JPS63274900A - Device for treating exhaust gas of nuclear reactor - Google Patents

Device for treating exhaust gas of nuclear reactor

Info

Publication number
JPS63274900A
JPS63274900A JP62108519A JP10851987A JPS63274900A JP S63274900 A JPS63274900 A JP S63274900A JP 62108519 A JP62108519 A JP 62108519A JP 10851987 A JP10851987 A JP 10851987A JP S63274900 A JPS63274900 A JP S63274900A
Authority
JP
Japan
Prior art keywords
hydrogen
exhaust gas
recombiner
dehumidifier
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62108519A
Other languages
Japanese (ja)
Inventor
Yuichi Tsukamoto
裕一 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Power Reactor and Nuclear Fuel Development Corp
Original Assignee
Power Reactor and Nuclear Fuel Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Power Reactor and Nuclear Fuel Development Corp filed Critical Power Reactor and Nuclear Fuel Development Corp
Priority to JP62108519A priority Critical patent/JPS63274900A/en
Publication of JPS63274900A publication Critical patent/JPS63274900A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Drying Of Gases (AREA)

Abstract

PURPOSE:To prevent hydrogen recovering power from being affected by a fluctuation in in-leak air quantity even if such fluctuation arises by subjecting the hydrogen in the exhaust gas from a dehumidifier from direct adsorption and recovery by a hydrogen storage alloys. CONSTITUTION:The exhaust gas from a condenser 5 is introduced through an air extractor 9 into a recombiner 11. The water formed therein is removed by a condenser 12 of the exhaust gas system. The oxygen contained in the exhaust gas introduced into the recombiner 11 is generated mainly by the radiation decomposition of water in a furnace core and is decreased to about several % by injection of hydrogen for suppressing stress corrosion cracking. The amt. of the hydrogen to be combined to the oxygen in the recombiner 11 is, therefore, slight and the greater part of the hydrogen injected on the upper stream of a water feed pump 6 to suppress the stress corrosion cracking is subjected to removal of the moisture by the dehumidifier 20 without being consumed in the recombiner 11; following which said hydrogen is sent to a hydrogen recovering column 21. The hydrogen storage alloys is packed in the column 21 and only the hydrogen in the exhaust gas is selectively adsorbed therein. The hydrogen adsorbed in the hydrogen storage alloys is released when the column 21 is heated by a heater 22.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、沸騰水型原子炉や圧力管型重水炉等の原子
炉から排出される排ガスの処理装置に関し、特に応力腐
食割れ抑制のために注入した水素ガスを効率よく回収、
再使用することができる排ガス処理装置に関するもので
ある。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a treatment device for exhaust gas discharged from a nuclear reactor such as a boiling water reactor or a pressure tube heavy water reactor, and in particular to a treatment device for suppressing stress corrosion cracking. Efficiently recovers hydrogen gas injected into
The present invention relates to an exhaust gas treatment device that can be reused.

〈従来の技術〉 原子炉冷却水系の応力腐食割れを抑制するために系内に
水素ガスを注入することが従来から行なわれている。こ
の注入水素は他の放射性廃ガスとともに原子炉排ガスと
して排出され、気体廃棄物処理系で処理される。
<Prior Art> In order to suppress stress corrosion cracking in a nuclear reactor cooling water system, hydrogen gas has been injected into the system. This injected hydrogen is discharged as reactor exhaust gas along with other radioactive waste gases and treated in a gaseous waste treatment system.

沸騰水型原子炉からの排ガスの処理を例に挙げて第2図
を参照して説明すると、圧力容器1からの排ガスは蒸気
ドラム2および主蒸気管3を経て蒸気とともにタービン
4へ送られたのら復水器5へ導かれる。ここで水と排ガ
スに分離され、水は給水ポンプ6を介して蒸気ドラム2
へ、ざらに再循環ポンプ7を介して圧力容器1へと循環
される。応力腐食割れ抑t1]用の水素は、復水器5か
ら反応容器1へ循環される水に水素発生装置8から注入
される。一方、復水器5で分離された排ガスは空気抽出
器9によって抽出されるが、この排ガス中には応力腐食
割れ抑制のだめに注入た水素J3よび炉心での水の放射
線分解により発生した水素が含まれている。かようム水
素が下流に流出して爆発する危険をなくすために、この
排ガス中に酸素ボンベ10より酸素を注入したのら、触
媒により水素と酸素を再結合させる再結合器11へ導入
することによって、水素が未反応で残留しないようにす
る。
To explain the treatment of exhaust gas from a boiling water reactor as an example with reference to FIG. 2, exhaust gas from a pressure vessel 1 is sent to a turbine 4 along with steam via a steam drum 2 and a main steam pipe 3. It is guided to the condenser 5. Here, water and exhaust gas are separated, and the water is passed through a water supply pump 6 to a steam drum 2.
It is then roughly circulated to the pressure vessel 1 via the recirculation pump 7. Hydrogen for stress corrosion cracking suppression t1] is injected from the hydrogen generator 8 into water that is circulated from the condenser 5 to the reaction vessel 1. On the other hand, the exhaust gas separated in the condenser 5 is extracted by the air extractor 9, but this exhaust gas contains hydrogen J3 injected into the tank to suppress stress corrosion cracking and hydrogen generated by radiolysis of water in the core. include. In order to eliminate the risk of hydrogen flowing downstream and causing an explosion, oxygen is injected into this exhaust gas from an oxygen cylinder 10 and then introduced into a recombiner 11 where hydrogen and oxygen are recombined by a catalyst. to prevent hydrogen from remaining unreacted.

水素と酸素の再結合により生じた水を排ガス系復水器1
2にて除去したのち、排ガス中の放射性希ガスを希ガス
ホールドアツプ装置13で除去し、最終的に排気筒14
から排出される。
The water generated by the recombination of hydrogen and oxygen is transferred to the exhaust gas system condenser 1.
2, the radioactive rare gas in the exhaust gas is removed by the rare gas hold up device 13, and finally the exhaust gas is removed by the exhaust stack 14.
is discharged from.

上述したごとき排ガス処理系においては、排ガス中の水
素は再結合器11にて酸素と反応さ「て水として除去す
るため、水素を回収するこ゛とはできない。しかしなが
ら、排ガス中の水素を回収できれば、この回収水素を応
力腐食割れ抑制用の注入水素として再利用することも可
能となる。
In the exhaust gas treatment system as described above, hydrogen in the exhaust gas reacts with oxygen in the recombiner 11 and is removed as water, so hydrogen cannot be recovered. However, if hydrogen in the exhaust gas can be recovered, It is also possible to reuse this recovered hydrogen as injected hydrogen for suppressing stress corrosion cracking.

排ガス中の水素を回収して再利用できるようにした処理
装置も既に提案されている(特開昭81−68599号
)。第3図に示すこの装置は、第2図におけるように再
結合器11の上流で酸素を注入することなく、空気抽出
器9から抽出された排ガスをそのまま再結合器11へ導
入ざぜる。この排ガス中の水素と酸素の量は水素の方が
多くなっているので、酸素と結合しうる化学量論的口の
水素が再結合器11中で酸素と反応し、生成する水は排
ガス系復水器12で除去される。この復水器12から流
出する排ガス中には、未反応の水素と放射性希ガスとイ
ンリーク空気からの窒素とが含まれているため、排ガス
系復水器12の下流に設けた活性炭を用いる水素精製塔
15にこの排ガスを導入して、排ガス中の窒素および希
ガスを活性炭に吸着uしめ、水素は吸着させずに流出さ
ける。この水素は応力腐食割れ抑制用として再利用する
ことができる。水素精製塔15の活性炭に吸着された窒
素等は、吸着が飽和に達した時点でスチームを流すこと
により追い出すことができ、追い出された窒素等の排ガ
スは凝縮器16でスチームを除、去したのち、希ガスホ
ールドアツプ装置13を経て排気筒14より排出される
A processing device capable of recovering and reusing hydrogen in exhaust gas has already been proposed (Japanese Patent Application Laid-Open No. 81-68599). This device shown in FIG. 3 directly introduces the exhaust gas extracted from the air extractor 9 into the recombiner 11 without injecting oxygen upstream of the recombiner 11 as in FIG. Since the amount of hydrogen and oxygen in this exhaust gas is larger, the stoichiometric amount of hydrogen that can combine with oxygen reacts with oxygen in the recombiner 11, and the generated water is released into the exhaust gas system. It is removed in the condenser 12. The exhaust gas flowing out from the condenser 12 contains unreacted hydrogen, radioactive rare gas, and nitrogen from the in-leak air. This exhaust gas is introduced into the purification tower 15, and the nitrogen and rare gases in the exhaust gas are adsorbed on activated carbon, while the hydrogen is not adsorbed and is prevented from flowing out. This hydrogen can be reused to suppress stress corrosion cracking. Nitrogen and the like adsorbed on the activated carbon in the hydrogen purification tower 15 can be driven out by flowing steam when the adsorption reaches saturation, and the steam is removed from the driven out exhaust gases such as nitrogen in the condenser 16. Thereafter, it passes through the rare gas hold-up device 13 and is discharged from the exhaust pipe 14.

〈発明が解決しようとする問題点〉 上述した活性炭水素精製塔を用いる水素回収方式(第3
図)は、回収した水素を応力腐食割れ抑制用として再利
用できるため、第2図の装置で必要とされる水系発生装
置8を不要とさせるだけでなく、再結合器上流に酸素を
注入するための酸素ボンベ10も不要とさせるから、経
費の削減を図ることができるという利点がある。
<Problems to be solved by the invention> Hydrogen recovery method using the above-mentioned activated carbon hydrogen purification tower (third method)
Figure) allows the recovered hydrogen to be reused to suppress stress corrosion cracking, which not only eliminates the need for the aqueous generator 8 required in the equipment shown in Figure 2, but also allows oxygen to be injected upstream of the recombiner. Since the oxygen cylinder 10 for this purpose is also unnecessary, there is an advantage that costs can be reduced.

しかしながら、次のような問題点もある。However, there are also the following problems.

i)活性炭が吸着する窒素等の不純物ガスの恒は、主と
してインリーク空気(タービン系の真空部分に外部から
漏れ込んでくる空気)の量に依存する。インリーク空気
量は一定ではなく、それらの変動も考慮Jると、一定H
の、活性炭の吸着能力によっては不純物ガス圏の変動に
対処するのが難しい。
i) The concentration of impurity gases such as nitrogen adsorbed by activated carbon mainly depends on the amount of in-leak air (air leaking into the vacuum part of the turbine system from the outside). The amount of in-leak air is not constant, and considering these fluctuations, a constant H
However, depending on the adsorption capacity of activated carbon, it is difficult to deal with fluctuations in the impurity gas sphere.

11)実際の原子炉発電プラン1〜において活性炭水素
精製塔°を用いる水素回収方式を採用した場合には、多
口の活性炭が必要となり、実用的でない。
11) When a hydrogen recovery method using an activated carbon hydrogen purification tower is adopted in actual nuclear power generation plans 1 to 1, many activated carbons are required, which is not practical.

そこでこの発明は、応力腐食割れ抑制のために注入した
水素を原子炉排ガス中から効率よく回収することができ
るとともに、上述したごとき活性炭を用いる水素精製塔
を組込む従来の回収方式のもつ欠点、すなわち排ガス処
理量の変動に対処しにくい点および多口の活性炭を使用
しなくてはならない点を改善することができるような原
子炉排ガス処理装置を提供することを目的としてなされ
たものである。
Therefore, the present invention makes it possible to efficiently recover hydrogen injected to suppress stress corrosion cracking from reactor exhaust gas, and also solves the drawbacks of the conventional recovery method that incorporates a hydrogen purification tower using activated carbon as described above. The purpose of this invention is to provide a nuclear reactor exhaust gas treatment device that can improve the difficulty of dealing with fluctuations in the amount of exhaust gas treated and the necessity of using a large number of activated carbons.

く問題点を解′決するための手段〉 上記の目的を達成するためこの発明においては、従来の
活性炭を用いる水素精製手段に代えて、排ガス中の水素
を直接吸着する水素貯蔵合金による水素精製手段を用い
ている。
Means for Solving the Problems> In order to achieve the above object, in this invention, instead of the conventional hydrogen purification means using activated carbon, a hydrogen purification means using a hydrogen storage alloy that directly adsorbs hydrogen in exhaust gas is provided. is used.

すなわらこの発明による原子炉排ガスの処理装置は、原
子炉排ガス中の水素と酸素を反応させる再結合器と、該
再結合器で生成した水を除去する排ガス系復水器と、該
復水器からの排ガス中の水分をさらに除去する脱湿器と
、該脱湿器からの排ガス中の水素を水素貯蔵合金により
吸着2回収する水素回収塔とからなることを特徴とする
ものである。
In other words, the reactor exhaust gas treatment device according to the present invention includes a recombiner that reacts hydrogen and oxygen in the reactor exhaust gas, an exhaust gas system condenser that removes water generated in the recombiner, and the recombinant. It is characterized by comprising a dehumidifier that further removes moisture in the exhaust gas from the water dispenser, and a hydrogen recovery tower that adsorbs and recovers hydrogen in the exhaust gas from the dehumidifier using a hydrogen storage alloy. .

水素貯蔵合金は水素吸蔵合金あるいは金属水素化物とも
呼ばれてあり、代表的には希土類系(ランタン系、ミツ
シュメタル系)、チタン系。
Hydrogen storage alloys are also called hydrogen storage alloys or metal hydrides, and are typically rare earth-based (lanthanum-based, Mitsushi metal-based) and titanium-based.

マグネシウム系の3種が知られており、なかでもヂタン
ーマンガン系合金、チタンー鉄系合金。
Three types of magnesium are known, among them ditanium-manganese alloy and titanium-iron alloy.

ランタン−ニッケル系合金、ミツシュメタル−ニッケル
系合金等がよく利用されている。かよう水素貯蔵合金は
、水素を大量かつ可逆的に吸蔵、放出する機能をもった
合金であり、水素を吸蔵するときは発熱し、水素を放出
するときは吸熱する性質があるため、比較的低温で水素
を吸蔵せしめ、水素を放出させるときには外部熱源によ
り加熱すればよい。
Lanthanum-nickel alloys, mitshu metal-nickel alloys, etc. are often used. Hydrogen storage alloys are alloys that have the ability to store and release hydrogen in large quantities and reversibly.They generate heat when storing hydrogen and endotherm when releasing hydrogen, so they are relatively inexpensive. Hydrogen can be stored at low temperatures, and hydrogen can be released by heating with an external heat source.

〈作 用〉 復水器からの原子炉排ガス中には水素、酸素。<For production> Hydrogen and oxygen are present in the reactor exhaust gas from the condenser.

放射性希ガスおよびインリーク空気等が含まれているが
、これらのうち先ず酸素が醒六−水素■結合器により除
去される。このときの酸素量は水素量に比べて化学量論
的に少量であるため、再結合器で消費される水素量は少
量である。再結合器で生成された水は排ガス系復水器で
除去したのら、さらに水分を除去するために脱湿器で脱
湿する。脱湿を入念に行なうのは、水素貯蔵合金が水分
により劣化するためである。かくして脱湿された排ガス
は次いで水素回収塔へ導入され、ここで排ガス中の水素
が選択的に水素貯蔵合金に吸着される。吸着された水素
は水素貯蔵合金を外部熱源で加熱することによって容易
に放出9回収することができる。この回収水素は応力腐
食割れ抑制用として再利用することができる。
It contains radioactive rare gases, in-leak air, etc., but oxygen is first removed by the hydrogen-hydrogen combiner. Since the amount of oxygen at this time is stoichiometrically small compared to the amount of hydrogen, the amount of hydrogen consumed in the recombiner is small. The water produced in the recombiner is removed in an exhaust gas condenser, and then dehumidified in a dehumidifier to further remove moisture. The reason for careful dehumidification is that hydrogen storage alloys deteriorate due to moisture. The thus dehumidified exhaust gas is then introduced into a hydrogen recovery column, where hydrogen in the exhaust gas is selectively adsorbed onto a hydrogen storage alloy. Adsorbed hydrogen can be easily released and recovered by heating the hydrogen storage alloy with an external heat source. This recovered hydrogen can be reused to suppress stress corrosion cracking.

〈実施例〉 以下に図面に示す実施例を参照してこの発明をさらに詳
述する。第1図はこの発明による原子炉排ガスの処理装
置の例を示すものであり、第2図の従来装置における構
成機器と同じは器には第2図と同じ参照番号を付すこと
によって説明を省略する。
<Examples> The present invention will be described in further detail below with reference to examples shown in the drawings. FIG. 1 shows an example of a reactor exhaust gas treatment device according to the present invention, and components that are the same as those in the conventional device shown in FIG. 2 are given the same reference numbers as in FIG. do.

復水器5からの排ガスは従来と同様に空気抽出器9を経
て再結合器11へ導かれ、ここで生成した水は排ガス系
復水器12で除去される。
The exhaust gas from the condenser 5 is led to the recombiner 11 via the air extractor 9 as in the conventional case, and the water produced here is removed by the exhaust gas system condenser 12.

再結合器11へ導かれる排ガス中に含まれる酸素は数%
程度の少量である。すなわち排ガス中の酸素は主として
炉心において水の放射線分解により発生するものであっ
て、応ツノ腐食割れ抑制用の水素を注入することにより
酸素発生量は減少する。従って、再結合器11でかよう
な少ローの酸素と化学量論的に結合して消費される水素
の量も少量であり、応力腐食割れ抑制用として給水ポン
プ6の上流で注入した水素の大部分は、再結合器11で
消費されずに水素回収塔21へ送られることになる。水
素回収塔21内には水素貯蔵合金が充填されており、ま
た吸着した水素を放出させるために水素貯蔵合金を加熱
するためのヒーターのごとき加熱装置22も配設されて
いる。この水素貯蔵合金の水素吸着能は水分の存在によ
り劣化するため、この発明においては水素回収塔21の
上流にモレキュラシーブを用いる脱湿器20を設置する
必要がおる。この脱湿器20にもヒーターが内蔵されて
いる。水素回収塔21から流出する水素以外の排ガスは
、従来と同様に希ガスホールドアツプ装置13を経て最
終的に排気筒14から排出される。
The amount of oxygen contained in the exhaust gas led to the recombiner 11 is several percent.
It's a small amount. That is, oxygen in the exhaust gas is mainly generated by the radiolysis of water in the reactor core, and the amount of oxygen generated is reduced by injecting hydrogen to suppress horn corrosion cracking. Therefore, the amount of hydrogen consumed by stoichiometrically combining with such low-low oxygen in the recombiner 11 is small, and the amount of hydrogen injected upstream of the water pump 6 to suppress stress corrosion cracking is small. Most of the hydrogen is sent to the hydrogen recovery column 21 without being consumed in the recombiner 11. The hydrogen recovery column 21 is filled with a hydrogen storage alloy, and is also provided with a heating device 22 such as a heater for heating the hydrogen storage alloy in order to release the adsorbed hydrogen. Since the hydrogen adsorption ability of this hydrogen storage alloy deteriorates due to the presence of moisture, it is necessary to install a dehumidifier 20 using a molecular sieve upstream of the hydrogen recovery tower 21 in the present invention. This dehumidifier 20 also has a built-in heater. Exhaust gas other than hydrogen flowing out from the hydrogen recovery tower 21 passes through the rare gas hold-up device 13 and is finally discharged from the exhaust stack 14 as in the conventional case.

脱湿器20と水素回収塔21の動作について以下に説明
する。図示の例では脱湿器および水素回収塔はいずれも
2基づつ並列に設けられており、弁操作によっていずれ
か一方のみに排ガスを導入できるように切替式になって
いる。すなわら、排ガス系復水器12から流出する排ガ
スを先ず一方の脱湿器20aへ導入し、ここで七しキュ
ラシーブにJ:つて水分子を除去された排カスはざらに
水素回収塔21へ導かれる。脱湿器20aのモレキュラ
シーブの水分子除去能が飽和に達した時点で弁操作によ
り排ガス流をもう一方の脱湿器20bへ切替えるととも
に、脱湿器20aのヒーターを作動させて水分を蒸発さ
せ、この蒸気はライン23により希ガスボールドアップ
装置13へ送られる。このようにして2基の脱湿器は交
互に使用される。
The operations of the dehumidifier 20 and the hydrogen recovery tower 21 will be explained below. In the illustrated example, two dehumidifiers and two hydrogen recovery towers are provided in parallel, and they are switchable so that exhaust gas can be introduced into only one of them by operating a valve. That is, the exhaust gas flowing out from the exhaust gas system condenser 12 is first introduced into one of the dehumidifiers 20a, where it is passed through a seven-layer sieve, and the exhaust gas from which water molecules have been removed is sent to the hydrogen recovery tower 21. be led to. When the water molecule removal ability of the molecular sieve of the dehumidifier 20a reaches saturation, the exhaust gas flow is switched to the other dehumidifier 20b by operating a valve, and the heater of the dehumidifier 20a is operated to evaporate the water. This vapor is sent via line 23 to rare gas bold-up device 13 . In this way, the two dehumidifiers are used alternately.

水素回収塔21も同様な弁操作によって脱湿器20から
流出する排ガス流を例えば水素回収塔21aのみに導き
、その内部に充填された水素貯蔵合金に排ガス中の水素
のみを選択的に吸着せしめ、流出するその他の排ガス成
分を希ガスホールドアツプ装置13へ導く。水素回収塔
21a内の水素貯蔵合金が、その吸着能が飽和するまで
水素を吸着した時点で、弁を切替えて排ガス流をもう一
方の水素回収塔21bへ導入し、水素回収塔21aのヒ
ーターを作動させて水素貯蔵合金に吸着された水素を放
出させる。この水素はライン24によりバッフ1タンク
25に一旦蓄えられたのち、応力腐食割れ抑制用として
再利用される。再利用しうる水素量が不足する場合には
、水素ボンベ26により補給することができる。
The hydrogen recovery tower 21 also uses a similar valve operation to guide the exhaust gas flow flowing out from the dehumidifier 20 only to the hydrogen recovery tower 21a, for example, so that only the hydrogen in the exhaust gas is selectively adsorbed by the hydrogen storage alloy filled therein. , and guide other exhaust gas components flowing out to the rare gas hold-up device 13. When the hydrogen storage alloy in the hydrogen recovery tower 21a adsorbs hydrogen until its adsorption capacity is saturated, the valve is switched to introduce the exhaust gas stream into the other hydrogen recovery tower 21b, and the heater of the hydrogen recovery tower 21a is turned off. It is activated to release the hydrogen adsorbed in the hydrogen storage alloy. This hydrogen is temporarily stored in the buffer 1 tank 25 via the line 24, and then reused for suppressing stress corrosion cracking. If the amount of hydrogen that can be reused is insufficient, it can be replenished using the hydrogen cylinder 26.

上述したように脱湿器20と水素回収塔21を多塔切替
式とすることによって、水素貯蔵合金による水素の吸着
と放出を連続的に行なうことができる。
As described above, by using the dehumidifier 20 and the hydrogen recovery column 21 as a multi-column switching type, hydrogen can be continuously adsorbed and released by the hydrogen storage alloy.

〈発明の効果〉 以上説明したところかられかるようにこの発明の原子炉
排ガス処理装置においては、従来の活性炭使用の水素精
製塔に代えて、水素貯蔵合金を使用した水素回収塔を用
いたため、次のような効果が得られる。
<Effects of the Invention> As can be seen from the above explanation, in the reactor exhaust gas treatment system of the present invention, a hydrogen recovery tower using a hydrogen storage alloy is used in place of the conventional hydrogen purification tower using activated carbon. The following effects can be obtained.

i) 活性炭を用いた場合には、排ガス中の水素以外の
主として窒素等の不純物ガスを吸着する。排ガス中の窒
素等の不純物ガスの量はインリーク空気量によって大き
く変動するため一定でなく、一定量の活性炭によっては
排ガス中の不純物ガス量の変動に対処するのが困難であ
る。
i) When activated carbon is used, it adsorbs impurity gases other than hydrogen in the exhaust gas, mainly nitrogen. The amount of impurity gas such as nitrogen in the exhaust gas is not constant because it varies greatly depending on the amount of inleak air, and it is difficult to deal with fluctuations in the amount of impurity gas in the exhaust gas depending on a fixed amount of activated carbon.

一方、水素貯蔵合金を用いた場合には、排ガス中の水素
を直接吸着する。排ガス中の水素口はインリーク空気m
の変動によってもあまり大きく変動しないため、水素口
に相当する所定量の水素貯蔵合金を使用すれば、インリ
ーク空気量の変動があっても水素回収能は影響を受ける
ことはない。
On the other hand, when a hydrogen storage alloy is used, hydrogen in exhaust gas is directly adsorbed. The hydrogen port in the exhaust gas is an in-leak air m.
Even if the amount of in-leak air changes, it does not vary greatly, so if a predetermined amount of hydrogen storage alloy is used corresponding to the hydrogen port, the hydrogen recovery ability will not be affected even if the amount of in-leak air changes.

ii)  活性炭と水素貯蔵合金の必要」を同条件で比
較した場合、水素貯蔵合金は活性炭必要量の約1/10
でよい。
ii) When comparing the requirements for activated carbon and hydrogen storage alloy under the same conditions, hydrogen storage alloy is approximately 1/10 of the required amount of activated carbon.
That's fine.

例えば、排ガス流■4ONmS/hr、水素流ffi2
ONm2/hの合計60 N II2/hrの処理ガス
量を活性炭水素精製塔および水素貯蔵合金水素回収塔へ
各々流して、水素以外の排ガスを100%吸着するに要
する活性炭D、および水素を100%吸着するに要する
水素貯蔵合金量を計算すると以下のようになる。なお、
活性炭による吸着の場合には冷却すれば吸着量Gは増加
するが、活性炭使用Hが多いため塔全体を冷却すると装
置が大規模となってしまうので、常温で圧力をa at
mまで高めることによって吸着量口の増加を図った。水
素貯蔵合金による吸着の場合には、常温・常圧でもよい
が、比較のため活性炭と同様に常温、8atmで吸着さ
せた。
For example, exhaust gas flow ■4ONmS/hr, hydrogen flow ffi2
Activated carbon D required to adsorb 100% of exhaust gases other than hydrogen and 100% of hydrogen by flowing a total of 60 N II2/hr of treated gas to the activated carbon hydrogen purification tower and hydrogen storage alloy hydrogen recovery tower. The amount of hydrogen storage alloy required for adsorption is calculated as follows. In addition,
In the case of adsorption using activated carbon, the amount of adsorption G can be increased by cooling it, but since a large amount of activated carbon H is used, cooling the entire tower would require a large-scale device.
The adsorption capacity was increased by increasing the adsorption capacity to m. In the case of adsorption using a hydrogen storage alloy, normal temperature and normal pressure may be used, but for comparison, adsorption was carried out at normal temperature and 8 atm similarly to activated carbon.

活性炭必要量 (平衡吸着量−〜35cc/g) (再生時間: 12hr) 水素貯蔵合金必要但 (平衡吸着量:〜150 CC7g> (再生時間:12hr) iii)  上記したように活性炭使用の場合には、吸
着量口を高めるために加圧する必要があり、そのための
圧縮器が必要となる。また圧縮器を使用した場合、この
圧縮器より上流での圧力抑制が必要となる。なぜならば
排ガス流口は常時一定ではなく変動するためである。そ
の結果、この制御系にトラブルが生じて、従来正圧の系
統であった部分が負圧となってしまった場合には外部か
らのインリーク空気による爆発の危険性をもっており、
設備の保安管理上問題となる。
Required amount of activated carbon (equilibrium adsorption amount - ~35cc/g) (Regeneration time: 12hr) Hydrogen storage alloy required (Equilibrium adsorption amount: ~150 CC7g> (Regeneration time: 12hr) iii) As mentioned above, when using activated carbon It is necessary to pressurize to increase the adsorption capacity, and a compressor is required for this purpose. Furthermore, when a compressor is used, pressure suppression is required upstream of the compressor. This is because the exhaust gas flow port is not always constant but fluctuates. As a result, if a problem occurs in this control system and a part that was previously a positive pressure system becomes negative pressure, there is a risk of explosion due to in-leak air from the outside.
This poses a problem in terms of equipment security management.

一方、水素貯蔵合金使用の場合には、常圧で水素吸着を
行なわせることができ、その結果、圧縮器を必ずしも必
要とVず、インリーク空気による爆発の危険もない。
On the other hand, when a hydrogen storage alloy is used, hydrogen adsorption can be carried out at normal pressure, and as a result, a compressor is not necessarily required and there is no risk of explosion due to in-leak air.

iV)  水素貯蔵合金の必要量を排ガス中の水累厘に
合せて選定りることができ、100%回収も可能となる
。その結果、応用腐食割れ抑制用水素の注入量の大部分
を回収し再利用することができ、不足分を水素ボンベに
より補給ずればよいため、従来のような水素発生器を不
要にすることができる。
iV) The required amount of hydrogen storage alloy can be selected according to the amount of water in the exhaust gas, and 100% recovery is also possible. As a result, most of the amount of hydrogen injected for applied corrosion cracking suppression can be recovered and reused, and the shortage can be replenished with a hydrogen cylinder, eliminating the need for a conventional hydrogen generator. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の装置の一実施例を示す説明図、第2
図は従来の装置を示す説明図、第3図は活性炭水素1m
”A塔を組込んだ従来の装置を示す説明図である。 11・・・再結合器、12・・・排ガス系復水器、20
・・・脱湿器、21・・・水素貯蔵合金を含む水素回収
塔、22・・・加熱装置。
FIG. 1 is an explanatory diagram showing one embodiment of the apparatus of the present invention, and FIG.
The figure is an explanatory diagram showing a conventional device, and Figure 3 shows 1 m of activated carbon.
"It is an explanatory diagram showing a conventional device incorporating A tower. 11... Recombiner, 12... Exhaust gas system condenser, 20
... Dehumidifier, 21 ... Hydrogen recovery tower containing hydrogen storage alloy, 22 ... Heating device.

Claims (1)

【特許請求の範囲】 1、原子炉排ガス中の水素と酸素を反応させる再結合器
と、該再結合器で生成した水を除去する排ガス系復水器
と、該復水器からの排ガス中の水分をさらに除去する脱
湿器と、該脱湿器からの排ガス中の水素を水素貯蔵合金
により吸着、回収する水素回収塔とからなることを特徴
とする原子炉排ガスの処理装置。 2、前記水素回収塔は多塔切替式とし、各塔は吸着水素
を水素貯蔵合金から放出させるための加熱装置を備えて
いることを特徴とする特許請求の範囲第1項記載の装置
[Scope of Claims] 1. A recombiner for reacting hydrogen and oxygen in reactor exhaust gas, an exhaust gas system condenser for removing water generated in the recombiner, and an exhaust gas from the condenser. 1. A nuclear reactor exhaust gas treatment device comprising: a dehumidifier for further removing water from the dehumidifier; and a hydrogen recovery tower for adsorbing and recovering hydrogen in the exhaust gas from the dehumidifier using a hydrogen storage alloy. 2. The apparatus according to claim 1, wherein the hydrogen recovery column is of a multi-column switching type, and each column is equipped with a heating device for releasing adsorbed hydrogen from the hydrogen storage alloy.
JP62108519A 1987-05-01 1987-05-01 Device for treating exhaust gas of nuclear reactor Pending JPS63274900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62108519A JPS63274900A (en) 1987-05-01 1987-05-01 Device for treating exhaust gas of nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62108519A JPS63274900A (en) 1987-05-01 1987-05-01 Device for treating exhaust gas of nuclear reactor

Publications (1)

Publication Number Publication Date
JPS63274900A true JPS63274900A (en) 1988-11-11

Family

ID=14486852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62108519A Pending JPS63274900A (en) 1987-05-01 1987-05-01 Device for treating exhaust gas of nuclear reactor

Country Status (1)

Country Link
JP (1) JPS63274900A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010190868A (en) * 2009-02-20 2010-09-02 Hitachi-Ge Nuclear Energy Ltd Hydrogen treatment device for reactor container

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6069599A (en) * 1983-09-27 1985-04-20 株式会社東芝 Hydrogen treater for light-water reactor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6069599A (en) * 1983-09-27 1985-04-20 株式会社東芝 Hydrogen treater for light-water reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010190868A (en) * 2009-02-20 2010-09-02 Hitachi-Ge Nuclear Energy Ltd Hydrogen treatment device for reactor container

Similar Documents

Publication Publication Date Title
US4774065A (en) Process and apparatus for decontaminating exhaust gas from a fusion reactor fuel cycle of exhaust gas components containing chemically bonded tritium and/or deuterium
US5711926A (en) Pressure swing adsorption system for ammonia synthesis
US4270938A (en) Processes for decontaminating nuclear process off-gas streams
KR101388266B1 (en) Method and apparatus for separating blast furnace gas
JPS63274900A (en) Device for treating exhaust gas of nuclear reactor
EP0813211B1 (en) Enrichment of krypton in oxygen/nitrogen mix gas
EP0032949A1 (en) Method for treating a nuclear process off-gas stream
CN116477569A (en) High-purity hydrogen purification and storage integrated method and system based on magnesium-based hydrogen storage material
JPS62255894A (en) Method and device for decontaminating waste gas of fuel cycle of fusion reactor
JP3267997B2 (en) Fuel cell power plant
US4304645A (en) Process for removing helium and other impurities from a mixture containing deuterium and tritium, and a deuterium/tritium mixture when purified in accordance with such a process
JP3349802B2 (en) Method and apparatus for regenerating nitrogen gas for fuel cell sealing
JP3343419B2 (en) Nitrogen equipment for fuel cell power generation system
JPH0377626A (en) Device for refining hydrogen isotope
JPS62150198A (en) Hydrogen-gas injection-recovery device for boiling water type reactor
CN113120861B (en) Hydrogen and oxygen fuel cell hydrogen tail gas recovery device for closed environment
EP0692044A1 (en) Method for reusing spent gas from an ozone bleaching reactor
JPH05232293A (en) Treating equipment of tritium
JPS63111497A (en) Radioactive gas waste processor
EP0032827B1 (en) Process for removing helium and other impurities from a mixture containing deuterium and tritium especially from a fusion reactor
JPS63175627A (en) Tritium recovery apparatus
JPS60239302A (en) Purification of single substance of hydrogen isotope
JP2856892B2 (en) Vacuum evacuation system for fusion reactor and its cryopump
JPS62247295A (en) Radioactive gas-waste processor
JPS63178830A (en) Fuel purifying device for nuclear fusion furnace