JP3343419B2 - Nitrogen equipment for fuel cell power generation system - Google Patents

Nitrogen equipment for fuel cell power generation system

Info

Publication number
JP3343419B2
JP3343419B2 JP32295293A JP32295293A JP3343419B2 JP 3343419 B2 JP3343419 B2 JP 3343419B2 JP 32295293 A JP32295293 A JP 32295293A JP 32295293 A JP32295293 A JP 32295293A JP 3343419 B2 JP3343419 B2 JP 3343419B2
Authority
JP
Japan
Prior art keywords
nitrogen
fuel cell
power generation
generation system
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32295293A
Other languages
Japanese (ja)
Other versions
JPH07183040A (en
Inventor
賢 小川
洋 新海
裕 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Fuji Electric Co Ltd
Kobe Steel Ltd
Original Assignee
Kansai Electric Power Co Inc
Fuji Electric Co Ltd
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Fuji Electric Co Ltd, Kobe Steel Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP32295293A priority Critical patent/JP3343419B2/en
Publication of JPH07183040A publication Critical patent/JPH07183040A/en
Application granted granted Critical
Publication of JP3343419B2 publication Critical patent/JP3343419B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、大容量の燃料電池発電
システムに付設した窒素設備に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nitrogen facility attached to a large-capacity fuel cell power generation system.

【0002】[0002]

【従来の技術】まず、従来における燃料電池発電システ
ムを図2に示す。図において、1は加圧型燃料電池、2
は燃料改質器、3は空気圧縮機、4は窒素設備である。
ここで、燃料電池1は水素電極1a,空気電極1b,マ
トリックス1cを単位セルとしたセルスタックを圧力容
器1dに収容して構成されている。また、燃料改質器2
はバーナ2aを装備した燃焼室2bの中に改質反応管2
cを配管した構成でああり、燃料電池の運転時には燃料
電池1の水素電極から排出するオフガス(未反応ガス)
および空気電極から排出するオフ空気をバーナ2aに供
給して燃焼し、天然ガス(原燃料)を水素リッチなガス
に水蒸気改質して燃料電池1の水素電極1aに供給する
ようにしている。さらに、窒素設備4は液体窒素貯蔵タ
ンク4a,窒素蒸発器4b,サージタンク4c,圧力制
御弁4dを装備しており、該窒素設備4から引出した窒
素ガス供給ライン5が窒素ガス供給弁6〜9を介して系
内における燃料電池1の水素電極1a,空気電極1b,
圧力容器1d、および燃料改質器2の反応管入口側の管
路にそれぞれ接続されている。なお、10は圧力容器1
dの出口側に接続した窒素ガスの圧力制御弁であり、該
圧力制御弁で圧力容器に導入した窒素ガスを所定圧に保
持させるようにしている。
2. Description of the Related Art FIG. 2 shows a conventional fuel cell power generation system. In the figure, 1 is a pressurized fuel cell, 2
Is a fuel reformer, 3 is an air compressor, and 4 is a nitrogen facility.
Here, the fuel cell 1 is configured such that a cell stack having a hydrogen electrode 1a, an air electrode 1b, and a matrix 1c as unit cells is housed in a pressure vessel 1d. Also, the fuel reformer 2
Represents a reforming reaction tube 2 in a combustion chamber 2b equipped with a burner 2a.
c is a pipe, and off-gas (unreacted gas) discharged from the hydrogen electrode of the fuel cell 1 during operation of the fuel cell
Off-air discharged from the air electrode is supplied to a burner 2a and burned, and natural gas (raw fuel) is steam-reformed into a hydrogen-rich gas and supplied to a hydrogen electrode 1a of the fuel cell 1. Further, the nitrogen equipment 4 is equipped with a liquid nitrogen storage tank 4a, a nitrogen evaporator 4b, a surge tank 4c, and a pressure control valve 4d, and a nitrogen gas supply line 5 drawn from the nitrogen equipment 4 has nitrogen gas supply valves 6 to 6. 9, a hydrogen electrode 1a, an air electrode 1b,
The pressure vessel 1 d is connected to a reaction tube inlet side pipe of the fuel reformer 2. 10 is a pressure vessel 1
A pressure control valve for the nitrogen gas connected to the outlet side of d. The pressure control valve keeps the nitrogen gas introduced into the pressure vessel at a predetermined pressure.

【0003】かかる構成で、燃料電池の運転時には水蒸
気を添加した天然ガスを燃料改質器2により水素リッチ
なガスに改質して燃料電池1の水素電極1aに供給し、
空気圧縮機3より送気を受ける空気電極1bとの間の電
池反応により発電する。また、水素電極1aより排出し
た未反応ガスを含むオフガス,および空気電極1bより
排出したオフ空気(酸素濃度が低下している)は燃料改
質器2のバーナ2aに供給して燃焼し、天然ガスの改質
反応に必要な熱を与える。さらに、この運転状態では窒
素設備4より燃料電池1の圧力容器1dに窒素ガスを連
続的に供給してセルスタックの周囲を保圧状態に保って
シールするようにしている。
With this configuration, during operation of the fuel cell, natural gas to which steam has been added is reformed into a hydrogen-rich gas by the fuel reformer 2 and supplied to the hydrogen electrode 1a of the fuel cell 1.
Electric power is generated by a battery reaction between the air compressor 1 and the air electrode 1b that receives air from the air compressor 3. Further, the off-gas containing unreacted gas discharged from the hydrogen electrode 1a and the off-air (oxygen concentration is lowered) discharged from the air electrode 1b are supplied to the burner 2a of the fuel reformer 2 and burned, and are burned. Provides the heat required for the gas reforming reaction. Further, in this operating state, nitrogen gas is continuously supplied from the nitrogen facility 4 to the pressure vessel 1d of the fuel cell 1 so that the periphery of the cell stack is kept in a pressure-retained state and sealed.

【0004】なお、窒素設備4では、液体窒素貯蔵タン
ク4aに貯留している液体窒素を窒素蒸発器4bで窒素
ガスに変えた上で、圧力変動を防ぐサージタンク4c,
圧力制御弁4dを通じて供給するようにしており、ま
た、液体窒素貯蔵タンク4aへの液体窒素の補給は、窒
素ガスの製造メーカーからタンクローリ11などの輸送
手段により定期的に発電所内に搬入して行うようにして
いる。
In the nitrogen equipment 4, liquid nitrogen stored in a liquid nitrogen storage tank 4a is converted into nitrogen gas by a nitrogen evaporator 4b, and then surge tanks 4c and 4c are provided to prevent pressure fluctuations.
The liquid nitrogen is supplied to the liquid nitrogen storage tank 4a by supplying the liquid nitrogen through the pressure control valve 4d. The liquid nitrogen is supplied to the power plant on a regular basis by a transportation means such as a tank lorry 11 from a nitrogen gas manufacturer. Like that.

【0005】一方、発電システムの停止時には、燃料電
池への反応ガス供給を止めて運転を停止した後に、窒素
設備4より燃料改質器2の反応管2cおよび燃料電池1
の水素電極1a,空気電極1bに窒素ガスを導入し、系
内に残留している反応ガスを窒素ガスによりパージして
保圧状態に保つ。また、燃料電池の起動時には窒素設備
4より系内に供給した窒素ガスで燃料改質器,および燃
料電池本体を運転圧まで昇圧し、さらに改質器2のバー
ナ2aを点火し(バーナには天然ガス,および空気圧縮
機3により送気されて来た空気を供給する)て燃焼室2
bを所定温度まで昇温させた後に、改質器2の反応管2
cに天然ガス,水蒸気を供給して燃料改質を開始すると
ともに、系内の窒素ガスを新たに生成した改質ガス,お
よび空気圧縮機3より送気した空気でパージする。そし
て、燃料改質器2で生成した改質ガスの組成を確認した
上で、燃料電池1に反応ガスとしての改質ガス,空気を
供給して発電を開始するとともに、改質器2ではバーナ
に供給する燃料,燃焼空気を燃料電池1からのオフガ
ス,オフ空気に切換えて定常運転に移行させる。
On the other hand, when the power generation system is stopped, the reaction gas supply to the fuel cell is stopped to stop the operation, and then the reaction tube 2c of the fuel reformer 2 and the fuel cell 1
A nitrogen gas is introduced into the hydrogen electrode 1a and the air electrode 1b, and the reaction gas remaining in the system is purged with the nitrogen gas to maintain the pressure. When the fuel cell is started, the fuel reformer and the fuel cell main body are boosted to the operating pressure by the nitrogen gas supplied from the nitrogen equipment 4 into the system, and the burner 2a of the reformer 2 is ignited (the burner has Natural gas and air supplied by the air compressor 3 are supplied.)
b is raised to a predetermined temperature, and then the reaction tube 2 of the reformer 2 is heated.
The fuel reforming is started by supplying natural gas and water vapor to c, and the nitrogen gas in the system is purged with newly generated reformed gas and air sent from the air compressor 3. After confirming the composition of the reformed gas generated in the fuel reformer 2, the reformed gas and the air as the reaction gas are supplied to the fuel cell 1 to start the power generation, and the reformer 2 burns the burner. The fuel and combustion air supplied to the fuel cell 1 are switched to off-gas and off-air from the fuel cell 1 to shift to steady operation.

【0006】[0006]

【発明が解決しようとする課題】ところで、前記した燃
料電池発電システムの窒素設備では液体窒素の補給管理
面で次記のような問題点がある。すなわち、一例として
出力5MWの燃料電池発電システムで、一週間に燃料電
池の起動,停止を2回行うものとして試算すると、一週
間分窒素補給無しに発電システムを運転するには、窒素
設備の液体窒素貯蔵タンクとして15000Nm3 以上
の容量をもった大形タンクを要するほか、少なくとも週
に一回ずつ定期的に液体窒素貯蔵タンクへ外部から搬入
した液体窒素を補給する必要があり、この窒素の補給管
理にかかる経費が発電システムのランニングコストを押
し上げる原因の一つになっている。
The nitrogen equipment of the fuel cell power generation system described above has the following problems in terms of liquid nitrogen replenishment management. That is, for example, assuming that a fuel cell power generation system with an output of 5 MW is to start and stop the fuel cell twice a week, the operation of the power generation system for one week without replenishing nitrogen requires a liquid in the nitrogen facility. A large tank with a capacity of 15,000 Nm 3 or more is required as a nitrogen storage tank. In addition, it is necessary to replenish the liquid nitrogen that has been externally carried into the liquid nitrogen storage tank at least once a week. Management costs are one of the factors that increase the running cost of the power generation system.

【0007】一方、窒素ガス製造設備として、空気を原
料に空気中の酸素成分を吸着して窒素成分を精製分離す
るPSA(Pressure Swing Adsorption)式窒素発生装置
などが知られている。この装置では、吸着塔内に酸素を
優先的に吸着する吸着触媒,例えばカーボンモレキュラ
シーブなどを充填し、ここに導入した空気から酸素を吸
着させ、残りの富窒素ガスを取り出すようにしたもので
ある。なお、吸着触媒に吸着された酸素は、再生工程で
吸着触媒より脱気して吸着塔より排出する。
On the other hand, there is known a PSA (Pressure Swing Adsorption) type nitrogen generator which purifies and separates a nitrogen component by adsorbing an oxygen component in the air using air as a raw material as a nitrogen gas production facility. In this apparatus, the adsorption tower is filled with an adsorption catalyst for preferentially adsorbing oxygen, for example, carbon molecular sieve, and oxygen is adsorbed from the air introduced therein, and the remaining nitrogen-rich gas is taken out. . The oxygen adsorbed on the adsorption catalyst is degassed from the adsorption catalyst in the regeneration step and discharged from the adsorption tower.

【0008】しかしながら、かかるPSA式窒素発生装
置を用いて燃料電池発電システムで消費する全窒素量を
賄うには、極めて大容量のPSA式窒素発生装置を設備
する必要があるほか、窒素を連続的に製造させるために
は予備機を含めて複数基の吸着塔を設備しておき、その
吸着塔の相互間で吸着,再生操作を交互に切換えたり、
吸着塔に異常が発生した場合には予備機に切り換える必
要があるなど、設備面およびその運転管理が厄介であ
る。
However, in order to cover the total amount of nitrogen consumed by the fuel cell power generation system using such a PSA-type nitrogen generator, it is necessary to provide a very large-capacity PSA-type nitrogen generator and to continuously supply nitrogen. In order to manufacture the same, a plurality of adsorption towers including a preliminary machine are provided, and the adsorption and regeneration operations are alternately switched between the adsorption towers.
When an abnormality occurs in the adsorption tower, it is necessary to switch to a standby unit, and the equipment and its operation management are troublesome.

【0009】さらに、別な問題として先述のように燃料
電池のオフ空気を燃料改質器のバーナの燃焼空気として
用いるものでは、燃料電池での酸素利用率によっても異
なるが、オフ空気の酸素濃度は新鮮空気と比べてほぼ半
減している。このために、酸素濃度の希薄なオフ空気を
燃焼空気として用いる改質器のバーナにはそれだけ高度
な燃焼技術が要求されることになる。
As another problem, in the case where the off-air of the fuel cell is used as the combustion air of the burner of the fuel reformer as described above, the oxygen concentration of the off-air varies depending on the oxygen utilization rate in the fuel cell. Is almost halved compared to fresh air. For this reason, a burner of a reformer that uses off-air having a low oxygen concentration as combustion air requires more advanced combustion technology.

【0010】本発明は上記の点にかんがみなされたもの
であり、その目的は前記課題を解決し、発電システムで
使用する窒素の一部を発電システム内で製造することに
より液体窒素貯蔵設備の容量,液体窒素の補給回数を減
らしてコストの低減化が図れるようにした燃料電池発電
システムの窒素設備を提供することにある。
The present invention has been made in view of the above points, and has as its object to solve the above-mentioned problems and to produce a part of the nitrogen used in the power generation system in the power generation system to thereby reduce the capacity of the liquid nitrogen storage facility. It is another object of the present invention to provide a nitrogen equipment for a fuel cell power generation system capable of reducing costs by reducing the number of times of liquid nitrogen replenishment.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、本発明の窒素設備は、液体窒素貯蔵タンクと、空気
を原料として窒素を精製分離する吸着式窒素発生装置と
からなり、前記液体窒素貯蔵タンクから前記昇圧,パー
ジ用窒素ガスを、前記吸着式窒素発生装置から前記シー
ル用窒素ガスを供給するものとする。さらに、吸着式窒
素発生装置をPSA装置とし、再生工程において吸着触
媒から脱気した酸素を助燃空気として燃料改質気のバー
ナに供給することが好ましい。
In order to achieve the above object, a nitrogen facility according to the present invention comprises a liquid nitrogen storage tank and an adsorption type nitrogen generator for purifying and separating nitrogen from air as a raw material. The nitrogen gas for pressurizing and purging is supplied from a nitrogen storage tank, and the nitrogen gas for sealing is supplied from the adsorption-type nitrogen generator. Further, it is preferable that the adsorption-type nitrogen generator is a PSA device, and oxygen degassed from the adsorption catalyst in the regeneration step is supplied as auxiliary combustion air to the burner of the fuel reformed air.

【0012】[0012]

【作用】上記の構成により、燃料電池発電システムで消
費する窒素使用量の一部(燃料電池の運転中にセルスタ
ックの圧力容器に供給するシール用窒素ガス)を吸着式
窒素発生装置で得た窒素で賄うようにしたので、その分
だけ液体窒素貯蔵タンクの容量,および該貯蔵タンクへ
の液体窒素補給回数を減らして窒素設備全体での液体窒
素の補給に要する経費の節減化が図れる。
According to the above configuration, a part of the amount of nitrogen consumed by the fuel cell power generation system (sealing nitrogen gas supplied to the pressure vessel of the cell stack during operation of the fuel cell) is obtained by the adsorption type nitrogen generator. Since nitrogen is used, the capacity of the liquid nitrogen storage tank and the number of times of liquid nitrogen replenishment to the storage tank can be reduced by that amount, and the cost required for replenishing liquid nitrogen in the entire nitrogen facility can be reduced.

【0013】また、吸着式窒素発生装置(PSA装置)
の再生工程中,あるいは異常発生時でも、液体窒素貯蔵
タンク側から窒素を継続して安定供給できるので、窒素
設備として高い信頼性が得られるととも、吸着式窒素発
生装置に予備機を備える必要もない。さらに、吸着式窒
素発生装置(PSA装置)の再生工程で吸着触媒より脱
気した酸素を燃料改質器のバーナの助燃空気として、該
バーナへ供給する燃焼空気に添加することにより、燃焼
空気の酸素濃度を高めてバーナの燃焼状態を改善(火炎
温度の上昇など)することができる。
An adsorption type nitrogen generator (PSA)
Nitrogen can be supplied continuously and stably from the liquid nitrogen storage tank even during the regeneration process or when an abnormality occurs. Therefore, high reliability can be obtained as a nitrogen facility, and it is necessary to equip the adsorption type nitrogen generator with a spare unit. Nor. Further, the oxygen degassed from the adsorption catalyst in the regeneration step of the adsorption-type nitrogen generator (PSA device) is added to the combustion air supplied to the burner of the fuel reformer as auxiliary combustion air for the burner of the fuel reformer, so that the combustion air is reduced. By increasing the oxygen concentration, the combustion state of the burner can be improved (such as an increase in the flame temperature).

【0014】[0014]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1は本発明による窒素設備の実施例を示すもの
であり、窒素設備は、液体窒素貯蔵タンク4a,窒素蒸
発器4b,サージタンク4c,圧力制御弁4dを含む窒
素ガス供給系(図2における窒素設備4と同様なもの)
とPSA式窒素発生装置12とに大別され、該窒素発生
装置12が燃料電池発電システムの系内における窒素供
給箇所へ通じる窒素ガス供給ライン5に並列に接続され
ている。なお、13は窒素ガスの逆流を防ぐ逆止弁であ
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of a nitrogen equipment according to the present invention. The nitrogen equipment is a nitrogen gas supply system including a liquid nitrogen storage tank 4a, a nitrogen evaporator 4b, a surge tank 4c, and a pressure control valve 4d (see FIG. 2). (Similar to nitrogen equipment 4)
And a PSA type nitrogen generator 12. The nitrogen generator 12 is connected in parallel to a nitrogen gas supply line 5 leading to a nitrogen supply point in the system of the fuel cell power generation system. Reference numeral 13 denotes a check valve for preventing backflow of nitrogen gas.

【0015】ここで、PSA式窒素発生装置12は、基
本的に酸素を優先的に吸着する吸着触媒(例えばカーボ
ンモレキュラシーブ)を充填した並列2基の吸着塔14
と、これに付属する上流側,下流側の切換弁15,16
と、排気弁17との組合わせからなり、空気圧縮機19
を介して原料空気を吸着塔14に送り込むようにしてい
る。
Here, the PSA type nitrogen generator 12 basically comprises two parallel adsorption towers 14 packed with an adsorption catalyst (for example, carbon molecular sieve) which preferentially adsorbs oxygen.
And upstream and downstream switching valves 15 and 16 attached thereto.
And an exhaust valve 17, and the air compressor 19
The raw material air is sent to the adsorption tower 14 via the.

【0016】そして、2基の吸着塔14について吸着,
再生操作(圧力スイング法)を交互に切り換えて運転制
御し、吸着工程で原料空気より分離した富窒素ガスを下
流側の切換弁16,逆止弁13を通じて窒素ガス供給ラ
イン5に供給するとともに、再生工程で吸着触媒より脱
気した酸素を排気弁17,酸素供給ライン18を通じて
燃料改質器のバーナへ供給する燃料電池のオフ空気(バ
ーナの燃焼空気)に添加し、バーナでの燃焼空気の酸素
濃度を高めるようにしている。なお、かかる酸素添加方
式を出力5MWの燃料電池発電システムに採用した場合
について試算した結果によれば、燃料改質器のバーナに
供給する燃焼空気の酸素濃度を約2%増加できることが
見込まれ、これにより燃料改質器でのバーナの火炎温度
を高めて燃焼状態の改善が期待できる。また、圧力スイ
ング法による吸着触媒の再生工程では吸着塔内の圧力を
低下させて触媒に吸着されている酸素を排気するように
しているが、この場合に吸着塔の運転圧力と燃料改質器
のバーナとの間の圧力差を利用することにより、吸着触
媒の再生操作と改質器バーナへの酸素送気を同時に行え
る。
Then, the two adsorption towers 14 adsorb,
The regeneration operation (pressure swing method) is alternately switched to control the operation, and the nitrogen-rich gas separated from the raw material air in the adsorption step is supplied to the nitrogen gas supply line 5 through the switching valve 16 and the check valve 13 on the downstream side. The oxygen degassed from the adsorption catalyst in the regeneration step is added to off-air (burner combustion air) of the fuel cell supplied to the burner of the fuel reformer through the exhaust valve 17 and the oxygen supply line 18, and the combustion air in the burner is added. I try to increase the oxygen concentration. According to the result of a trial calculation in a case where such an oxygen addition method is employed in a fuel cell power generation system with a 5 MW output, it is expected that the oxygen concentration of the combustion air supplied to the burner of the fuel reformer can be increased by about 2%. As a result, the flame temperature of the burner in the fuel reformer can be increased to improve the combustion state. Also, in the regeneration process of the adsorption catalyst by the pressure swing method, the pressure in the adsorption tower is reduced to exhaust oxygen adsorbed on the catalyst. In this case, the operating pressure of the adsorption tower and the fuel reformer By utilizing the pressure difference between the reformer and the burner, the regeneration operation of the adsorption catalyst and the supply of oxygen to the reformer burner can be performed at the same time.

【0017】なお、前記の吸着塔14を1基のみとして
その再生工程中には必要な窒素を液体窒素貯蔵タンク4
aから発電システムの窒素供給箇所へ中断なく供給する
ことが可能である。同様なことは、PSA式窒素発生装
置12に異常が発生して窒素が製造できない場合につい
ても言えるので、PSA式窒素発生装置の予備機を用意
する必要はない。また、原料空気から分離した富窒素ガ
スの純度をより一層高めるには、前記のPSA式窒素発
生装置12の後段側に、窒素ガスを優先的に吸着する吸
着触媒(例えばゼオライトモレキュラシーブ)を使用し
た別なPSA式窒素発生装置を組合わせて実施すること
も可能である。
It is to be noted that only one adsorption tower 14 is used, and necessary nitrogen is supplied to the liquid nitrogen storage tank 4 during the regeneration step.
a to the nitrogen supply point of the power generation system without interruption. The same can be said for the case where an abnormality occurs in the PSA type nitrogen generator 12 and nitrogen cannot be produced, so that it is not necessary to prepare a spare machine for the PSA type nitrogen generator. In order to further increase the purity of the nitrogen-rich gas separated from the raw air, an adsorption catalyst (for example, zeolite molecular sieve) that preferentially adsorbs nitrogen gas is used at the latter stage of the PSA type nitrogen generator 12. It is also possible to implement in combination with another PSA type nitrogen generator.

【0018】また、前記の液体窒素貯蔵タンク4aは、
主として燃料電池の起動,停止時に供給する昇圧,パー
ジ用窒素ガス量に見合った容量とし、PSA式窒素発生
装置12は、燃料電池の運転中にセルスタックの圧力容
器に供給するシール用窒素ガス量に見合った容量に設定
して容量分担させるのがよい。これにより、出力5MW
の燃料電池発電システムで、一週間に燃料電池の起動,
停止を2回行うものとして試算すると、運転期間一週間
分の液体窒素を蓄えておく液体窒素貯蔵タンク4aの容
量は約3000Nm3 (発電システムで使用すの窒素の
全量を液体窒素だけで賄う従来方式では、液体窒素貯蔵
タンク4aの容量は約15000Nm3である)で済
む。
The liquid nitrogen storage tank 4a is
The PSA type nitrogen generator 12 has a capacity commensurate with the amount of nitrogen gas for boosting and purging supplied mainly when the fuel cell is started and stopped, and the nitrogen gas for sealing supplied to the pressure vessel of the cell stack during operation of the fuel cell. It is better to set the capacity to match the capacity and share the capacity. Thereby, output 5MW
Fuel cell power generation system in one week,
Assuming that the shutdown is performed twice, the capacity of the liquid nitrogen storage tank 4a for storing liquid nitrogen for one week of the operation period is about 3000 Nm 3 (conventionally, the entire amount of nitrogen used in the power generation system is covered only by liquid nitrogen. In the system, the capacity of the liquid nitrogen storage tank 4a is about 15000 Nm 3 ).

【0019】[0019]

【発明の効果】以上のべたように、本発明によれば次記
の効果を奏する。 (1)燃料電池発電システムで使用する窒素のうち、昇
圧,パージ用窒素ガスを液体窒素貯蔵タンクから、シー
ル用窒素ガスを吸着式窒素発生装置から供給するように
したので、窒素設備の液体窒素貯蔵タンクを従来の1/
5にすることができ、同時に外部からタンクローリなど
で搬入する液体窒素の補給回数も大幅に減らして液体窒
素の補給管理にかかる必要経費の節減化が図れる。
As described above, according to the present invention, the following effects can be obtained. (1) Among the nitrogen used in the fuel cell power generation system, nitrogen gas for pressurizing and purging is supplied from a liquid nitrogen storage tank, and nitrogen gas for sealing is supplied from an adsorption-type nitrogen generator. The storage tank is 1 /
5, and at the same time, the number of times of replenishment of liquid nitrogen carried in from outside by a tank lorry or the like is greatly reduced, so that the necessary cost for liquid nitrogen replenishment management can be reduced.

【0020】(2)また、吸着式窒素発生装置の異常発
生時,あるいは圧力スイング法による吸着触媒の再生工
程中でも、液体窒素貯蔵タンクより中断なく燃料電池発
電システムの窒素使用箇所に窒素ガスを継続供給するこ
とができので、窒素設備全体での信頼性が向上する。 (3)また、吸着式窒素発生装置での再生工程で得られ
た酸素を燃料改質器のバーナに供給する燃焼空気(燃料
電池のオフ空気)に添加することにより、燃焼空気の酸
素濃度を高めて改質器バーナでの燃焼状態の改善が図れ
る。
(2) Further, even when an abnormality occurs in the adsorption type nitrogen generator or during the regeneration process of the adsorption catalyst by the pressure swing method, the nitrogen gas is continuously supplied from the liquid nitrogen storage tank to the nitrogen use point of the fuel cell power generation system without interruption. Since it can be supplied, the reliability of the entire nitrogen facility is improved. (3) The oxygen concentration of the combustion air is reduced by adding the oxygen obtained in the regeneration step in the adsorption type nitrogen generator to the combustion air (off air of the fuel cell) supplied to the burner of the fuel reformer. It is possible to improve the combustion state in the reformer burner by increasing the temperature.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例による窒素設備の系統図FIG. 1 is a system diagram of a nitrogen facility according to an embodiment of the present invention.

【図2】従来の窒素設備を装備した燃料電池発電システ
ムの系統図
FIG. 2 is a system diagram of a conventional fuel cell power generation system equipped with nitrogen equipment.

【符号の説明】[Explanation of symbols]

1 燃料電池 1d 圧力容器 2 燃料改質器 2a バーナ 4 窒素設備 4a 液体窒素貯蔵タンク 5 窒素ガス供給ライン 12 PSA式窒素発生装置 14 吸着塔 18 酸素供給ライン DESCRIPTION OF SYMBOLS 1 Fuel cell 1d Pressure vessel 2 Fuel reformer 2a Burner 4 Nitrogen equipment 4a Liquid nitrogen storage tank 5 Nitrogen gas supply line 12 PSA type nitrogen generator 14 Adsorption tower 18 Oxygen supply line

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新海 洋 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 宮川 裕 神戸市中央区脇浜町1丁目3番18号 株 式会社神戸製鋼所神戸本社内 (56)参考文献 特開 昭60−241661(JP,A) 特開 平2−155172(JP,A) 特開 平2−117071(JP,A) 特開 平3−276576(JP,A) 特開 平4−296459(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 8/04 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroshi Shinkai 1-1-1, Tanabe-Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Inside Fuji Electric Co., Ltd. (72) Inventor Hiroshi Miyagawa 1-3-18, Wakihama-cho, Chuo-ku, Kobe-shi. No. Kobe Steel, Ltd. Kobe Head Office (56) References JP-A-60-241661 (JP, A) JP-A-2-155172 (JP, A) JP-A-2-117707 (JP, A) JP-A JP-A-3-276576 (JP, A) JP-A-4-296459 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 8/04

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】燃料電池の起動,停止時には燃料電池発電
システム系内に昇圧,パージ用窒素ガスを供給し、燃料
電池の運転中には燃料電池セルスタックを収容した圧力
容器にシール用窒素ガスを供給する燃料電池発電システ
ムの窒素設備において、 前記窒素設備が、液体窒素貯蔵タンクと、空気を原料と
して窒素を精製分離する吸着式窒素発生装置とからな
り、 前記液体窒素貯蔵タンクから前記昇圧,パージ用窒素ガ
スを、前記吸着式窒素発生装置から前記シール用窒素ガ
スを供給することを特徴とする燃料電池発電システムの
窒素設備。
When a fuel cell is started and stopped, a nitrogen gas for boosting and purging is supplied to a fuel cell power generation system, and a nitrogen gas for sealing is supplied to a pressure vessel containing a fuel cell stack during operation of the fuel cell. In the nitrogen equipment of a fuel cell power generation system for supplying nitrogen, the nitrogen equipment comprises: a liquid nitrogen storage tank; and an adsorption type nitrogen generator for purifying and separating nitrogen using air as a raw material. The nitrogen equipment for a fuel cell power generation system, wherein the nitrogen gas for purge is supplied from the adsorption-type nitrogen generator to the nitrogen gas for sealing.
【請求項2】前記吸着式窒素発生装置がPSA装置であ
り、再生工程において吸着触媒から脱気した酸素を助燃
空気として燃料改質気のバーナに供給することを特徴と
した請求項1に記載の燃料電池発電システムの窒素設
備。
2. The method according to claim 1, wherein the adsorption-type nitrogen generator is a PSA apparatus, and supplies oxygen degassed from the adsorption catalyst in a regeneration step to a burner of fuel reformed air as auxiliary combustion air. Fuel cell power generation system nitrogen equipment.
JP32295293A 1993-12-22 1993-12-22 Nitrogen equipment for fuel cell power generation system Expired - Fee Related JP3343419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32295293A JP3343419B2 (en) 1993-12-22 1993-12-22 Nitrogen equipment for fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32295293A JP3343419B2 (en) 1993-12-22 1993-12-22 Nitrogen equipment for fuel cell power generation system

Publications (2)

Publication Number Publication Date
JPH07183040A JPH07183040A (en) 1995-07-21
JP3343419B2 true JP3343419B2 (en) 2002-11-11

Family

ID=18149480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32295293A Expired - Fee Related JP3343419B2 (en) 1993-12-22 1993-12-22 Nitrogen equipment for fuel cell power generation system

Country Status (1)

Country Link
JP (1) JP3343419B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101369876B1 (en) * 2009-07-23 2014-03-26 대우조선해양 주식회사 Apparatus and Method for Producing Electricity of Commercial Ship

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110207A (en) * 2000-10-03 2002-04-12 Nippon Mitsubishi Oil Corp Fuel cell system and operation method therefor
US11014039B2 (en) 2018-07-06 2021-05-25 Praxair Technology, Inc. Nitrogen service supply system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101369876B1 (en) * 2009-07-23 2014-03-26 대우조선해양 주식회사 Apparatus and Method for Producing Electricity of Commercial Ship

Also Published As

Publication number Publication date
JPH07183040A (en) 1995-07-21

Similar Documents

Publication Publication Date Title
KR100909525B1 (en) Systems and methods for regulating heating assembly operation through pressure swing adsorption purification control
JP4098167B2 (en) Fuel gas generation method and apparatus
US8445145B2 (en) Stack shutdown purge method
CA2322871A1 (en) Process gas purification and fuel cell system
US11999621B2 (en) Systems and methods for increasing the hydrogen permeance of hydrogen-separation membranes in situ
KR20090009261A (en) Hydrogen production system and method of controlling flow rate of offgas in the system
JP2009117054A (en) Power generation method and system by high temperature operating fuel cell
JP2001189165A (en) Fuel cell system, method of stopping and starting the same
CN114665132A (en) Proton exchange membrane fuel cell power generation system with pressure swing adsorption oxygen generation device
JP3343419B2 (en) Nitrogen equipment for fuel cell power generation system
JP3267997B2 (en) Fuel cell power plant
JP3349801B2 (en) Nitrogen circulator in fuel cell power generator
JPH11176462A (en) Peak cut type fuel cell system
JP3349802B2 (en) Method and apparatus for regenerating nitrogen gas for fuel cell sealing
JP2004352511A (en) Pure hydrogen production device
JPH01195671A (en) Fuel cell power generating system and operating method thereof
JP2005285626A (en) Fuel gas manufacturing power generation system
JP4259674B2 (en) Fuel cell power generator
JP2791951B2 (en) Fuel cell
JP4041085B2 (en) Fuel gas production system and method for stopping the same
JPH11339820A (en) Hybrid fuel cell system
JPS6313277A (en) In-system gas replacement of fuel cell
JP2004175966A (en) Method and apparatus for desulfurizing kerosene, fuel cell system and method for operating the same system
JPH02117071A (en) Fuel cell power generation system
JP2002355521A (en) Method of controlling flow rate of offgas in four tower- type pressure-swing adsorption equipment for purifying hydrogen

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees