JPS63275325A - 診断装置 - Google Patents

診断装置

Info

Publication number
JPS63275325A
JPS63275325A JP62110463A JP11046387A JPS63275325A JP S63275325 A JPS63275325 A JP S63275325A JP 62110463 A JP62110463 A JP 62110463A JP 11046387 A JP11046387 A JP 11046387A JP S63275325 A JPS63275325 A JP S63275325A
Authority
JP
Japan
Prior art keywords
amount
oxygen
transmission
venous blood
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62110463A
Other languages
English (en)
Other versions
JP2562894B2 (ja
Inventor
Susumu Suzuki
進 鈴木
Sumio Yagi
八木 住男
Takeo Ozaki
健夫 尾崎
Naotoshi Hakamata
直俊 袴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP11046387A priority Critical patent/JP2562894B2/ja
Publication of JPS63275325A publication Critical patent/JPS63275325A/ja
Application granted granted Critical
Publication of JP2562894B2 publication Critical patent/JP2562894B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、人間あるいは動物の脳組織などの体内器官の
酸素基を測定する診断装置に関し、特に血液中のヘモグ
ロビンの酸′J: jL、111胞内のチトクロムの酸
素量を近赤外光によって検出することで、体内器官の酸
素基を測定する診断装置に関する。
〔従来の技術〕
一般的に、脳組織等の体内器官の機能を診断する際に、
体内器官内の酸素量が十分なものであって適切に利用さ
れているが否がは、基本的かつ重要なパラメータとなる
0体内器官への十分な酸素の供給は、胎児、新生児の生
育力に欠くことができないものであり、酸素の供給が十
分でない場合には、胎児、新生児の死亡率は高く、また
生存しえたとしても後退前として体内器官に与える影響
は大きい、また酸素が欠乏することによって体内の全て
の器官が影響を受けるが、特に脳組織への損傷が大きい
このような体内器官の酸素量を9期にかつ容易に診断す
るために、1981年8月4ト1にイ寸与、された米国
0許第11..281.645号に開示されているよう
な診断装置が開発されている。この種の診断装置では、
血液中の酸素運擾媒体であるヘモグロビンと、酸化還元
反応を行なう細胞中のチトクロムa、a3とによる近赤
外光の吸収スペクトルに基づいて、体内器官、特に脳の
酸素量の変化を測定するようになっている。ずなわち、
波長範囲が700乃至1300nmの近赤外光は、第6
図(a)に示すように酸素と結合したヘモグロビン(H
bO2)と酸素の取除かれたヘモグロビン(Hb)とで
異なる吸収スペクトルaH5o2゜aHbを示し、また
第61m(b)に示すように酸化されたチトクロムa、
a  (Cy02 )と還元されなチトクロムa、a3
  (Cy)とでY4なる吸収スペクトルα。yo2’
 α  を呈する。このよ y うな近赤外光の性質を利用して、患者の頭部の一方の側
から4種類の異なる波長λ】、λ2.λ3゜λ4(例え
ば775 n rn 、 800 n m 、 825
 nrrt、850nm)の近赤外光を時分割で入射さ
せ、頭部を透過した光量を頭部の他方の側で順次に検出
し、これら4種類の検出結果に所定の演算処理を施すこ
とで、4つの未知数、すなわち、酸素と結合したヘモグ
ロビン(Hb02)、酸素の取除かれたヘモグロビン(
Hb)、酸化されたチトクロムa、a  (Cy02 
) 、還元されたチトクロム出し、これに基づいて飼え
ば脳の酸素量の変化を測定するようになっている。
第7図はこのような診断装置の概略消成図である.第7
図において従来の診断装置は、4種類の異なる波長λ1
.λ2,λ3.λ4の近赤外光をそれぞれ出力するレー
ザダイオードなどの光源LDl乃至LD4と、光源LD
I乃至LD4の出力タイミングを制御する光源制御装置
55と、光源LDI乃至LD4から出力される近赤外光
をyノ1部60にそれぞれ照射させるための光ファイバ
50−1乃至50−4と、光ファイバ50−1乃至50
−4の端部を互いに束にして保持する照射側取付具51
と、照射用取付具51の取付けられる側とは反対側の頭
部60の所定位置に取付けられる検出側取付具52と、
検出側取付具52に保持され頭部60を透過した近赤外
光を案内する光ファイバ53と、光ファイバ53によっ
て案内された近赤外光の光子数を計数し近赤外光の透過
層を測定する透過光検出装置54と、診断装置全体をf
ftl制御し、さらに近赤外光の透過層に基づき脳組織
の酸素の変化量を測定するコンピュータシステム56と
からなっている。
コンピュータシステム56は、プロセッサ62と、メモ
リ63と、ディスプレイ、プリンタなどの出力装置64
と、キーボードなどの入力装置65とを備えており、こ
れらはシステムバス66によって互いに接続されている
,またコンピュータシステム56のシステムバス66に
は、外部I10として、光源制御装置55と、透過光検
出装置54とが接続されている。
光源制御装置55は、コンピュータシステム56からの
指示により、第8図(a)乃至(d)に示すような駆動
信号ACTI乃至A C ’I’ 4で光源LDl乃至
LD4をTIJA動している.第8図(a)乃至(d)
において1測定期間Mk (k=1.2.・・・・・・
)は、N回のサイクルCYI乃至CYNからなっている
.サイクルCYI乃至CYHのうちの任意のサイクルC
Ynのフェーズφn1では、いずれの光源LDI乃至L
DJも駆動されず、頭部60には光源LDI乃至LD4
からの近赤外光は照射されない.またフェーズφn2で
は、光源LDIが駆動され、光源LDIから例えば77
5nmの近赤外光が出力される.同様にフェーズφn3
では光源LD2が駆動されて光源LD2から例えば80
0nmの近赤外光が出力され、フェーズφr14では光
源LD3が駆動されて光源LD3がら例えば825nm
の近赤外光が出力され、フェーズφn5では光源LD4
が駆動されて光源LD4から例えば850nmの近赤外
光が出力される。このように光源制御装置55は、光源
LDI乃至LD4を時分割で順次に駆動するようになっ
ている。
また透過光検出装F54は、光ファイバ53がらの近赤
外光の光量を調節するフィルタ57と、レンズ70.7
1と、フィルタ57がらの光をパルス電流に変換して出
力する光電子増倍管58と、光電子増倍管58からのパ
ルス電流を増幅する増幅器う9と、増幅器59からのパ
ルス電流のうちで所定の波高閾値以下のパルス電流を取
除く波高弁別器60と、ヂャンネルごとの光子数頻度を
検出するマルチチャンネルフォトンカウンタ61と、マ
ルチチャンネルフォトンカウンタ61の検出期間を制御
する例えば検出制御器67と、光電子増倍管58を収容
しているクーラ69の温度を調節する温度コント17−
ラ68とを備えている。
このような構成の診断装置では、使用に際して、Hr<
(射側取付貝51と検出側取付長52とを頭部60の所
定位置にテープなどによりしっかりと取付ける。次いで
光源制御装置55により光源LDl乃至LD4を第8図
(a)乃至(d)のようにそれぞれ駆動すると、光源L
DI乃至LD4からは4種類の異なる波長の近赤外光が
時分割で順次に出力され、光ファイバ50−1乃至50
−4を介して頭部60に入射する。頭部60の骨や柔ら
かな組繊は、近赤外光に対して透過性であるので、近赤
外光は土に血液中のヘモグロビン、細胞内のチト勾7ム
a 、 a 3に一部が吸収されて光ファイバ53に出
力され、光ファイバ53から透過光検出装置54に加わ
る。なお、光源LDI乃至LD4のいずれもが駆動され
ないフェーズφn1では透過光検出装置54には光源L
DI乃至LD4からの透過光は入射せず、このときには
透過光検出装置54においてダーク光の検出が行なわれ
る。
透過光検出装置 54の光電子増倍管58は、高感度、
高応答速度で動作するフォトンカウンディング用のもの
である。光電子増倍管58の出力パルス電流は増幅器5
つを介して波高弁別器60に入力する。波高弁別器60
では、所定の波高閾値以下のノイズ成分を取除き信号パ
ルスだけをマルチチャンネルフォトンカウンタ61に人
力させるようになっている。マルチチャンネルフォトン
カウンタ61は、検出制御器67からの第8し1(e)
に示すようなiT、11御仏りCT Lにより、第8図
(a)乃至(d)に示すような光源LDI乃至LD4の
1路動信号ACTI乃至A C’r4に同期した期間′
1゛。
たけ光子数の検出を行ない、光ファイバ53から入射し
た光に対して各波長ごとの検出フォトン数を計数する。
これにより近赤外光の各波長ごとの透過量データが求め
られる。
すなわち、第8図(a)乃至(e)に示すように、光源
制御装置55の1つのザイクルCYn中、フェーズφn
 1では、光源LDI乃至L I) 4のいずれもが駆
動されないので、透過光検出装置54ではダーク光デー
タdが、71数される。またフェーズφn2乃至φn5
では光源Ll)1乃至LD4が時分割で順次に駆動され
るので、透過光検出装置54では、11つの宜なった波
長λ1.λ2.λ3゜λ4の近赤外光の透過量データし
  、t  。
λ1  λ2 1  .1え4が順次に計数される。
λ3 このように、1つのサイクルCY n中に順次層数され
るダーク光データdおよび透過量データ1  .1  
.1  .1   は、8回のサイλ1  λ2  λ
3  λ4 クルCY1乃至CYNにわたって31数が続けられる。
すなわち8回のサイクルをも−)て、1測定期間Mk 
Hc=1.2.・・・・・・)とされる。1体的には、
例えば1つのサイクルCY nが200μ秒でありNが
10000回であるとすると、l 1llll定期間M
kは2秒となる。1 al定期間Mbが終丁した時点で
、ダーク光データのJl数結累 計数結果]’   、 ’1”   、 ’r’   
、 ’I’λ1    λ2    人3    λ4
(=Σ tλJ / CY n )がコンピュータシス
デn=1 ム56に転送され、メモリ63に記憶される。
プロセッサ62は、1測定期間M+、においてメモリ6
3に記憶された透過量データ、ダーク光データ(T  
 、T   、T   、−1′  、D)λ1  λ
2  λ3  λ4 1と、測定開始時M。における透過量データ、ダーク光
データ(’I’  、l’  、T’  。
λ1    λ2    λ3 ’T’   、D)   とから、ダーク減算を行ない
、λ4    MO しかる後に透過量の変化率Δ′I゛、Δ′1′え、。
λ1 Δ′I゛、Δ′1″よ。を算出する。ずなわち透過、 
 λ3 量の変化率Δ′I゛、Δ′■゛、Δ”’A3  ’λ1
      λ2 Δ1′、4は、 Δ’r、=ρog[(’r”   、  −D)   
 /λ」        λJ      Mk(′I
’  、−D)   ]  (、j==1乃至4)λJ
      MO ・・・・・・(1) として算出される。なお、Δ1′□jの算出において対
数をとっているのは、光−゛を密度としての変化を表わ
すためである。
このようにして算出された透過量の変化率Δ′■゛、Δ
′■゛、Δ′I゛、ΔTλ4がら、λ1   λ2  
 λ3 酸素と結合したヘモグ17ビン(HbO2)、酸素の取
除かれたヘモグ17ビン(Hb)、酸化されたチトクロ
ムa 、 a3  (Cy 02 > 、還元されたチ
トクロムar 13  (Cy )の濃度変化ΔXlI
b02゜ΔXl+わ、ΔXC1゜2.ΔX、をそれぞれ
検出することができる。すなわち各成分の濃度変化ΔX
11.。2゜ΔXub’  ΔXcy02.ΔXcVは
、・・・・・・(2) として検出される。ここでα1.は、各波長λjJ (λ1.λ2.λ3.λ4)における各成分1(HbO
、Hb、coo2.Cy) の吸収係数であり、第6図
(a) 、 (b)から予め定まっている。
また1は、近赤外光が進行する方向の頭部6oの長さで
ある。
このようにしてコンピュータシスデム56において検出
された各成分の濃度変化ΔX!1.。2゜ΔXlIb、
Xcy。2.ΔXC1は、換言すれば、脳内の酸素面の
変化であるので、これらを出力装置64に出力させるこ
とで、脳内の酸素量の変化を知り診断することができる
〔発明が解決しようとする問題点〕
このように従来の診断装置では、所定の体内器官の酸素
基の変化を測定することができる。第6図(a) 、 
(b)を比較すると、測定される吸収スペクトルは主に
血液中のヘモグロビンによるものでありチj・クロムa
 、 a 3の寄与は非常に少ないので、測定によって
得られる所定の体内器官の酸素量の変化は、主に血液中
のヘモグロビン(HbあるいはHbO2)の濃度変化に
よるものとみなされる。
ところで、診断装置の使用者にとって酸素量の変化を測
定するのでなく、 ゝ1lb02 +Xl1b として一般に定義される酸素の絶対飽和M、Sの測定を
望む場合がある。なお(3)式において分母は全てのヘ
モグロビン濃度であり、分子は酸素と結合しているヘモ
グロビン(HbO2)の血液中の濃度である。
このような酸素の絶対飽和敬Sを測定する技術は、19
80年1月に発行された著書1.YO−3HIYA笠に
よる大獄rNedical & Biological
Engineering & Co+npt+目n(1
,+(第18巻、第27頁乃至第32頁)に開示されて
いる。
この文猷によれば、ハロゲンランプからの光を指先に照
射し、指先からの光の透過に、が心拍に同期して変調さ
れることを利用して指先の動脈血における酸素の絶対飽
和基Sを求めている。血液全体(動脈血+静脈血)の酸
素の絶対飽■1量Sは、Beerの法則に従い、 α650 S=A−B −一      ・旧・・(4)α805 として算出される。ここでα  、α805はそれぞれ
波長650 nm、波長805nmでの血液全体の吸収
係数、A、Bはそれぞれ酸素と結合していないヘモグロ
ビン(Hb)、酸素と結合しているヘモグロビン(Hb
O2)の吸収係数に関係した係数である。
指先に入射する光は、血液量により減衰して透過光とな
る。このときに第9図に示すように光が動脈血によって
減衰されたものは心拍に同期して変動する一方、静脈血
によって減衰されたものは変動しないとする。いま、全
体の透過’−EDC+ACと心拍に同期して変動する部
分の透過量EAcとの対数比Yを、 Y=j O(+ (E、c+^c/EDo)    −
−−−−・<s)として定義すると、対数比Yは、吸収
係数αに比例する。波長650nm、波長805nmに
おける対数比Y  、Y8o5をそれぞれ測定してこれ
らの比Y65(1/′Y805を求めると、Y   /
 Y   ” α650 / (j g05  ”””
 ((1)となり、酸素の絶対飽fn星Sは、測定され
なY   、Y   を用いて G50  805 S=A−B −〜−−−−−        ・・・・
・・(7)として求められる。
このように、上記大獄に開示されている仕方によれば、
動脈血による光の減衰量あるいは光の透過量が心拍に同
期して変」1されることを利用して指先の動脈血の酸素
の絶対飽和tSを求めろことができる。
しかしながら、上記文献に開示されている仕方では、動
脈血の酸素の絶対飽和量を求めることはできるものの、
静脈血の酸素の絶対飽和量を求めることができないとい
う問題があった。
本発明は、静脈1r]【の酸素の絶対飽和量をIFI定
することのi′iT能な診断装置を提供することを目的
としている。
〔問題点を解決するための手段〕
本発明は、体内器官を回動させる回動手段と、複数の光
源から順次に出力される胃なる波長の近赤外光の透過量
を検出する透過量検出手段と、検出された透過量から体
内器官の回動による透過イーの変動分を波長ごとに算出
する算出手段と、算出手段によって算出された透過量の
変動分に所定の演算を施して酸素の絶対飽和量を測定す
る演算手段とを備えていることを特徴とする診断装置に
よって、上記従来技術の問題点を改善するものである。
〔作用〕
本発明では、体内器官を回動手段によって回動させ、こ
れによって体内器官の静脈血量を重力によって変動させ
て体内器官の静脈血中の酸素の絶対飽和量を測定するよ
うにしている。すなわち体内器官を回動させながら複数
の光源から波長の異なる近赤外光を順次に体内器官、例
えば頭部に入射させ、頭部を透過した近赤外光の透過量
を透過量検出手段によって検出する。透過量検出手段に
よって検出された透過量から、回動による透過量の変動
分を算出手段によって波長ごとに算出し、このようにし
て算出された透過量の変動分に所定の演算処理を施すこ
とで、所定の体内器官の静脈血中の酸素の絶対飽和量を
測定することができる。
〔実施例〕
以下、本発明の実施例を図面に基づいて説明する。
第1し1は本発明に係る診断装置の実施例の柘成図であ
る。第1図において第7図と同様の箇所には同じ符号を
付して説明を省略する。
第1図の診断装置1では、コンピュ−タシステム2は、
従来の診断装置の=lンピュータシステム56と同様に
、ブロセッザ3.メモリ4.出力装置52人力装置6が
システムバス7に接続されている構成となっているが、
システムバス7には、患者を回動させるための回動装置
8かさらに接続されている。回動装置8は、コンピュー
タシステA 2からの指示により、第21λ1(a)乃
至(C)に示すようにベッド10を例えば周期′l゛(
約25分)、最大傾斜角度θ(約15°)で回動させる
。これにより、第2図(a)に示す状態では、患者9は
水平位置にあり、第2図(b)に示す状態では頭部60
が下がった位置にあり、第2図(C)に示ず状態では頭
部60が上がった位置にある。患者9が未熟児の場合に
は、頭蓋骨が軟らかいために頭部60を約15゛前後傾
けただけで重力によって頭部60の血液量、より詳しく
は静脈器量が変化し、これにより近赤外光の透過量を変
調させることができる。
この上うな構成の診断装置l!lでは、コンピュータシ
ステム2は、回動装置8に指示を与えて第3図に示すよ
うにベッド10を周期′rで回動させる。
さらにこの周期′■゛を2個の期間に1ス分して、これ
らをそれぞれ車側定期間m ′乃至In p ’ とし
ている。なお、各車側定期間m 1′乃至Ill P′
は、心拍の周期に比べてI−分大きいもので!)り各県
81す定期間m ′乃至mP′において心拍による動脈
車量の変動は平均化されているものとする。1つのサイ
クルCYnで順次に駆動される光源LDI乃至LD4か
らの近赤外光は頭部60により減衰されて透過光検出装
7f、54に加わる。透過光検出装置54のマルチチャ
ンネルフォトンカウンタ61は、波長A1乃至λ4ごと
にさらに県側定期間m ′乃至In p ’ごとに透過
光のフォトン数を計数するにの計数は、1つの周期′r
の各Q’ al’l定期間m ′乃至mP′について1
回だけ行なわれ、1回だけの測定で十分な透過量データ
を得ることができる。透過量データは、T、1(1) 
 乃至′1゛λ4(1)として検出され、コンピュータ
システム2のメモリ4に記憶される。
ところで、静脈血1.は周期′I゛で変化するので、上
記透過量データもこれに付随して変動する。すなわち、
第3図においてベッド10の角度θが正側にある4測定
期間Ill  ’ 、 1112 ’などでは、頭部6
0は、第2図(b)に示すように下がった状態にあり、
頭部60の静脈血量は重力によって増加し、準M1定期
間m1′における透過量データ’I’、1(1)乃至’
(’、4(1) 、県側定期間m2′にオケル透過星デ
ータ’l’   (2)乃至T ;X4 (2) ハ、
A1 減少する。一方、ベッド10の角度θが負側にある県側
定期間mP′などでは、頭部60は、第2図(C)に示
すように上がった状態で、頭部60の静脈血量は減少し
ており、県側定期間m、′における透過量データT  
 (p)乃至’r、4(o)は増λ1 加している。
このようにして、頭部60の静脈血量を周期的に変化さ
せることにより、これに同期させて透過量データを変調
することができる。
第4図は、波長λ1に着目して、各県側定期間m ′乃
至mP′においてそれぞれ検出された透過量データ’f
’ ;Xl(1) 、 ’I’□1(2)、 ・・・・
・・。
’r、1(p)を示したものである。他の波長λ2゜λ
3.λ4の透過量データについても121示しないが第
4図に示すと同様に変動する。
第4図において、透過量データ′r、1の最大透過MF
DC+AC(A1)は、角度θが一15°になったとき
の透過量であり、変動する部分の透過量FAC(A1)
は、角度θが一15°のときの透過量と角度θが15°
のときの透過量との差となる。
このようにして求められた最大透過’ ”” DC+ 
AC(A1)は、前述の文献に示されているような仝休
の透過量E   に対応し、変動する部分の透DC十へ
C 過ff−F、、C(A1)は、前述の文献の変動する部
分の透過量”ACに対応している。従って(4)式と1
111様にして、最大透過量F    (A1)と変動
ずDC+八〇 へ部分の透過板F (A1)との対数比Y、1を、八C Y   =jtoo(F’    (A1 ) / F
 AC(A1))λ I            DC
+AC・・・・・・(8) として求める。他の波長λ2.λ3.λ4についても同
様にして対数比を求める。なお、着11ずべきは、前述
の文献の変動する部分の透過9− b ACは、動脈車
重の変動によるものであるのに対し、本実施例の変動す
る部分の透過MFACは、静脈血量の変動によるもので
あるので、(8)式から以下のようにして求められる酸
素の絶対飽和1.3は、静脈ビ1申の酸素の絶対飽相箪
となる。
(3)式によって一般に定義される酸素の絶対飽和−t
 sは、(8)式から求められる対数比Y□1゜Y□2
.Y□3 ’ ”A4を用いて、のように表現される。
(9)式においてa・、b1は、前述の吸収係数マトリ
ックスαijにより一意的に定められる係数である。(
9)式の分母は、静脈血中の全てのヘモグロビンの濃度
’ X1lb02+X1lb)すなわち静脈血量を表わ
しており、上述のようにして検出された対数比YAl乃
至Y24を用いて(9)式の分母を実際に演算すると、
第5図に示すような結果となる。すなわち第5図は、ベ
ッド10を約25分の周期で回動させたときの静脈血量
の変化を示しており、図中、“U P ”″は、頭部6
0が−1がっな状態、“HR“は頭部60が水平の状態
、“DW”は頭部60が下がった状態を示している。同
様にして、(9)式の分子も対数比Y  乃至Yえ、を
用いて演算することができλす る。
このようにして、(9)式に基づいて静脈血中の酸素の
絶対飽和量Sを測定することができる。
なお、上述の実施例では、4つの賛なる波長λ1乃至λ
4の近赤外光を用いたが、波長の種類は1つに限定され
ず、2つでも良いし、あるいは71つ以りであっても良
い。また上述の実施例では、1つの周期′■゛内の各型
側定期間In  ′  乃3−mP′において検出され
た透過量データに基づいて静脈血中の酸素の絶対飽和量
、Sを求めたが、透過量が微弱で、各サイクル間の変動
が小さいような場合には、周期1゛を繰返し、透過量デ
ータをサイクルごとに累積加算して、静脈血中の酸素の
絶対鉋、frI星sを求められるようにしても良い。
また」−述の実施例では、頭部60を上下させて脳内の
静脈血中の酸素の絶対飽和量Sを求めたが、頭部60に
限らず、例えば腕や足を上下させることにより、これら
の部位の静脈血中の酸素の絶対飽和jll Sを求める
ことができる。
また、上述の実施例のように静脈血基を周期的に変動さ
せて静脈血中の酸素の絶対飽和量を求めると同時に、こ
れと独立させて従来のように動脈血中の酸素の絶対飽和
量を求めるように診断装置1を幇成しても良い。
さらに測定された酸素の絶対飽和量を出力装置5にリア
ルタイムで出力中、プロセッサ3は入力装置6からの割
込みを随時受付けるようになっており、これにより、入
力装置6から、酸素の絶対飽和量の出力結果に対する所
要のコメンI・を出力装置5に出力し、絶対飽和量の出
力結果と合わU−で記録させることができる。
〔発明の効果〕
以上に説明したように、本発明によれば、体内器官を回
動させて透過量の変動分を算出するようにしているので
、体内器官の静脈血基の変動による静脈血の酸素の絶対
飽和量を求めることができる。
【図面の簡単な説明】
第1図は本発明に係る診断装置の実施例の構成図、第2
図(a)は頭部が水平位置にある状態を示す図、第2図
(b)は頭部が下がっている状態を示す図、第2図(C
)は頭部が上がっている状態を示す図、第3図は回動周
期におけるベッドの角度変化を示す図、第4ρ1は回動
周期における波長λlの透過量データの変動を示す図、
第5図は頭部を上下変化させたときの静脈血基の測定結
果を示す図、第6図(a) 、 (b)はそれぞれヘモ
グロビン。 チトクロムの吸収スペクトルを示す図、第7図は従来の
診断装置の構成図、第8[71(a)乃至(d)はそれ
ぞれ駆動イCすA C’r 1乃至A C’V−1のタ
イムチャート、第8図(e)は制御信−シノC′rLの
タイムチャー1− 、第9図は動脈血の変動による透過
量の変動を説明するための図である。 1・・・診断装置、2・・・コンピュータシスデム、3
・・・プロセッサ、4・・・メモリ、5・・・出力装置
、6・・・入力装置、7・・・シスデムバス、8・・・
回動¥c置、9・・・患者、10・・・ベッド、60・
・・頭部、LDI乃至LD4・・・光源、 m ′乃至mp ’ ”’ 型側定期間、’I’−・・
回動/31 mi特許出願人   浜松ホトニクス株式
会社代理人  弁理士  植  木  雅 泊第4図 m1’ m2’ −−−−一−−−一−−−−−−−m
p’第6図 λ1  人2 λ3 人4 “λ3 λ1 第:〕図 時間t ”r”hu  ’Fjti  j−E  ”F&F (
自Q)1層(162年97’l 03l−( 1)許庁長官 小 川  邦 夫  殿昭和62年特許
願第110463号 診断装置 〔電、西東京(764) t321+番1、−氏名 (
’11024)ブC埋I: 植本雅冶:(3)明4おI
IFの1121面の籠り−な説明Jの欄7 補正の内容 (1)特許請求の範囲を別紙のとおつ補正する。 (2)明細書第2頁第1行目、第16頁第3行口乃至第
4行目、第16頁第18行目、第16頁第19行目に「
近赤外光」とあるのを「電磁波」と訂正する。 (3)明細書第16頁第2行目乃至第3行目に「回動さ
せる・・・・・・順次に出力されるJとあるのを「回動
させながら光源から順次に出力される」と訂正する。 (4)明細書第16頁第13行目の「回動手段によって
」を削除する。 (5)明細書第16頁第17行目の「複数の」を削除す
る。 (6)明細書第17頁第17行目、第18頁第2行目、
第18頁第5行目、第25頁第20行口に「愚考」とあ
るのを「被験者」と訂正する。 (7)明細書第24頁第12行口と第13行目との間に
「さらに上述の実施例では、複数の光源を用いるとして
説明したが、1つの白色光源だけを用いフィルタ繰作に
よって異なる波長の電磁波を作るようにしても良い、さ
らには光源からの電磁波は近赤外光に限らず遠赤外光、
可視光、マイクロ波などでも良い、また体内器官を手動
で回動させるようにしても良い、」を特徴する 特許請求の範囲 体内器官をu9jさせながら−′原から順次に出力され
る異なる波長の;坦五の透過量を検出する透過星検出手
段と、検出された透過量から体内器官の回動による透過
量の変動分を波長ごとに算出する算出手段と、算出手段
によって算出された透過量の変動分に所定の演算を施し
て酸素の絶対飽和員を測定する演算手段とを備えている
ことを特徴とする診断装置。

Claims (1)

    【特許請求の範囲】
  1. 体内器官を回動させる回動手段と、複数の光源から順次
    に出力される異なる波長の近赤外光の透過量を検出する
    透過量検出手段と、検出された透過量から体内器官の回
    動による透過量の変動分を波長ごとに算出する算出手段
    と、算出手段によって算出された透過量の変動分に所定
    の演算を施して酸素の絶対飽和量を測定する演算手段と
    を備えていることを特徴とする診断装置。
JP11046387A 1987-05-08 1987-05-08 診断装置 Expired - Fee Related JP2562894B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11046387A JP2562894B2 (ja) 1987-05-08 1987-05-08 診断装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11046387A JP2562894B2 (ja) 1987-05-08 1987-05-08 診断装置

Publications (2)

Publication Number Publication Date
JPS63275325A true JPS63275325A (ja) 1988-11-14
JP2562894B2 JP2562894B2 (ja) 1996-12-11

Family

ID=14536346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11046387A Expired - Fee Related JP2562894B2 (ja) 1987-05-08 1987-05-08 診断装置

Country Status (1)

Country Link
JP (1) JP2562894B2 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05245129A (ja) * 1991-12-30 1993-09-24 Hamamatsu Photonics Kk 診断装置
US7684842B2 (en) 2006-09-29 2010-03-23 Nellcor Puritan Bennett Llc System and method for preventing sensor misuse
US7796403B2 (en) 2006-09-28 2010-09-14 Nellcor Puritan Bennett Llc Means for mechanical registration and mechanical-electrical coupling of a faraday shield to a photodetector and an electrical circuit
US8219170B2 (en) 2006-09-20 2012-07-10 Nellcor Puritan Bennett Llc System and method for practicing spectrophotometry using light emitting nanostructure devices
US8265724B2 (en) 2007-03-09 2012-09-11 Nellcor Puritan Bennett Llc Cancellation of light shunting
US8280469B2 (en) 2007-03-09 2012-10-02 Nellcor Puritan Bennett Llc Method for detection of aberrant tissue spectra
US8315685B2 (en) 2006-09-27 2012-11-20 Nellcor Puritan Bennett Llc Flexible medical sensor enclosure
US8610769B2 (en) 2011-02-28 2013-12-17 Covidien Lp Medical monitor data collection system and method
US8622916B2 (en) 2008-10-31 2014-01-07 Covidien Lp System and method for facilitating observation of monitored physiologic data
US8862196B2 (en) 2001-05-17 2014-10-14 Lawrence A. Lynn System and method for automatic detection of a plurality of SP02 time series pattern types
US8965473B2 (en) 2005-09-29 2015-02-24 Covidien Lp Medical sensor for reducing motion artifacts and technique for using the same
US8968193B2 (en) 2008-09-30 2015-03-03 Covidien Lp System and method for enabling a research mode on physiological monitors
US9031793B2 (en) 2001-05-17 2015-05-12 Lawrence A. Lynn Centralized hospital monitoring system for automatically detecting upper airway instability and for preventing and aborting adverse drug reactions
US9042952B2 (en) 1997-01-27 2015-05-26 Lawrence A. Lynn System and method for automatic detection of a plurality of SPO2 time series pattern types
US9053222B2 (en) 2002-05-17 2015-06-09 Lawrence A. Lynn Patient safety processor
US9468378B2 (en) 1997-01-27 2016-10-18 Lawrence A. Lynn Airway instability detection system and method
US9521971B2 (en) 1997-07-14 2016-12-20 Lawrence A. Lynn System and method for automatic detection of a plurality of SPO2 time series pattern types
US9895068B2 (en) 2008-06-30 2018-02-20 Covidien Lp Pulse oximeter with wait-time indication
US10076276B2 (en) 2008-02-19 2018-09-18 Covidien Lp Methods and systems for alerting practitioners to physiological conditions
US10354753B2 (en) 2001-05-17 2019-07-16 Lawrence A. Lynn Medical failure pattern search engine

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05245129A (ja) * 1991-12-30 1993-09-24 Hamamatsu Photonics Kk 診断装置
US9042952B2 (en) 1997-01-27 2015-05-26 Lawrence A. Lynn System and method for automatic detection of a plurality of SPO2 time series pattern types
US9468378B2 (en) 1997-01-27 2016-10-18 Lawrence A. Lynn Airway instability detection system and method
US9521971B2 (en) 1997-07-14 2016-12-20 Lawrence A. Lynn System and method for automatic detection of a plurality of SPO2 time series pattern types
US10058269B2 (en) 2000-07-28 2018-08-28 Lawrence A. Lynn Monitoring system for identifying an end-exhalation carbon dioxide value of enhanced clinical utility
US8932227B2 (en) 2000-07-28 2015-01-13 Lawrence A. Lynn System and method for CO2 and oximetry integration
US10032526B2 (en) 2001-05-17 2018-07-24 Lawrence A. Lynn Patient safety processor
US9031793B2 (en) 2001-05-17 2015-05-12 Lawrence A. Lynn Centralized hospital monitoring system for automatically detecting upper airway instability and for preventing and aborting adverse drug reactions
US10297348B2 (en) 2001-05-17 2019-05-21 Lawrence A. Lynn Patient safety processor
US8862196B2 (en) 2001-05-17 2014-10-14 Lawrence A. Lynn System and method for automatic detection of a plurality of SP02 time series pattern types
US10366790B2 (en) 2001-05-17 2019-07-30 Lawrence A. Lynn Patient safety processor
US11439321B2 (en) 2001-05-17 2022-09-13 Lawrence A. Lynn Monitoring system for identifying an end-exhalation carbon dioxide value of enhanced clinical utility
US10354753B2 (en) 2001-05-17 2019-07-16 Lawrence A. Lynn Medical failure pattern search engine
US9053222B2 (en) 2002-05-17 2015-06-09 Lawrence A. Lynn Patient safety processor
US8965473B2 (en) 2005-09-29 2015-02-24 Covidien Lp Medical sensor for reducing motion artifacts and technique for using the same
US8219170B2 (en) 2006-09-20 2012-07-10 Nellcor Puritan Bennett Llc System and method for practicing spectrophotometry using light emitting nanostructure devices
US8315685B2 (en) 2006-09-27 2012-11-20 Nellcor Puritan Bennett Llc Flexible medical sensor enclosure
US7796403B2 (en) 2006-09-28 2010-09-14 Nellcor Puritan Bennett Llc Means for mechanical registration and mechanical-electrical coupling of a faraday shield to a photodetector and an electrical circuit
US7684842B2 (en) 2006-09-29 2010-03-23 Nellcor Puritan Bennett Llc System and method for preventing sensor misuse
US8265724B2 (en) 2007-03-09 2012-09-11 Nellcor Puritan Bennett Llc Cancellation of light shunting
US8280469B2 (en) 2007-03-09 2012-10-02 Nellcor Puritan Bennett Llc Method for detection of aberrant tissue spectra
US11298076B2 (en) 2008-02-19 2022-04-12 Covidien Lp Methods and systems for alerting practitioners to physiological conditions
US10076276B2 (en) 2008-02-19 2018-09-18 Covidien Lp Methods and systems for alerting practitioners to physiological conditions
US9895068B2 (en) 2008-06-30 2018-02-20 Covidien Lp Pulse oximeter with wait-time indication
US8968193B2 (en) 2008-09-30 2015-03-03 Covidien Lp System and method for enabling a research mode on physiological monitors
US9993208B2 (en) 2008-10-31 2018-06-12 Covidien Lp System and method for facilitating observation of monitored physiologic data
US8622916B2 (en) 2008-10-31 2014-01-07 Covidien Lp System and method for facilitating observation of monitored physiologic data
US8610769B2 (en) 2011-02-28 2013-12-17 Covidien Lp Medical monitor data collection system and method

Also Published As

Publication number Publication date
JP2562894B2 (ja) 1996-12-11

Similar Documents

Publication Publication Date Title
JPS63275325A (ja) 診断装置
JP2640412B2 (ja) 診断装置
EP0290274B1 (en) Examination apparatus for measuring oxygenation
US4908762A (en) Oximeter with system for testing transmission path
EP0290272B1 (en) Examination apparatus for measuring oxygenation
US5564417A (en) Pathlength corrected oximeter and the like
EP0525107B1 (en) Method and apparatus for measuring the concentration of absorbing substances
US5127406A (en) Apparatus for measuring concentration of substances in blood
JP3096331B2 (ja) 診断装置
JPWO2006040841A1 (ja) 血糖値の非侵襲測定装置
JPH07327964A (ja) 酸素飽和度測定装置および血中吸光物質濃度測定装置
EP0290273A1 (en) Examination apparatus for measuring oxygenation
JPH05212016A (ja) 非観血式オキシメータ
EP0290278A1 (en) Examination apparatus for measuring oxygenation
JP2813240B2 (ja) 末梢循環検出装置
RU2040912C1 (ru) Оптический способ определения оксигенации крови и устройство для его осуществления
JPH05507216A (ja) 無侵襲医療用センサ
JPS63275327A (ja) 診断装置
JPH08103434A (ja) 生体光計測装置及び計測方法
JPH07255709A (ja) 濃度測定装置
JP2822227B2 (ja) 筋肉酸素代謝測定装置
KR20070055614A (ko) 혈당치의 비침습 측정 장치
RU2233620C1 (ru) Пульсовой оксиметр
JP2807272B2 (ja) 光による診断装置
JPH0628655B2 (ja) 酸素飽和度測定装置

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees