乾燥させる。
Next, a varnish made of an inorganic polymer solution is impregnated between the wires of this coil and dried.

上記無機ポリマーとしては、例えばポリボロシロキサン
、ポリカルボシラン、ポリシラスチン、ポリチタノカル
ボシラン、ポリシラザンのように空気中で加熱すること
により無4gi′fli化物を形成する非炭素骨格を有
するポリマーが用いられる。
As the above-mentioned inorganic polymer, there may be used a polymer having a non-carbon skeleton that forms a 4-gi'fli compound when heated in air, such as polyborosiloxane, polycarbosilane, polycilastine, polytitanocarbosilane, and polysilazane. It will be done.

しかる後、酸素含有雰囲気中でこのコイルを800〜9
00℃の温度で少なくとも4時間、好ましくは12〜4
8時間加熱することにより本発明の超電導コイルが完成
する。
Thereafter, this coil was heated to 800 to 900℃ in an oxygen-containing atmosphere.
at a temperature of 00 °C for at least 4 hours, preferably 12-4
The superconducting coil of the present invention is completed by heating for 8 hours.

なお、上記の熱処理時間は、使用゛する超電導体線材の
外径等によっても相違してくるが、予め臨界電流密度が
所望の値になる熱処理条件を、実験的に求めておくよう
にすればよい。
Note that the above heat treatment time will vary depending on the outer diameter of the superconductor wire used, but it can be done by experimentally finding the heat treatment conditions that will give the desired critical current density in advance. good.

この酸素含有雰囲気内での焼鈍により、ペロブスカイト
型超電導体の酸素空席に酸素が尋人され、前述した一般
式におけるδの値が減少して、超電導体線材の電流密度
が一段と向上する。
By annealing in this oxygen-containing atmosphere, oxygen is added to the oxygen vacancies in the perovskite superconductor, the value of δ in the above-mentioned general formula decreases, and the current density of the superconductor wire is further improved.

(作 用) 本発明においては、超電導コイルの製造過程で、コイル
が高温で熱処理され、その際有機物は分解して揮発し、
酸化物超電導体の結晶の酸素空席には酸素が導入される
(Function) In the present invention, during the manufacturing process of the superconducting coil, the coil is heat-treated at high temperature, at which time organic matter is decomposed and volatilized.
Oxygen is introduced into the oxygen vacancies in the crystal of the oxide superconductor.

したがって、本発明の超電導コイルは、耐低温流体性、
電気絶縁性に優れ、全体が無機物固有の低い線膨張係数
となっている。
Therefore, the superconducting coil of the present invention has low temperature fluid resistance,
It has excellent electrical insulation properties, and the entire material has a low linear expansion coefficient unique to inorganic materials.

(実施例) 次に本発明の実施例について説明する。(Example) Next, examples of the present invention will be described.

実施例 BaC03粉末2m01%、v203粉末0.5mo1
%。
Example BaC03 powder 2m01%, v203 powder 0.5mol
%.

CuO粉末3m01%を充分混合して大気中900℃で
48時間焼成して反応させた後、この粉末原料を酸素中
で800℃で24時間焼成して反応させ、酸素空席に酸
素を導入した後、ボールミルを用いて粉砕し、分級して
、平均粒径2μm、直径対厚さの比が3〜5のペロブス
カイト型超電導体粉末を得た。
After thoroughly mixing 3m01% of CuO powder and firing it in the atmosphere at 900°C for 48 hours to cause a reaction, this powder raw material was fired in oxygen at 800°C for 24 hours to react, and after introducing oxygen into the oxygen vacancies. The powder was crushed using a ball mill and classified to obtain a perovskite superconductor powder having an average particle size of 2 μm and a diameter-to-thickness ratio of 3 to 5.

次に、酸化物超電導体粉末を、外径20mm、内径15
mm、長さ100 **の一端を封止したAO管中に入
れ、他端を封止した後、スェージングマシンおよびダイ
スを用いて直径1■となるまで冷間r減面加工を施し、
次いで空気中で900℃で12時間焼鈍を行った。
Next, the oxide superconductor powder was prepared with an outer diameter of 20 mm and an inner diameter of 15 mm.
mm, length 100 ** One end was placed in a sealed AO tube, the other end was sealed, and then cold r surface reduction processing was performed using a swaging machine and a die until the diameter was 1 mm.
Then, annealing was performed in air at 900°C for 12 hours.

このようにして得た超電導体線材の配向率は70%であ
った。またAQ被覆内の超電導体粉末の充填率は80%
であった。またその超電導特性を測定したところ、臨界
温度は87にであり、77にでその臨界電流密度を外部
磁場が0の条件下で測定したところ700A/ljであ
った。
The orientation rate of the superconductor wire thus obtained was 70%. In addition, the filling rate of superconductor powder within the AQ coating is 80%.
Met. Further, when its superconducting properties were measured, its critical temperature was found to be 87°C, and its critical current density was measured at 77°C under the condition of zero external magnetic field and found to be 700 A/lj.

さらにこの超電導体線材を発生ずる磁束と平坦面が平行
するよう外径3Ont長さ50mmのコイル状に成形し
線材間にポリボロシロキサンワニスを含浸させて乾燥し
、900℃で12時間熱処理を行った。
Furthermore, this superconductor wire was formed into a coil shape with an outer diameter of 3 Ont and a length of 50 mm so that the generated magnetic flux and the flat surface were parallel, and polyborosiloxane varnish was impregnated between the wires, dried, and heat treated at 900°C for 12 hours. Ta.

このコイルを放冷後、その臨界磁場を測定したところ5
■であった。
After cooling this coil, its critical magnetic field was measured.
■It was.

[発明の効果] 以上の実施例からも明らかなように、本発明の超電導コ
イルは、高温で熱処理され無III質化しているので、
耐低温流体性が良好であり、また低い線膨張係数を有し
ている。さらに本発明の製造方法によれば、酸化物超電
導体の結晶の空席への酸素導入をコイル’!J32i工
程において行うことができるので生産性に優れている。
[Effects of the Invention] As is clear from the above examples, the superconducting coil of the present invention is heat-treated at high temperature and becomes non-III.
It has good resistance to low temperature fluids and a low coefficient of linear expansion. Furthermore, according to the manufacturing method of the present invention, oxygen can be introduced into the vacant spaces of the crystal of the oxide superconductor! Since it can be performed in the J32i process, productivity is excellent.

Claims (16)

【特許請求の範囲】[Claims] (1)ペロブスカイト型の酸化物超電導体粉末を金属管
内に充填してなる超電導体線材を、線材間に耐熱性の絶
縁材を介在させてコイル状に成形した後熱処理されてな
ることを特徴とする超電導コイル。
(1) A superconductor wire made by filling a metal tube with perovskite-type oxide superconductor powder is formed into a coil shape with a heat-resistant insulating material interposed between the wires, and then heat-treated. superconducting coil.
(2)絶縁材が、耐熱性ファイバー性の布状材であるこ
とを特徴とする特許請求の範囲第1項記載の超電導コイ
ル。
(2) The superconducting coil according to claim 1, wherein the insulating material is a heat-resistant fibrous cloth material.
(3)絶縁材が、無機ポリマーワニスであることを特徴
とする特許請求の範囲第1項記載の超電導コイル。
(3) The superconducting coil according to claim 1, wherein the insulating material is an inorganic polymer varnish.
(4)前記酸化物超電導体粉末は、希土類元素を含有す
るペロブスカイト型の酸化物超電導体であることを特徴
とする特許請求の範囲1項ないし第3項のいずれか1項
記載の超電導コイル。
(4) The superconducting coil according to any one of claims 1 to 3, wherein the oxide superconductor powder is a perovskite-type oxide superconductor containing a rare earth element.
(5)前記酸化物超電導体粉末は、ABa_2Cu_3
O_7_−_δ系の酸化物超電導体(Aは、Y、Yb、
Ho、Dy、Eu、Er、Tm、およびLuから選ばれ
た元素)であることを特徴とする特許請求の範囲第1項
ないし第4項のいずれか1項記載の超電導コイル。
(5) The oxide superconductor powder is ABa_2Cu_3
O_7_-_δ-based oxide superconductor (A is Y, Yb,
5. The superconducting coil according to claim 1, wherein the superconducting coil is an element selected from Ho, Dy, Eu, Er, Tm, and Lu.
(6)前記酸化物超電導体粉末は、Y−Ba−Cu−O
系であることを特徴とする特許請求の範囲第5項記載の
超電導コイル。
(6) The oxide superconductor powder is Y-Ba-Cu-O
6. The superconducting coil according to claim 5, wherein the superconducting coil is a superconducting coil.
(7)前記酸化物超電導体粉末の直径が、1〜5μmで
あることを特徴とする特許請求の範囲第1項ないし第6
項のいずれか1項記載の超電導コイル。
(7) Claims 1 to 6, characterized in that the diameter of the oxide superconductor powder is 1 to 5 μm.
The superconducting coil according to any one of the above items.
(8)酸化物超電導体粉末のC面の線材の長さ方向の配
向率が、少なくとも70%であることを特徴とする特許
請求の範囲第1項ないし第7項のいずれか1項記載の超
電導コイル。
(8) The orientation ratio of the C-plane of the oxide superconductor powder in the longitudinal direction of the wire is at least 70%, according to any one of claims 1 to 7. superconducting coil.
(9)超電導体線材の酸化物超電導体粉末の充填率が、
少なくとも60%であることを特徴とする特許請求の範
囲第1項ないし第8項のいずれか1項記載の超電導コイ
ル。
(9) The filling rate of the oxide superconductor powder of the superconductor wire is
9. Superconducting coil according to any one of claims 1 to 8, characterized in that it is at least 60%.
(10)ペロブスカイト型の酸化物超電導体粉末を金属
管内に充填してなる超電導体線材を、コイル状に成形し
、線材間に無機ポリマーワニスを含浸させた後、または
超電導体線材を、絶縁性耐熱ファイバーからなる絶縁材
を介在させながらコイル状に成形した後、酸素存在雰囲
気中で、800〜940℃の温度で焼成することを特徴
とする超電導コイルの製造方法。
(10) A superconductor wire made by filling a metal tube with perovskite-type oxide superconductor powder is formed into a coil shape, and after impregnating the space between the wires with an inorganic polymer varnish, or the superconductor wire is insulated. A method for manufacturing a superconducting coil, which comprises forming a coil into a coil with an insulating material made of heat-resistant fiber interposed therebetween, and then firing the coil at a temperature of 800 to 940°C in an atmosphere containing oxygen.
(11)前記酸化物超電導体粉末は、希土類元素を含有
するペロブスカイト型の酸化物超電導体であることを特
徴とする特許請求の範囲第10項記載の超電導コイルの
製造方法。
(11) The method for manufacturing a superconducting coil according to claim 10, wherein the oxide superconductor powder is a perovskite-type oxide superconductor containing a rare earth element.
(12)前記酸化物超電導体粉末は、ABa_2Cu_
3O_7_−_δ層の酸化物超電導体(Aは、Y、Yb
、Ho、Dy、Eu、Er、Tm、およびLuから選ば
れた元素)であることを特徴とする特許請求の範囲第1
0項または第11項記載の超電導体の製造方法。
(12) The oxide superconductor powder is ABa_2Cu_
3O_7_-_δ layer oxide superconductor (A is Y, Yb
, Ho, Dy, Eu, Er, Tm, and Lu)
A method for producing a superconductor according to item 0 or item 11.
(13)前記酸化物超電導体粉末は、Y−Ba−Cu−
O系であることを特徴とする特許請求の範囲10項ない
し第12項のいずれか1項記載の超電導コイルの製造方
法。
(13) The oxide superconductor powder is Y-Ba-Cu-
The method for manufacturing a superconducting coil according to any one of claims 10 to 12, characterized in that the superconducting coil is O-based.
(14)前記酸化物超電導体粉末の直径が、1〜5μm
であることを特徴とする特許請求の範囲第10項ないし
第13項のいずれか1項記載の超電導コイルの製造方法
(14) The diameter of the oxide superconductor powder is 1 to 5 μm
A method for manufacturing a superconducting coil according to any one of claims 10 to 13, characterized in that:
(15)酸化物超電導体粉末のC面の線材の長さ方向の
配向率が、少なくとも70%であることを特徴とする特
許請求の範囲第10項ないし第14項のいずれか1項記
載の超電導コイルの製造方法。
(15) The orientation ratio of the C-plane of the oxide superconductor powder in the longitudinal direction of the wire is at least 70%, according to any one of claims 10 to 14. A method for manufacturing superconducting coils.
(16)超電導体線材の酸化物超電導体粉末の充填率が
、少なくとも60%であることを特徴とする特許請求の
範囲第10項ないし第15項のいずれか1項記載の超電
導コイルの製造方法
(16) The method for manufacturing a superconducting coil according to any one of claims 10 to 15, wherein the filling rate of the oxide superconductor powder in the superconductor wire is at least 60%.
JP62114314A 1987-05-11 1987-05-11 Superconducting coil and manufacturing method thereof Expired - Lifetime JP2523632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62114314A JP2523632B2 (en) 1987-05-11 1987-05-11 Superconducting coil and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62114314A JP2523632B2 (en) 1987-05-11 1987-05-11 Superconducting coil and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS63278308A true JPS63278308A (en) 1988-11-16
JP2523632B2 JP2523632B2 (en) 1996-08-14

Family

ID=14634754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62114314A Expired - Lifetime JP2523632B2 (en) 1987-05-11 1987-05-11 Superconducting coil and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2523632B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011526072A (en) * 2008-06-26 2011-09-29 オックスフォード スーパーコンダクティング テクノロジー、インコーポレイテッド Production of high-temperature superconducting coils
JP2017535948A (en) * 2014-10-20 2017-11-30 コリア ユニバーシティ リサーチ アンド ビジネス ファウンデーションKorea University Research And Business Foundation Superconducting coil using partially insulated winding and method of manufacturing superconducting coil

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63271813A (en) * 1987-04-30 1988-11-09 Nippon Steel Corp Lengthy superconductive material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63271813A (en) * 1987-04-30 1988-11-09 Nippon Steel Corp Lengthy superconductive material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011526072A (en) * 2008-06-26 2011-09-29 オックスフォード スーパーコンダクティング テクノロジー、インコーポレイテッド Production of high-temperature superconducting coils
JP2017535948A (en) * 2014-10-20 2017-11-30 コリア ユニバーシティ リサーチ アンド ビジネス ファウンデーションKorea University Research And Business Foundation Superconducting coil using partially insulated winding and method of manufacturing superconducting coil

Also Published As

Publication number Publication date
JP2523632B2 (en) 1996-08-14

Similar Documents

Publication Publication Date Title
JP3332350B2 (en) Superconductor and method of using the same
EP0363438A4 (en) Improved process for making 90 k superconductors
JPS63278308A (en) Superconductive coil and its manufacture
JPS63291817A (en) Oxide superconductor
JPS63279514A (en) Superconductor wire rod, its manufacture and superconductive coil
JPS63285812A (en) Manufacture of oxide superconductive wire material
JPS63279512A (en) Superconductor wire rod and its manufacture
JP2656253B2 (en) Superconductor wire and manufacturing method thereof
JP2644245B2 (en) Oxide superconducting wire
JP2597578B2 (en) Superconductor manufacturing method
JPH01152696A (en) Superconducting member
JP2593480B2 (en) Manufacturing method of oxide superconductor
JP2597579B2 (en) Superconductor manufacturing method
JPS63282152A (en) Orientation of superconductor crystal
JPH01163914A (en) Manufacture of oxide superconductive wire
JPH0570287B2 (en)
JPS63307110A (en) Oxide superconductor
JPH01157455A (en) Production of oxide superconducting sintered body
JPH01161627A (en) Manufacture of oxide superconducting wire
JPH0816025B2 (en) Superconducting thick film manufacturing method
JPS63303814A (en) Oxide superconductor
JPH01179722A (en) Production of oxide superconductor
JPH01162310A (en) Manufacture of oxide superconducting power lead wire
JPH01122922A (en) Oxide superconductor
JPH01126260A (en) Oxide superconductor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term