JPS6069599A - Hydrogen treater for light-water reactor - Google Patents

Hydrogen treater for light-water reactor

Info

Publication number
JPS6069599A
JPS6069599A JP17698983A JP17698983A JPS6069599A JP S6069599 A JPS6069599 A JP S6069599A JP 17698983 A JP17698983 A JP 17698983A JP 17698983 A JP17698983 A JP 17698983A JP S6069599 A JPS6069599 A JP S6069599A
Authority
JP
Japan
Prior art keywords
hydrogen
exhaust gas
reactor
gas
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17698983A
Other languages
Japanese (ja)
Inventor
荒井 真次
山科 泰之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17698983A priority Critical patent/JPS6069599A/en
Publication of JPS6069599A publication Critical patent/JPS6069599A/en
Pending legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Physical Water Treatments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は軽水炉の新規な水素処理装置に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a novel hydrogen treatment device for a light water reactor.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

原子カプラントでは、その運転の継続に伴い気体、液体
、固体の各種放射性廃棄物が発生する。
Nuclear couplants generate various types of radioactive waste in the form of gas, liquid, and solid as they continue to operate.

そのため、廃棄物中の放射性物質を減衰若しくは稀釈し
てその濃度を低下させたり又は非放射性物質からの分I
JIL#)縮、減容などの処理を施して、これを安全な
状態に固定するための廃棄物処理系が設けられている。
Therefore, radioactive materials in waste can be attenuated or diluted to lower their concentration, or they can be separated from non-radioactive materials.
JIL#) A waste treatment system is provided to perform treatments such as shrinkage and volume reduction, and to fix the waste in a safe state.

廃棄物のうち気体廃棄物に関しては、排ガス処理系で放
射能レベルを許容限界値より充分に低く下げる処理を施
したのち大気中に排出されている。
Among the wastes, gaseous wastes are discharged into the atmosphere after being treated in an exhaust gas treatment system to reduce the radioactivity level sufficiently below the permissible limit.

例えば、沸騰水型原子炉(BWR)における気体廃棄物
の主要なものはタービン復水器の空気抽出器からの排ガ
スであるが、その排ガスの主成分は、−次冷却材である
水が炉心で中性子照射を受けて分解した結果生成する水
素と酸素並びに冷却材とその中に含まれていた溶存ガス
が中性子吸収反応を受けて生成した13N、 16N、
 +90.41A、などである。
For example, the main gaseous waste in a boiling water reactor (BWR) is the exhaust gas from the air extractor of the turbine condenser; 13N, 16N, and 13N, 16N, which are generated when the hydrogen and oxygen that are generated as a result of being decomposed by neutron irradiation, as well as the coolant and the dissolved gas contained therein, undergo a neutron absorption reaction.
+90.41A, etc.

この空気抽出器からの排ガス中の水素と酸素は再結合器
によって水に戻され、再び炉水供給系に送り込まれてプ
ラント内で再使用される。また、残りの排ガスは一定期
間の貯留、活性炭への吸着保持などの処理が施されて放
射能レベルヲ充分に減衰したのち大気中に排出される。
Hydrogen and oxygen in the exhaust gas from the air extractor are converted back into water by a recombiner and sent back to the reactor water supply system for reuse within the plant. The remaining exhaust gas is stored for a certain period of time, adsorbed onto activated carbon, etc., and is discharged into the atmosphere after its radioactivity level is sufficiently attenuated.

加圧水型原子炉(P%VB )では、気体廃棄物tj主
として窒素、水素、各種の放射性ガスから成っているが
、この排ガスは減衰タンクに貯蔵されて放射能レベルを
減衰せしめたのち、大気中に排出されるか、又は−次冷
却材貯蔵タンクのカバーガスとして再使用されている。
In a pressurized water reactor (P%VB), the gaseous waste tj mainly consists of nitrogen, hydrogen, and various radioactive gases, and this exhaust gas is stored in an attenuation tank to attenuate the radioactivity level and then released into the atmosphere. or reused as cover gas for secondary coolant storage tanks.

なお、これらの排ガス中の水素と酸素は必ずしも放射性
物質ではないが、全体の流れの中では放射性物質と同じ
挙動を示すので、排ガス処理技術上必ず考慮しなければ
ならない物質として廃棄物処理系で取扱われる。
Although hydrogen and oxygen in these exhaust gases are not necessarily radioactive substances, they behave in the same way as radioactive substances in the overall flow, so they are substances that must be taken into consideration in exhaust gas treatment technology in waste treatment systems. be handled.

一方、BWR,PWRなどの軽水炉では以下の理由によ
り炉水中への水素添加が一部で行なわれている。
On the other hand, in some light water reactors such as BWR and PWR, hydrogen is added to the reactor water for the following reasons.

まず、PWRでは、炉心で酸素と水素との再結合を容易
にし水の中性子照射分解を抑制して炉水中の酸素濃度を
低下させて炉を構成する炉心材料の腐蝕を抑制するため
に、給水中に水素が添加される。また、BWRにおいて
は、配管拐料の応力腐食割れ(5CC)の要因の1つで
ある炉水中の溶存酸素濃度を低減させることを目的とし
て、炉水中への水素添加が提案され、一部では実施され
ている。
First, in PWR, water supply is made to facilitate the recombination of oxygen and hydrogen in the reactor core, suppress neutron irradiation decomposition of water, reduce the oxygen concentration in reactor water, and suppress corrosion of the core materials that make up the reactor. Hydrogen is added inside. In addition, in BWR, hydrogen addition to reactor water has been proposed with the aim of reducing the dissolved oxygen concentration in reactor water, which is one of the causes of stress corrosion cracking (5CC) of pipework. It has been implemented.

このような炉水への水素添加は、排ガス処理系で処理す
べき水素量の増加、全排ガス量の増加をもたらし、した
がってそれに対応した排ガス処理設備が必要となる。
Such addition of hydrogen to reactor water results in an increase in the amount of hydrogen to be treated in the exhaust gas treatment system and an increase in the total amount of exhaust gas, and accordingly exhaust gas treatment equipment corresponding to this is required.

例えば、排ガス中の水素濃度が高まることから水素と酸
素の混合による爆発の危険度も高まるので、それを防止
するための処置が必要となる。従来、この爆発防止のた
めには、排ガス中への水蒸気添加(BWRの場合)、窒
素ガスの封入(PIvRの場合)が行なわれているが、
排ガス中の水素量の増加は、それに対応した多量の水蒸
気、窒素ガスを必要とすることになり、それに伴い全排
ガス量、すなわち排ガス処理量の増加を招き、廃棄物の
処理技術上不利となる。
For example, as the concentration of hydrogen in the exhaust gas increases, the risk of explosion due to the mixture of hydrogen and oxygen also increases, and measures must be taken to prevent this. Conventionally, to prevent this explosion, water vapor is added to the exhaust gas (in the case of BWR) and nitrogen gas is sealed (in the case of PIvR).
An increase in the amount of hydrogen in exhaust gas requires a correspondingly large amount of water vapor and nitrogen gas, which leads to an increase in the total amount of exhaust gas, that is, the amount of exhaust gas treated, which is disadvantageous in terms of waste treatment technology. .

他方、最近では順境保全の点から、原子カプラントで発
生した気体廃棄物を極力プラント外に放出しないことが
社会的に強く要請されている。すなわち、許容量をはる
かに下まわる極微量の放射能性ガスを含む気体であって
も、極力これをプラント内に貯蔵することが要求されて
いる。このような要請からすると、プラント内での貯蔵
能力には限界があるということを考慮すれば、この水素
添加に伴う全排ガス量の増加は好ましくない事態である
On the other hand, in recent years, there has been a strong social demand to prevent the gaseous waste generated in nuclear couplants from being released outside the plant as much as possible from the viewpoint of preserving the environment. In other words, even if the gas contains a very small amount of radioactive gas far below the allowable amount, it is required to store it within the plant as much as possible. Considering these demands and considering that there is a limit to the storage capacity within the plant, an increase in the total amount of exhaust gas due to hydrogen addition is an undesirable situation.

このように、軽水炉の廃棄物処理系における水素の処理
は、爆発防止策、全排ガス量の低減策、排ガスの外部放
出抑制策上からして重要な問題となっている。
As described above, the treatment of hydrogen in the waste treatment system of a light water reactor has become an important issue from the viewpoint of measures to prevent explosions, reduce the total amount of exhaust gas, and suppress the release of exhaust gas to the outside.

また、上記した炉水への添加水素は、従来、水素ガスボ
ンベ若しくは水素タンクから供給され、水素ガスの消費
に応じて新たに外部からボンベ等ff:lim時補充し
ている。しかしながら、この供給方法は、ボンベ等の取
扱い上必ずしも安全性の高い方法ではなく、また、ボン
ベ等が大きな空間を占有せざるを得ないので経済的に有
利であるとはいいがたい。
Further, the above-mentioned hydrogen added to the reactor water is conventionally supplied from a hydrogen gas cylinder or a hydrogen tank, and a new cylinder or the like is replenished from outside at ff:lim depending on the consumption of hydrogen gas. However, this supply method is not necessarily a highly safe method for handling cylinders, etc., and cannot be said to be economically advantageous since the cylinders, etc. must occupy a large space.

〔発明の目的〕[Purpose of the invention]

本発明は、軽水炉の気体廃棄物処理系における上記した
水素処理に関する問題、すなわち、排ガス中の水素の除
去、排ガス中の水素濃度の調整、残余水素の回収を行な
って、爆発防止、全排ガス量の低減、プラント外への放
出抑制を可能とし、あわせて回収した水素を炉水中に供
給して再利用すること全nJ能にし之軽水炉の水素処理
装置の提供を目的とする。
The present invention solves the above-mentioned problems related to hydrogen treatment in the gaseous waste treatment system of a light water reactor, that is, removes hydrogen from exhaust gas, adjusts the hydrogen concentration in exhaust gas, and recovers residual hydrogen, thereby preventing explosions and reducing the total amount of exhaust gas. The purpose of the present invention is to provide a hydrogen treatment device for a light water reactor that has a full nJ capacity, which enables reduction of hydrogen and suppression of release outside the plant, and at the same time, supplies recovered hydrogen to reactor water and reuses it.

〔発明の概要〕[Summary of the invention]

本発明の軽水炉の水素処理装置は、廃棄物処理系の経路
又は/及び炉水系の経路に、水素吸蔵合金を内蔵した水
素吸収・供給機構が配設されていることを特徴とする。
The hydrogen treatment device for a light water reactor of the present invention is characterized in that a hydrogen absorption/supply mechanism containing a hydrogen storage alloy is disposed in the waste treatment system path and/or the reactor water system path.

本発明の水素処理装置は、水素吸蔵合金を内蔵した水素
吸収・供給機(1りを構造上の中心的要素とする。
The hydrogen treatment apparatus of the present invention has a hydrogen absorption/supply machine (1) containing a hydrogen storage alloy as a central structural element.

(式中、Mは金属、MJ(XFi金属水素化1勿、ΔH
は反応のエンタルピー変化を表わす) に基いて水素と容易に金属水素化物を生成し、逆に所定
温度に加熱したり又は水素圧が上記平衡圧よりも低い環
境中に置くと、吸蔵していた水素を放出するという性質
を備えた金属又は合金である。
(In the formula, M is metal, MJ (XFi metal hydrogenation 1, ΔH
(represents the enthalpy change of the reaction), it easily forms a metal hydride with hydrogen, and conversely, when heated to a certain temperature or placed in an environment where the hydrogen pressure is lower than the equilibrium pressure above, it can be occluded. A metal or alloy that has the property of releasing hydrogen.

例えば、TiFe系合金、Mgi N i系合金、La
NIB系合金が知られている。
For example, TiFe-based alloy, Mgi Ni-based alloy, La
NIB alloys are known.

このような水素吸蔵合金に水素を吸蔵させたとき、該合
金に吸蔵される水素は、水素ガスの状態でボンベ等に貯
蔵する場合に比べて約1000倍の水素密度を有してい
るため、小容量の合金であっても大量の水素を吸蔵する
ことができる。また、水素吸蔵量が飽和している合金全
回収すれば、水素の回収が可能となる。このように、ガ
ス状では危険度の高い水素を水素化物とすることにより
、安全で取扱いの容易な状態で貯蔵することが可能にな
る。
When hydrogen is stored in such a hydrogen storage alloy, the hydrogen stored in the alloy has a hydrogen density approximately 1000 times higher than that when stored in a hydrogen gas state in a cylinder, etc. Even small-capacity alloys can store large amounts of hydrogen. Further, hydrogen can be recovered by recovering all alloys whose hydrogen storage capacity is saturated. In this way, by converting hydrogen, which is highly dangerous in gaseous form, into a hydride, it becomes possible to store it in a safe and easily handled state.

本発明で用いる水素吸収・供給機構の本体は次のような
構造になっている。
The main body of the hydrogen absorption/supply mechanism used in the present invention has the following structure.

本体は、上記した水素吸蔵合金の粉若しくは多孔成形体
を格納する容器であり、この容器には排ガスを導入する
ための配管工と水素吸蔵後の残留ガス若しくけ残留ガス
と水素との混合ガスを導出するための配管2が付設され
ている。
The main body is a container that stores the above-mentioned powder or porous molded body of the hydrogen storage alloy, and this container has a plumber for introducing the exhaust gas and a pipe for the residual gas after hydrogen storage or a mechanism for mixing the residual gas and hydrogen. A pipe 2 is attached to lead out the gas.

この本体を、廃棄物処理系の経路に直列に配設すれば、
この廃棄物処理系を通流してきた排ガスは配管lを通っ
て本体に導入され、そこで水素ガスが吸蔵されて、配管
2からは水素が除去された又は後述する方法で水素濃度
が調節された残留ガスが導出されることになる。すなわ
ち、排ガス中の水素の全部又は一部が除去されて全排ガ
ス量が減少することになる。このとき、本体の周囲に温
度制御システムを(=J設し、合金の温度全所望の温度
に制御して水素吸蔵反応と水素放出反応・の平衡を制御
すれば、配管2から導出される排ガス中の水素濃度をあ
る一定の値に保持することが可能となる。したがって、
この温度制御システムと水素濃度の監視モニタを連動せ
しめれば、導出される排ガスの水素濃度を一定に制御す
ることができる。
If this main body is placed in series in the route of the waste treatment system,
The exhaust gas flowing through this waste treatment system was introduced into the main body through pipe 1, where hydrogen gas was occluded, and hydrogen was removed from pipe 2, or the hydrogen concentration was adjusted by the method described below. Residual gas will be led out. That is, all or part of the hydrogen in the exhaust gas is removed, and the total amount of exhaust gas is reduced. At this time, if a temperature control system (=J is installed around the main body and the temperature of the alloy is controlled to the desired temperature to control the balance between the hydrogen absorption reaction and the hydrogen release reaction), the exhaust gas drawn out from the pipe 2 It becomes possible to maintain the hydrogen concentration inside at a certain value.Therefore,
By linking this temperature control system with a hydrogen concentration monitor, it is possible to control the hydrogen concentration of the discharged exhaust gas to be constant.

かくして、爆発防止のために行なわれる水蒸気添加(B
WRの場合)又は窒素ガス封入(pwrtの場合)によ
る排ガス中の水素濃度の低減処理は不必要になる。
Thus, the addition of water vapor (B
In the case of WR) or nitrogen gas injection (in the case of PWRT) to reduce the hydrogen concentration in the exhaust gas becomes unnecessary.

例えば、BWftの場合、上記した水素吸収機Nltを
空気抽出器と予熱器との中間の経路に設置すればよい。
For example, in the case of BWft, the above-mentioned hydrogen absorber Nlt may be installed in the intermediate path between the air extractor and the preheater.

このように配設すれば、炉心で発生した気体は蒸気とと
もに直接タービンを通って復水器に導かれ、空気抽出器
を経て本発明にがかる機構に導入され、そこで再結合器
における再結合処理に好都合な水素濃度の排ガスにする
ことができる。
With this arrangement, the gases generated in the reactor core are led together with steam directly through the turbine to the condenser, and then introduced into the mechanism according to the present invention via the air extractor, where they undergo recombination processing in the recombiner. The exhaust gas can be made to have a hydrogen concentration that is convenient for this purpose.

また、PWHの場合、−次冷却材を収容するための開放
水面のあるタンク、例えば、体積制御タンク又はホール
ドアツプタンクの上部の気相部に上記水素吸収機構を配
設することができる。気相中の水素を水素吸蔵合金に吸
収して除去することにより、これらタンクから排出され
る排ガス喰ヲ低減することができる。しかも、従来のよ
うな爆発防止のための窒素ガス封入は不必要となるので
全排ガス量は低減する。このようにして、極めて少量に
なった排ガスをガス崩壊タンクに送入したのち、小容積
の貯留タンクに貯蔵することができる。
Furthermore, in the case of a PWH, the hydrogen absorption mechanism can be disposed in the upper gas phase of a tank with an open water surface for accommodating a secondary coolant, such as a volume control tank or a hold-up tank. By absorbing hydrogen in the gas phase into the hydrogen storage alloy and removing it, the amount of exhaust gas discharged from these tanks can be reduced. Moreover, the total amount of exhaust gas is reduced because the conventional filling of nitrogen gas to prevent explosions is no longer necessary. In this way, a very small amount of exhaust gas can be fed into the gas collapse tank and then stored in a small-volume storage tank.

次に、既に排ガス中の水素を吸蔵した本体機構を、炉心
を循環する冷却材の経路である炉水系に配設すれば、炉
水への水素供給機構として機能せしめることができる。
Next, if the main body mechanism that has already stored hydrogen in the exhaust gas is placed in the reactor water system, which is the path for the coolant circulating in the reactor core, it can function as a hydrogen supply mechanism to the reactor water.

このとき、本体機構には温度制御システムを付設し、合
金温度を所定の温度に制御すれば、その温度に相当する
平衡圧の水素が合金から放出されて炉水に供給されるこ
とになる。すなわち、炉水への水素供給の流暇は合金温
度を管理することによって行なうことができる。合金の
水素放出特性の温度依存性Vよ、合金の種類によって異
なるので、加熱温度を一義的に決めることはできない。
At this time, if a temperature control system is attached to the main body mechanism and the alloy temperature is controlled to a predetermined temperature, hydrogen at an equilibrium pressure corresponding to that temperature will be released from the alloy and supplied to the reactor water. That is, the flow time for hydrogen supply to reactor water can be controlled by controlling the alloy temperature. Since the temperature dependence V of hydrogen release characteristics of an alloy varies depending on the type of alloy, the heating temperature cannot be determined unambiguously.

例えば、TiFe系合金を用いたときは100℃以上に
加熱すればよく、Mg5Ni展瞳の場合は300℃以上
の加熱が必要である。
For example, when using a TiFe-based alloy, it is sufficient to heat it to 100° C. or higher, and in the case of Mg5Ni dilated pupil, heating to 300° C. or higher is required.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように、本発明装置を適用すれば
、気体廃棄物処理系においては排ガス中の水素を除去又
は所定温度に制御することができるので酸素との混合に
よる爆発の虞れを解消することができ、また、水蒸気添
加、窒素ガス封入が不必要となるので、全排ガス量の低
減を可能にすると同時に、大気中に放出する排ガス量を
抑制できる。また、炉水系においては、上記廃棄物処理
系で回収した水素全炉水への添加水素としてそのまま再
利用することができる。すなわち、従来は廃棄物であっ
た水素を外部に放出することなくプラント内で有効に再
利用できるので、資源、環境保全の点からいって有用で
ある。そして、この装置は本来的にコンパクトであるの
で従来のように膨大な空間占有の必要がなく、シかも配
役は各経路に直列挿入するだけで可能なので工業的にも
その利益は犬である。
As is clear from the above explanation, if the device of the present invention is applied, hydrogen in the exhaust gas can be removed or controlled to a predetermined temperature in a gaseous waste treatment system, thereby eliminating the risk of explosion due to mixing with oxygen. In addition, since water vapor addition and nitrogen gas injection become unnecessary, the total amount of exhaust gas can be reduced, and at the same time, the amount of exhaust gas released into the atmosphere can be suppressed. In addition, in the reactor water system, the hydrogen recovered in the waste treatment system can be directly reused as added hydrogen to the reactor water. In other words, hydrogen, which has conventionally been a waste, can be effectively reused within the plant without being released to the outside, which is useful from the standpoint of resource and environmental conservation. Since this device is inherently compact, there is no need to occupy a huge amount of space as in conventional devices, and the device can be installed simply by inserting the device in series in each path, so its benefits from an industrial perspective are significant.

Claims (1)

【特許請求の範囲】 1、廃棄物処理系の経路又は/及び炉水系の経路に、水
素吸蔵合金を内蔵した水素吸収・供給機構が配設されて
いることt特徴とする軽水炉の水素処理装置。 2、該水素吸収・供給機構が、水素吸蔵合金を内蔵する
本体容器と、該容器に付設されるガス導入配管及びガス
導出配管と、温度制御システム又は/及び水素圧力制御
システムとを備えている特許請求の範囲第1項記載の軽
水炉の水素処理装置。
[Claims] 1. A hydrogen treatment system for a light water reactor, characterized in that a hydrogen absorption/supply mechanism containing a hydrogen storage alloy is disposed in the waste treatment system path and/or the reactor water system path. . 2. The hydrogen absorption/supply mechanism includes a main body container containing a hydrogen storage alloy, a gas introduction pipe and a gas outlet pipe attached to the container, and a temperature control system and/or a hydrogen pressure control system. A hydrogen treatment device for a light water reactor according to claim 1.
JP17698983A 1983-09-27 1983-09-27 Hydrogen treater for light-water reactor Pending JPS6069599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17698983A JPS6069599A (en) 1983-09-27 1983-09-27 Hydrogen treater for light-water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17698983A JPS6069599A (en) 1983-09-27 1983-09-27 Hydrogen treater for light-water reactor

Publications (1)

Publication Number Publication Date
JPS6069599A true JPS6069599A (en) 1985-04-20

Family

ID=16023236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17698983A Pending JPS6069599A (en) 1983-09-27 1983-09-27 Hydrogen treater for light-water reactor

Country Status (1)

Country Link
JP (1) JPS6069599A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62113098A (en) * 1985-11-13 1987-05-23 株式会社東芝 Gas waste processor
JPS63274900A (en) * 1987-05-01 1988-11-11 Power Reactor & Nuclear Fuel Dev Corp Device for treating exhaust gas of nuclear reactor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62113098A (en) * 1985-11-13 1987-05-23 株式会社東芝 Gas waste processor
JPH0569200B2 (en) * 1985-11-13 1993-09-30 Tokyo Shibaura Electric Co
JPS63274900A (en) * 1987-05-01 1988-11-11 Power Reactor & Nuclear Fuel Dev Corp Device for treating exhaust gas of nuclear reactor

Similar Documents

Publication Publication Date Title
US3093564A (en) Gas handling systems for radioactive gases
Kolev Multiphase flow dynamics 5: nuclear thermal hydraulics
Neeb The radiochemistry of nuclear power plants with light water reactors
US3080307A (en) Radioactive fluid handling system
KR910008360B1 (en) Method of vacuum degassing and refilling a reactor coolant system
US2811487A (en) Neutron reactor having a xe shield
JPH032277B2 (en)
US2975116A (en) Neutronic reactor
JPS6069599A (en) Hydrogen treater for light-water reactor
US3054738A (en) Process of nuclear fission
US3113913A (en) Sealing and purging system for pressurized water reactor
US3284305A (en) Process of producing energy by nuclear fission
US2989454A (en) Nuclear reactor
US2873243A (en) Means for shielding and cooling reactors
Jones Tritium issues in commercial pressurized water reactors
JP6760900B2 (en) Boiling water reactor
JPS6324479Y2 (en)
US2991236A (en) Separating liquid moderator from a slurry type reactor
US2877171A (en) Means for shielding reactors
JP2907741B2 (en) Power reactor with hydrogen production mechanism
GB915773A (en) A graphite moderated heterogeneous nuclear reactor
US5307391A (en) Method for treatment of primary coolant medium of a pressurized water nuclear reactor
Breden BOILING WATER REACTOR TECHNOLOGY STATUS OF THE ART REPORT. VOLUME II. WATER CHEMISTRY AND CORROSION
JPH1062594A (en) Device for removing iodine
Muller Water Treatment at Indian Point Nuclear Power Plant