JPH01152696A - Superconducting member - Google Patents

Superconducting member

Info

Publication number
JPH01152696A
JPH01152696A JP62311718A JP31171887A JPH01152696A JP H01152696 A JPH01152696 A JP H01152696A JP 62311718 A JP62311718 A JP 62311718A JP 31171887 A JP31171887 A JP 31171887A JP H01152696 A JPH01152696 A JP H01152696A
Authority
JP
Japan
Prior art keywords
superconducting
oxide superconductor
powder
superconducting member
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62311718A
Other languages
Japanese (ja)
Inventor
Takao Sawa
孝雄 沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62311718A priority Critical patent/JPH01152696A/en
Publication of JPH01152696A publication Critical patent/JPH01152696A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a superconducting member which is flexible enough to be applied to various shapes and has a plane construction by a method wherein the superconducting member is constituted by superconducting strips containing oxide superconductor as component. CONSTITUTION:Superconducting strips are employed as warps 2 and woofs 3 which are woven by plane weave to form a superconducting member 1. For instance, after 2mol% of BaCO3 powder whose particle diameter is 1-5mum, 0.5mol% of Y2O3 powder and 3mol% of CuO powder are sufficiently mixed and baked in the air for 48 hours at 900 deg.C and made to react, the mixture is baked in an oxygen atmosphere for 24 hours at 800 deg.C and made to react and then, after oxygen is introduced into an oxygen vacancy, the mixture is pulverized by a ball mill to produce perobuskite type oxide superconductor powder whose average particle diameter is 2mum. Then, after a silver tube is filled with the oxide superconducting powder from one end of the tube and the other end is plugged with a silver plug and welded leaving a ventilation hole, the silver tube is subjected to cold drawing to have a diameter of 1mm. Then the drawn wire is subjected to a thermal treatment in an oxygen atmosphere for 5 hours at 700 deg.C to produce a superconducting strip. The superconducting member can be obtained by employing the superconducting strips as warps and woofs.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、酸化物超電導体を使用した超電導部材に関す
る。
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to a superconducting member using an oxide superconductor.

(従来の技術) 近年、Ba−La−Cu−0系の層状ペロブスカイト型
の酸化物が高い臨界湿度を有する可能性のあることが発
表されて以来、各所で酸化物超電導体の研究が行われて
いる(Z、Phys、B Condensed Mat
ter64、189−193(1986))。その中で
もY−Ba−Cu−0系で代表される酸素欠陥を有する
欠陥ぺ【コブスカイト型((Lnsa2Ct1307−
5型)(δは酸素欠陥を表し通常1以下、Lnは、Y 
、 La5SC,Nd5SJ El、 Gd。
(Prior Art) In recent years, it has been announced that layered perovskite-type oxides based on Ba-La-Cu-0 may have high critical humidity, and since then, research on oxide superconductors has been carried out in various places. (Z, Phys, B Condensed Mat
ter64, 189-193 (1986)). Among them, the defective type [Covskite type ((Lnsa2Ct1307-
Type 5) (δ represents oxygen defect and is usually 1 or less, Ln is Y
, La5SC, Nd5SJ El, Gd.

DV、 110、Er、 Ti、 Wbおよび[Uから
選ばれた少なくとも1種の元素、Baの一部はSr等で
置換可能))の酸化物超電導体は、臨界温度が90に以
上と液体窒素の沸点以上の高い温度を示すため非常に有
望な材料として注目されティる(Phys、 Rev、
 Lett。
The oxide superconductor of DV, 110, Er, Ti, Wb and [at least one element selected from U, a part of Ba can be replaced with Sr, etc.) has a critical temperature of 90°C or higher and is heated in liquid nitrogen. It has attracted attention as a very promising material because it exhibits a high temperature above the boiling point of (Phys, Rev.
Lett.

Vol、5B No、9,908−910)。Vol. 5B No. 9, 908-910).

このように、超電導状態を示す臨界温度が液体窒素の沸
点を超える物質が見出されたことによって、比較的安価
にして超電導状態を得ることが可能となり、これにより
各所で超電導現象を利用した各種用途への応用が盛んに
研究されている。
The discovery of a substance whose critical temperature for superconducting state exceeds the boiling point of liquid nitrogen has made it possible to obtain superconducting state at a relatively low cost. Applications are being actively researched.

(発明が解決しようとする問題点) しかしながら、上述した超電導体は、結晶性の酸化物で
あって、焼結体またはこれを粉砕した粉末として得られ
、焼結体のままではほとんど延性を示さず、ざらに通常
のセラミックス部材と同・様に非常に脆く、このため各
種用途に使用づる際、その形状が限定されたり、機械的
強度が低いという難点がある。
(Problems to be Solved by the Invention) However, the above-mentioned superconductor is a crystalline oxide and is obtained as a sintered body or a powder obtained by pulverizing the same, and the sintered body exhibits almost no ductility. First, like ordinary ceramic members, they are extremely brittle, and therefore, when used for various purposes, they have the disadvantage of being limited in shape and having low mechanical strength.

例えば、超電導体の磁気遮蔽効果、すなわちマイスナー
効果を利用して磁気シールドを構成する場合、酸化物超
電導体の焼結体を形成する際の成形体形成段階で、必要
とする形状の箱体等を形成することが考えられるが、こ
れでは中純形状に限定されてしまい、複雑なものを形成
する場合には接合等の工数も必要とされ、コストが高く
なるとともにその製造工程も非常に煩雑であり、さらに
このような焼結体で番、1、前述したように非常に脆い
ため、強度補強の手段を講じなければならないという難
点も発生する。
For example, when constructing a magnetic shield using the magnetic shielding effect of a superconductor, that is, the Meissner effect, a box of the required shape, etc. However, this would be limited to medium-solid shapes, and if complex shapes were to be formed, additional man-hours such as joining would be required, increasing costs and making the manufacturing process extremely complicated. Furthermore, since such a sintered body is extremely brittle as mentioned above, there is a problem in that it is necessary to take measures to strengthen the strength.

本発明はこのような事情に対処すべくなされたもので、
臨S’il温度の高い酸化物超電導体を使用し、各種形
状に対して適用可能な可撓性を有し、かつ平面構造を有
する超電導部材を提供することを目的とする。
The present invention was made to deal with such circumstances,
It is an object of the present invention to provide a superconducting member that uses an oxide superconductor with a high sub-S'il temperature, has flexibility that can be applied to various shapes, and has a planar structure.

[発明の構成1 (問題点を解決するための手段) 本発明の超電導部材は、酸化物超電導体を構成成分とし
て含有する超電導条材を少なくとも使用して織成してな
り、平面構造を有することを特徴としている。
[Configuration 1 of the Invention (Means for Solving the Problems) The superconducting member of the present invention is woven using at least a superconducting strip containing an oxide superconductor as a component, and has a planar structure. It is a feature.

酸化物超電導体としては、多数のものが知られているが
、臨界温度の高い、希土類元素含有のペロブスカイト型
の酸化物超電導体の使用が実用的効果が高い。ここでい
う希土類元素を含有しペロブスカイト型構造を有する酸
化物B!1電導体は、超電導状態を実現できるものであ
ればよく、例えばLnBa2Cu307−δ系(δは酸
素欠陥を表し通常1以下の数、Lnは、Y、 La、 
sc%Nd5SISEuSGd。
Although a large number of oxide superconductors are known, the use of perovskite-type oxide superconductors containing rare earth elements, which have a high critical temperature, have a high practical effect. Oxide B containing a rare earth element and having a perovskite structure! 1 The conductor may be one that can realize a superconducting state, for example, LnBa2Cu307-δ system (δ represents an oxygen defect and is usually a number of 1 or less, Ln is Y, La,
sc%Nd5SISEuSGd.

Dy、 Ho、 Er、 Tm、Wb、 Lu等の希土
類元素から選ばれた少なくとも1!#の元素、Baの一
部はCa、 Sr等で、Cuの一部はTi、 V 、 
Cr、 Hn、 Fe5Co、Ni5Zn等で置換可能
)等の酸素欠陥を有する欠陥べ0ブスカイト型、5r−
La−Cu−0系等の層状ペロブスカイト型等の広義に
ペロブスカイト型を有する酸化物が例示される。また、
希土類元素は広義の定義とし、Sc、 VおよびLa系
を含むものとする。代表的な系としてY−Ba−Cu−
0系のほかに、YをEu、 Gy、110、Er、 T
m、Yb、 Lu等の希土類で置換した系、5c−Ba
−Cu−0系、5r−La−Cu−0系、さらにsrを
Ba、 Caで置換した系等が挙げられる。
At least one selected from rare earth elements such as Dy, Ho, Er, Tm, Wb, and Lu! Part of the element #, Ba is Ca, Sr, etc., and part of Cu is Ti, V,
Defect base type, 5r-
Examples include oxides having a perovskite type in a broad sense, such as a layered perovskite type such as La-Cu-0 type. Also,
Rare earth elements are defined in a broad sense and include Sc, V, and La elements. A typical system is Y-Ba-Cu-
In addition to the 0 series, Y can be changed to Eu, Gy, 110, Er, T
m, Yb, system substituted with rare earth elements such as Lu, 5c-Ba
Examples include -Cu-0 series, 5r-La-Cu-0 series, and systems in which sr is replaced with Ba or Ca.

このような酸化物超電導体は、例えば以下のようにして
It造する。
Such an oxide superconductor is manufactured by, for example, the following method.

まず、V 、 Ba、 Cu等のペロブスカイト型酸化
物超電導体の構成元素の単体または化合物を十分混合す
る。この構成元素の化合物としては、Y2O3、Bac
oi 、cuo等の酸化物や炭酸塩を用いることができ
るほか、炭酸塩以外の焼成後に酸化物に転化するさらに
硝酸塩、水酸化物等の化合物を使用することが可能であ
る。さらに、共沈法等で得たシュウ酸塩等の化合物を用
いてもよい。ペロブスカイト型酸化物超電導体を構成す
る元素は、基本的に化学量論比の組成となるように混合
するが、多少製造条件等との関係等でずれていても差支
えない。例えば、Y−Ba−Cu−0系ではy i n
+olニ対しBa 2 mol、Cu 3 molが標
準組成であるが、実用上はY 1 molに対して、B
a 2±0.6 mol、C13±0.2 mo1程度
のずれは問題ない。
First, constituent elements or compounds of the perovskite oxide superconductor, such as V, Ba, and Cu, are thoroughly mixed. Compounds of this constituent element include Y2O3, Bac
In addition to oxides and carbonates such as oi and cuo, it is also possible to use compounds other than carbonates, such as nitrates and hydroxides, which are converted into oxides after firing. Furthermore, compounds such as oxalate obtained by a coprecipitation method or the like may be used. The elements constituting the perovskite-type oxide superconductor are basically mixed so as to have a stoichiometric composition, but there may be a slight deviation depending on the manufacturing conditions, etc. For example, in the Y-Ba-Cu-0 system, y i n
The standard composition is Ba 2 mol and Cu 3 mol for +ol, but in practice, B 2 mol and Cu 3 mol for Y 1 mol
A deviation of about 2±0.6 mol and C13±0.2 mol is not a problem.

そして、前述の原料を充分に混合した後、850〜98
0℃の温度で焼成するか、あるいは融点以上に加熱して
溶融成形する。次いで、充分に酸素を供給できるようム
酸素含有雰囲気中で熱処理を行い結晶構造中に酸素を導
入して超電導特性を自重さVる。この熱処理は、通常2
00℃〜700℃程度の温度で数時間行う。
After thoroughly mixing the above-mentioned raw materials, 850 to 98
It is fired at a temperature of 0°C or melt-molded by heating above the melting point. Next, heat treatment is performed in an oxygen-containing atmosphere to supply sufficient oxygen to introduce oxygen into the crystal structure, thereby reducing the superconducting properties. This heat treatment is usually 2
It is carried out at a temperature of about 00°C to 700°C for several hours.

本発明に使用する超電導条材は、少なくとも上述したよ
うな酸化物超電導体を構成成分として含有するものであ
り、この酸化物超電導体によって超電導状態を実現でき
るものであればどのような構造のものでもよく、例えば
下記のような構造が考えられる。
The superconducting strip used in the present invention contains at least the above-mentioned oxide superconductor as a constituent component, and may have any structure as long as it can achieve a superconducting state with this oxide superconductor. For example, the following structure can be considered.

■ 酸化物超電導体からなる素線。■ A strand made of oxide superconductor.

■ 銅や銀のような金属等からなる管体形状の基材中に
酸化物超電導体が充填された長尺形状のもの。
■ A long tube-shaped base material made of metal such as copper or silver filled with oxide superconductor.

■ 金属中に酸化物超電導体が例えばフィラメント状等
で埋設された長尺形状のもの。
■ An elongated type in which an oxide superconductor is embedded in metal in the form of a filament, for example.

■ 管体または条体形状の金属部材表面に酸化物超電導
体層を有する長尺形状のもの。
■ A long tube or strip metal member with an oxide superconductor layer on its surface.

また、これらの条材を複数本束ねマルチ化したもの等も
使用可能である。
It is also possible to use a mulch made by bundling a plurality of these strips.

そして、これら超電導条材を少なくとも使用して織成す
ることにより、可撓性をもった平面構造を有する部材が
得られる。この織成後の形状としては、平面状のもの、
円筒状のもの、これらを組合せたもの等、各種の形状の
ものが可能である。
By weaving using at least these superconducting strips, a member having a flexible planar structure can be obtained. The shape after this weaving is planar,
Various shapes are possible, such as cylindrical shapes and combinations of these shapes.

この織成方法としては、平織、綾織、朱子織等、各種織
成方法を利用でき、またこれらの方法に限定されず用途
に応じた方法を適用することが可能である。また、織物
の荒さも用途に応じて適宜設定する。
As this weaving method, various weaving methods such as plain weaving, twill weaving, and satin weaving can be used, and it is not limited to these methods, and it is possible to apply a method according to the purpose. Further, the roughness of the fabric is also set appropriately depending on the use.

本発明の超電導部材に使用される織成材料としては、上
述したような超電導条材のみに限らず、その用途によっ
ては金属や有機高分子等からなる条材と組合せて使用し
、ざらに可撓性を高めたり、強度を向上させることも可
能である。
The woven material used in the superconducting member of the present invention is not limited to the above-mentioned superconducting strips, but depending on the application, it may be used in combination with strips made of metals, organic polymers, etc. It is also possible to increase flexibility and improve strength.

本発明の超?j!導部材の使用用途としては、超電導体
の磁気遮蔽効果を利用して、電磁石のような各種磁界を
発生する装置や逆に磁界からの保護を必要とされる装置
の磁気シールド、電磁波シールド、また水処理等におけ
る磁気分離応用フィルタ等、さらには電力や磁石等の各
種用途への応用が可能である。そして、本発明の超電導
部材は、使用した酸化物超電導体の臨界温度より低い温
度環境で使用に供される。予定される使用温度が酸化物
超電導体の臨界温度より低い場合には、そのまま使用す
ることができ、使用温度が臨界温度より高い場合には、
公知の冷月1手段を用いて臨界温度より低い温度環境に
して使用される。
Super invention? j! Conductive materials can be used to utilize the magnetic shielding effect of superconductors to provide magnetic shielding, electromagnetic shielding, and electromagnetic wave shielding for devices that generate various magnetic fields, such as electromagnets, and devices that require protection from magnetic fields. It can be applied to various applications such as magnetic separation applied filters in water treatment, etc., as well as electric power and magnets. The superconducting member of the present invention is used in a temperature environment lower than the critical temperature of the oxide superconductor used. If the expected operating temperature is lower than the critical temperature of the oxide superconductor, it can be used as is; if the intended operating temperature is higher than the critical temperature,
It is used in a temperature environment lower than the critical temperature using a known cold moon method.

(作 用) 本発明の超電導部材においては、焼結体やその粉末では
延性を示さないため各種形状に対する自由度の少ない酸
化物超電導体を、この酸化物超電導体を構成成分として
含有する超電導条材を織成して平面構造を有する部材と
しているため、可撓性をもった部材となり、用途に応じ
た形状に対する適合性が極めて高くなる。また、その織
成方法を適宜設定することによって、強度や織目の荒さ
等の調整も可能である。
(Function) In the superconducting member of the present invention, the oxide superconductor, which does not exhibit ductility in its sintered body or its powder, has little flexibility in forming various shapes, and the superconducting strip containing the oxide superconductor as a constituent component. Since the material is woven to form a member with a planar structure, the member is flexible and has extremely high adaptability to the shape depending on the intended use. Further, by appropriately setting the weaving method, it is possible to adjust the strength, roughness of the weave, etc.

(実施例) 次に、本発明の一実施例について説明する。(Example) Next, one embodiment of the present invention will be described.

第1図は本発明の一実施例の超電導部材を示す平面図で
あり、この実施例における超電導部材1は縦糸2および
横糸3を各々超′IX導条材を使用して平織で織成した
ものである。
FIG. 1 is a plan view showing a superconducting member according to an embodiment of the present invention, and the superconducting member 1 in this embodiment has warp threads 2 and weft threads 3 woven in plain weave using super'IX conductive material. It is.

次に、この超電導部材の製造方法について説明する。Next, a method for manufacturing this superconducting member will be explained.

まず、粒径1〜5μmのBaC03粉末2mo1%、Y
2O3粉末0.5mo1%、CuO粉末3mo 1%を
、充分混合して大気中900℃で48時間焼成して反応
させた後、この焼成物をさらに酸素雰囲気中で800℃
で24時間焼成して反応さ往、′m索空席にM索を尋人
した後、ボールミルを用いて粉砕し、平均粒径2μmの
ペロブスカイト型の酸化物超電導体粉末を作製した。
First, 2 mo1% of BaC03 powder with a particle size of 1 to 5 μm, Y
0.5 mo 1% of 2O3 powder and 3 mo 1% of CuO powder were thoroughly mixed and fired at 900°C in the air for 48 hours to react, and then the fired product was further heated at 800°C in an oxygen atmosphere.
After firing for 24 hours to allow the reaction to proceed, an M wire was inserted into the empty space of the M wire, and then ground using a ball mill to produce a perovskite-type oxide superconductor powder with an average particle size of 2 μm.

次いで、この酸化物超電導体粉末を、外径20mm×内
径18■×長さ1100Ill1の一端を銀材により封
止した銀笛中に充填し、他端を銀の栓をして通気孔を残
して溶接した後、外径1■まで冷間で線引きし、次いで
酸素雰囲気中において700℃、5時間の条件で熱処理
を施し、超電導条材を作製した。
Next, this oxide superconductor powder was filled into a silver pipe with an outer diameter of 20 mm x an inner diameter of 18 cm x a length of 1100 mm, one end of which was sealed with a silver material, and the other end was plugged with a silver plug, leaving a ventilation hole. After welding, the wire was cold drawn to an outer diameter of 1 cm, and then heat treated in an oxygen atmosphere at 700° C. for 5 hours to produce a superconducting strip.

そして、この超電導条材を縦糸および横糸として用いて
、超電導部材を得た。
Then, a superconducting member was obtained using this superconducting strip as warp and weft.

次に、この超電導部材の応用例について説明する。Next, an application example of this superconducting member will be explained.

第2図に示すように、磁場強度2■の常電導コイル4の
周囲に、冷媒として液体窒素を用いた冷線装置5内に設
置した超電導部材1を配設し、漏洩磁束を測定したとこ
ろ、この外側1mの所で0、5Gであった。
As shown in Fig. 2, a superconducting member 1 installed in a cold wire device 5 using liquid nitrogen as a refrigerant was placed around a normal conducting coil 4 with a magnetic field strength of 2■, and the leakage magnetic flux was measured. , it was 0.5G at a place 1m outside of this.

[発明の効果] 以上の実施例からも明らかなように、本発明の超電導体
部材は、酸化物超電導体を構成成分として含有する超電
導条材を少なくとも使用して織成したものであるため、
平面構造を有しかつ可撓性に優れたものとなり、例えば
磁気シールドや磁気分離装置等、各種用途に応用が可能
であり、工業的価値は大である。
[Effects of the Invention] As is clear from the above examples, the superconductor member of the present invention is woven using at least a superconducting strip containing an oxide superconductor as a constituent component.
It has a planar structure and excellent flexibility, and can be applied to various uses such as magnetic shielding and magnetic separation devices, and has great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の超電導部材を示り平面図、
第2図はその応用例を概略的に示した図である。 1・・・・・・・・・超電導部材 2・・・・・・・・・超電導条材からなる縦糸3・・・
・・・・・・超電導条材からなる横糸出願人     
 株式会社 東芝 代理人 弁理士  須 山 佐 − 第1図 第2図
FIG. 1 is a plan view showing a superconducting member according to an embodiment of the present invention;
FIG. 2 is a diagram schematically showing an example of its application. 1...Superconducting member 2...Warp thread 3 made of superconducting strip material
...Weft consisting of superconducting strips Applicant
Toshiba Corporation Representative Patent Attorney Sasa Suyama - Figure 1 Figure 2

Claims (4)

【特許請求の範囲】[Claims] (1)酸化物超電導体を構成成分として含有する超電導
条材を少なくとも使用して織成してなることを特徴とす
る平面構造を有する超電導部材。
(1) A superconducting member having a planar structure, characterized in that it is woven using at least a superconducting strip containing an oxide superconductor as a constituent component.
(2)酸化物超電導体は、希土類元素を含有するペロブ
スカイト型の超電導体である特許請求の範囲第1項記載
の超電導部材。
(2) The superconducting member according to claim 1, wherein the oxide superconductor is a perovskite-type superconductor containing a rare earth element.
(3)酸化物超電導体は、Ln元素(Lnは、希土類元
素から選ばれた少なくとも1種の元素)、BaおよびC
uを原子比で実質的に1:2:3の割合で含有する特許
請求の範囲第1項または第2項記載の超電導部材。
(3) The oxide superconductor contains Ln element (Ln is at least one element selected from rare earth elements), Ba and C
The superconducting member according to claim 1 or 2, which contains u in an atomic ratio of substantially 1:2:3.
(4)酸化物超電導体は、LnBa_2Cu_3O_7
_−_δ(δは酸素欠陥を表す)で表される酸素欠陥型
ペロブスカイト構造を有する特許請求の範囲第3項記載
の超電導部材。
(4) The oxide superconductor is LnBa_2Cu_3O_7
The superconducting member according to claim 3, which has an oxygen-deficient perovskite structure represented by _−_δ (δ represents an oxygen defect).
JP62311718A 1987-12-09 1987-12-09 Superconducting member Pending JPH01152696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62311718A JPH01152696A (en) 1987-12-09 1987-12-09 Superconducting member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62311718A JPH01152696A (en) 1987-12-09 1987-12-09 Superconducting member

Publications (1)

Publication Number Publication Date
JPH01152696A true JPH01152696A (en) 1989-06-15

Family

ID=18020636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62311718A Pending JPH01152696A (en) 1987-12-09 1987-12-09 Superconducting member

Country Status (1)

Country Link
JP (1) JPH01152696A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388588U (en) * 1989-12-25 1991-09-10
WO1997029491A1 (en) * 1996-02-06 1997-08-14 Siemens Aktiengesellschaft Conductor arrangement
JP2013251527A (en) * 2012-04-26 2013-12-12 Sumitomo Heavy Ind Ltd Superconducting magnetic shield device and manufacturing method therefor
JP2014220279A (en) * 2013-05-01 2014-11-20 住友重機械工業株式会社 Super conducting magnetic shield device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388588U (en) * 1989-12-25 1991-09-10
WO1997029491A1 (en) * 1996-02-06 1997-08-14 Siemens Aktiengesellschaft Conductor arrangement
JP2013251527A (en) * 2012-04-26 2013-12-12 Sumitomo Heavy Ind Ltd Superconducting magnetic shield device and manufacturing method therefor
WO2014136288A1 (en) * 2013-03-05 2014-09-12 住友重機械工業株式会社 Superconductive magnetic shield device and method of producing same
JP2014220279A (en) * 2013-05-01 2014-11-20 住友重機械工業株式会社 Super conducting magnetic shield device

Similar Documents

Publication Publication Date Title
JP2914331B2 (en) Method for producing composite oxide ceramic superconducting wire
US4843059A (en) Superconductive mixed valence copper oxide, and method of making it
JPH01152696A (en) Superconducting member
US5206211A (en) Process for the production of an elongate body consisting of longitudinally aligned acicular crystals of a superconducting material
US5147847A (en) Method for manufacturing a pipe utilizing a superconducting ceramic material
KR0125876B1 (en) Method for preparing superconducting thin film
Biju et al. Flux pinning properties of rare earth modified (Bi, Pb)-2212 superconductors
JPS63279512A (en) Superconductor wire rod and its manufacture
JP2523632B2 (en) Superconducting coil and manufacturing method thereof
JPS63279514A (en) Superconductor wire rod, its manufacture and superconductive coil
JPS63285812A (en) Manufacture of oxide superconductive wire material
JPH01164780A (en) Method for modifying oxide superconductor
JP2603688B2 (en) Superconducting material reforming method
JP2597578B2 (en) Superconductor manufacturing method
JP2644245B2 (en) Oxide superconducting wire
JPH0816022B2 (en) Method for manufacturing oxide superconductor
JPS63222067A (en) High-temperature superconducting substance and production thereof
Ali et al. THE EFFECTS OF FE-DOPING ON MECHANICAL PROPERTIES IN
JPH01119002A (en) Superconductor coil and manufacture thereof
JPS63279513A (en) Superconductor wire rod and its manufacture
JP2563391B2 (en) Superconducting power lead
JP2554658B2 (en) How to connect complex oxide superconductors
JP2597579B2 (en) Superconductor manufacturing method
JP2585621B2 (en) How to make superconducting material
JPH0797454B2 (en) Manufacturing method of superconducting material