JPS62150198A - Hydrogen-gas injection-recovery device for boiling water type reactor - Google Patents

Hydrogen-gas injection-recovery device for boiling water type reactor

Info

Publication number
JPS62150198A
JPS62150198A JP60295069A JP29506985A JPS62150198A JP S62150198 A JPS62150198 A JP S62150198A JP 60295069 A JP60295069 A JP 60295069A JP 29506985 A JP29506985 A JP 29506985A JP S62150198 A JPS62150198 A JP S62150198A
Authority
JP
Japan
Prior art keywords
hydrogen gas
hydrogen
reactor
gas injection
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60295069A
Other languages
Japanese (ja)
Inventor
阪部 喜代三
石倉 武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP60295069A priority Critical patent/JPS62150198A/en
Publication of JPS62150198A publication Critical patent/JPS62150198A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Gas Separation By Absorption (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は沸騰水型原子炉において、炉水の水質改善を図
るべく原子炉内に水素を注入するとともに、注入した水
素の余剰分を分離・回収して再使用に供せしめる沸騰水
型原子炉の水素ガス注入・回収装置に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention is a boiling water reactor, in which hydrogen is injected into the reactor in order to improve the water quality of the reactor water, and the surplus of the injected hydrogen is separated and This invention relates to hydrogen gas injection and recovery equipment for boiling water reactors that is recovered and reused.

[発明の技術的背景とそ゛の問題点] 沸騰水型原子炉(1J、下BWRという)では、原子炉
圧力容器内の冷却材は炉心を上方に流通する際炉心の核
反応熱により昇温し、水と蒸気との二相流状態となる。
[Technical background of the invention and its problems] In a boiling water reactor (1J, referred to as BWR), the temperature of the coolant in the reactor pressure vessel rises due to the heat of nuclear reaction in the reactor core as it flows upward into the reactor core. This results in a two-phase flow state of water and steam.

この二相流状態となった冷却材は炉心の上方に設置され
た気水力M器内に導入されて気水分離される。分離され
た蒸気は原子炉圧力容器に接続された主蒸気配管を介し
てタービン系に移送されて発電に供される。
The coolant in this two-phase flow state is introduced into an air-hydraulic M unit installed above the reactor core, where it is separated into water and air. The separated steam is transferred to the turbine system via the main steam pipe connected to the reactor pressure vessel and used for power generation.

このように炉心部では蒸気が発生するがこの蒸気以外に
も酸素ガス(02)J>よび水素ガス(H2)が発生す
る。このうち酸素ガスは炉内機器に好ましくない作用を
与えるものであり、そこで従来炉水に水素ガスを注入し
て炉水の水質改善が図られている。
As described above, steam is generated in the reactor core, but in addition to this steam, oxygen gas (02)J> and hydrogen gas (H2) are also generated. Of these, oxygen gas has an undesirable effect on equipment in the reactor, so conventionally hydrogen gas has been injected into the reactor water to improve the water quality of the reactor water.

その際水素ガス注入等によるガス体は最終的に廃ガスと
して大気中に放出されることとなるが、放出過程での水
素ガスによる爆発防止のために以下のような操作がとら
れている。すなわち廃ガスを蒸気タービンの直後に設置
した気体廃棄物処理系に導入して、触媒反応により(H
20)の形に再結合させてから排出するものである。こ
の場合系内において水素と酸素とは化学的に当量比にな
ければならないが、前述したように水質改善のために水
素ガスを注入する場合には、過剰の水素ガスが存在する
ために、化学的に当量比にするためにはこれに見合う酸
素ガスを系外から注入する必要がある。このように従来
は水質改善のために大量の水素ガスを注入しなければな
らず、かつその後の気体廃棄物処理のために大量の酸素
ガスを注入しなければならず、水素ガスおび酸素ガスの
注入設備はもとより、注入層が大量であるためにコスト
が上昇してしまうという問題があり、その改善が要求さ
れていた。
At this time, the gas body resulting from injection of hydrogen gas, etc. will eventually be released into the atmosphere as waste gas, but the following operations are taken to prevent explosions due to hydrogen gas during the release process. In other words, waste gas is introduced into a gaseous waste treatment system installed immediately after the steam turbine, and through a catalytic reaction (H
20) and then discharged. In this case, hydrogen and oxygen must be in a chemically equivalent ratio in the system, but as mentioned above, when hydrogen gas is injected to improve water quality, the presence of excess hydrogen gas In order to achieve a virtually equivalent ratio, it is necessary to inject an appropriate amount of oxygen gas from outside the system. Conventionally, large amounts of hydrogen gas had to be injected to improve water quality, and large amounts of oxygen gas had to be injected for subsequent gaseous waste treatment. There is a problem in that not only the injection equipment but also the injection layer is large, which increases the cost, and an improvement has been required.

[発明の目的コ 本発明は以上の点に基づいてなされたものでその目的は
、廃ガス中への酸素ガスの注入を不要とし、かつ水素ガ
スの注入量を低減させて、設備費および運転費の低減を
図ることを可能とする沸騰水型原子炉の水素ガス注入・
回収装置を提供することにある。
[Purpose of the Invention] The present invention has been made based on the above points, and its purpose is to eliminate the need to inject oxygen gas into waste gas, reduce the amount of hydrogen gas injected, and reduce equipment costs and operation costs. Hydrogen gas injection and
The objective is to provide a collection device.

[発明の概要] すなわち本発明による沸騰水型原子炉の水素ガス注入・
回収装置は、冷却材および炉心を収容する原子炉圧力容
器と、この原子炉圧力容器内で発生した蒸気を蒸気ター
ビンに供給して発電に供せしめる蒸気系と、蒸気タービ
ンを駆動させた蒸気を導入して凝縮・液化して復水とす
る復水器と、上記復水を浄化して原子炉圧力容器内に戻
す給水系とを備えた沸騰水型原子炉において、上記給水
系に水素ガスを注入する水素ガス注入装置と、前記復水
器からの廃ガスを導入して該廃ガスから水素ガスを連続
的に分離・回収して上記水素ガス注入装置に供給する水
素ガス分離・回収装置とを具備したことを特徴とするも
のである。
[Summary of the invention] That is, the hydrogen gas injection and
The recovery device consists of a reactor pressure vessel that houses coolant and the reactor core, a steam system that supplies the steam generated in the reactor pressure vessel to a steam turbine for power generation, and a steam system that supplies the steam that drives the steam turbine to the reactor pressure vessel. In a boiling water reactor equipped with a condenser that is introduced into the water supply system to condense and liquefy it into condensate, and a water supply system that purifies the condensate and returns it to the reactor pressure vessel, hydrogen gas is introduced into the water supply system. and a hydrogen gas separation/recovery device that introduces waste gas from the condenser, continuously separates and recovers hydrogen gas from the waste gas, and supplies the hydrogen gas to the hydrogen gas injection device. It is characterized by having the following.

つまり炉水の水質改善を図るために水素ガス注入装置に
より給水系に水素ガスを注入するとともに、復水器から
の廃ガス中から余剰の水素ガスを分離・回収して、水素
ガス注入装置に供給して再利用するものである。
In other words, in order to improve the water quality of the reactor water, hydrogen gas is injected into the water supply system using a hydrogen gas injection device, and excess hydrogen gas is separated and recovered from the waste gas from the condenser and then fed to the hydrogen gas injection device. It is something that is supplied and reused.

[発明の実施例] 以下第1図乃至第3図を参照して本発明の一実施例を説
明する。第1図はBWRの概略構成を示すとともに、水
素ガス注入・回収装置の構成を示す図であり、図中符@
1は原子炉圧力容器である。
[Embodiment of the Invention] An embodiment of the present invention will be described below with reference to FIGS. 1 to 3. Figure 1 shows the schematic configuration of the BWR and the configuration of the hydrogen gas injection/recovery device.
1 is a reactor pressure vessel.

原子炉圧力容器1内には冷却材2および炉心3が収容さ
れている。この炉心3は図示しない複数の燃料集合体お
よび制御棒等から構成されている。
A coolant 2 and a reactor core 3 are housed within a reactor pressure vessel 1 . This core 3 is composed of a plurality of fuel assemblies, control rods, etc. (not shown).

尚図中符号4は上記制御棒の炉心内への挿入を制御する
制御棒駆動機構である。上記冷却材2は炉心3を上昇す
る際炉心3の核反応熱により昇温し水と蒸気の二相流状
態となる。二相流状態となった冷却材2は炉心3の上方
に設置された気水分離器内に導入されて気水分離される
。分離された内蒸気は気水分離器の上方に設置された蒸
気乾燥器内に導入されて乾燥されて乾燥蒸気どなる。こ
の乾燥蒸気は原子炉圧力容器1に接続された主蒸気配管
5を介して蒸気タービン6に移送される。この蒸気ター
ビン6にて仕事をした蒸気は復水器7内に導入される。
Reference numeral 4 in the figure is a control rod drive mechanism that controls the insertion of the control rods into the reactor core. When the coolant 2 moves up the reactor core 3, its temperature increases due to the heat of nuclear reaction in the reactor core 3, and the coolant 2 enters a two-phase flow state of water and steam. The coolant 2 in a two-phase flow state is introduced into a steam-water separator installed above the reactor core 3 and separated into steam and water. The separated internal steam is introduced into a steam dryer installed above the steam separator and dried to produce dry steam. This dry steam is transferred to a steam turbine 6 via a main steam pipe 5 connected to the reactor pressure vessel 1. The steam that has worked in the steam turbine 6 is introduced into the condenser 7.

復水器7内に導入された蒸気はそこで擬縮・液化されて
て復水となる。復水は復水浄化器8内に導入されて浄化
され、給水ポンプ9および給水配管10を介して原子炉
圧力容器1内に供給される。一方前記気水分離器にて分
離された水はダウンカマ部に流下して上記給水と混合し
た状態で炉心3の下方に供給される。以下同様のサイク
ルをくりかえす。
The steam introduced into the condenser 7 is pseudo-condensed and liquefied there to become condensate. The condensate is introduced into the condensate purifier 8, purified, and supplied into the reactor pressure vessel 1 via the water supply pump 9 and the water supply piping 10. On the other hand, the water separated by the steam separator flows down to the downcomer section and is supplied below the reactor core 3 in a state where it is mixed with the feed water. The same cycle is repeated thereafter.

図中符号11は再循環系を示す。この再循環系11は炉
心3の外周であって原子゛炉圧力容器1内に周方向等間
隔に複数設置されたジェットポンプ12と、原子炉圧力
容器1の外に設置された再循環ポンプ13と、これら両
者間に配設された再循環系配管14とから構成されてい
る。この再循環系11により冷却材2を炉心3に強制循
環させる。
Reference numeral 11 in the figure indicates a recirculation system. This recirculation system 11 is located on the outer periphery of the reactor core 3, and includes a plurality of jet pumps 12 installed at equal intervals in the circumferential direction inside the reactor pressure vessel 1, and a recirculation pump 13 installed outside the reactor pressure vessel 1. and a recirculation system piping 14 disposed between the two. This recirculation system 11 forces the coolant 2 to circulate through the core 3 .

かかる構成をなすBWRには水素ガス注入・回収装置が
設置されている。以下この水素ガス注入・回収装置の構
成について説明する。水素ガス注入・回収装置は、水素
ガス注入装置Aと、水素ガス分離・回収装置Bとから構
成されている。説明の都合上水素ガス分離・回収装置B
から説明する。
A BWR having such a configuration is equipped with a hydrogen gas injection/recovery device. The configuration of this hydrogen gas injection/recovery device will be explained below. The hydrogen gas injection/recovery device is composed of a hydrogen gas injection device A and a hydrogen gas separation/recovery device B. For convenience of explanation, hydrogen gas separation/recovery equipment B
I will explain from.

前記復水器7には廃ガス処理配管15が接続されており
、復水器7内にて分離されたガス体は復水器7内のイン
リーク空気とともに廃ガスとして上記廃ガス処理配管1
5を介してガス抽出器16内に導入される。廃ガス処理
配管15の上記ガス抽出器16の後流側には、再結合器
17、凝縮器18、ガス圧縮器19、水素ガス分離塔装
置20が順次介挿されている。上記水素ガス分離塔装置
20は、2つの水素ガス分離塔21Aおよび21Bの並
列結合から構成されている。また水素ガス分離塔装置2
0の入口側および出口側には切換弁22A、22B、お
よび三方切換弁23A、23Bが夫々介挿されている。
A waste gas processing pipe 15 is connected to the condenser 7, and the gas separated in the condenser 7 is passed along with the in-leak air in the condenser 7 as waste gas to the waste gas processing pipe 1.
5 into the gas extractor 16. A recombiner 17, a condenser 18, a gas compressor 19, and a hydrogen gas separation column device 20 are inserted in this order on the downstream side of the gas extractor 16 in the waste gas treatment pipe 15. The hydrogen gas separation column device 20 is composed of two hydrogen gas separation columns 21A and 21B connected in parallel. In addition, hydrogen gas separation tower device 2
Switching valves 22A, 22B and three-way switching valves 23A, 23B are inserted on the inlet side and outlet side of 0, respectively.

上記水素ガス分離塔装置ユで分離された水素ガスは、水
素ガス注入装置Aの水素ガス注入配管24を介して水素
ガス圧n機25内に導入される。この水素ガス圧縮機2
5で圧縮された水素ガスは蓄圧器26に導入される。一
方水素ガス分離塔装ff120で分離された水素ガス以
外の廃ガスは、スタック27を介して大気中に放出され
る。
The hydrogen gas separated by the hydrogen gas separation column device A is introduced into the hydrogen gas pressure unit 25 via the hydrogen gas injection pipe 24 of the hydrogen gas injection device A. This hydrogen gas compressor 2
The hydrogen gas compressed in step 5 is introduced into a pressure accumulator 26. On the other hand, waste gas other than hydrogen gas separated by the hydrogen gas separation column ff120 is discharged into the atmosphere via the stack 27.

上記水素ガス注入配管24には補助水素ガス貯蔵器28
が流量制御弁29を介して分岐接続されている。この補
助水素ガス貯蔵器28は、原子炉運転開始初期時に使用
するとともに、系の水素ガスが不足したような場合にこ
れを補充する場合に使用するものである。尚図中符号3
1は水素ガス注入弁である。
An auxiliary hydrogen gas storage device 28 is provided in the hydrogen gas injection pipe 24.
are branched and connected via a flow rate control valve 29. This auxiliary hydrogen gas storage device 28 is used at the initial stage of reactor operation, and is also used to replenish hydrogen gas in the system when it becomes insufficient. In addition, code 3 in the figure
1 is a hydrogen gas injection valve.

以上の構成を基にその作用を説明するとともにざらに詳
細な構成を説明する。まず原子炉圧力容器1からの水素
ガス、酸素ガスおよび放射性希ガスと復水器7のインリ
ーク空気(酸素ガスおよび窒素ガス)からなる混合ガス
は廃ガスとして廃ガス処理配管15を介してガス抽出器
16内に導入される。ガス抽出器16を通過した廃ガス
は再結合器17内に導入される。この再結合器17内に
て酸素ガスはH2Oの形で除去される。その際原子炉は
水素ガス注入運転を行なっているので、廃ガス中の水素
ガスの量は酸素ガスに比べて著しく多く、上記H20の
形で除去された後にも水素ガスが残留する。この残留し
た水素ガスが水素ガス分離塔装置11の分離対象となる
。すなわち水素ガスを含有した状態の廃ガスは凝縮器1
8内に導入され、そこで水分が除去される。水分が除去
された状態の廃ガスは水素ガス分離塔装置二に導入され
る。ここでこの水素ガス分離塔装置2oの構成について
詳細に説明すると、水素ガス分離塔装置2−Ωは前述し
たように2つの水素ガス分離塔21Aおよび21Bから
構成されている。夫々の水素ガス分離塔21Aおよび2
1B内には水素貯蔵合金30が貯蔵されている。この水
素貯蔵合金30はCa−Ni−Mn−Al合金からなり
、次の可逆的化学反応式に示すような反応をなす。
The operation will be explained based on the above configuration, and the configuration will be roughly explained in detail. First, a mixed gas consisting of hydrogen gas, oxygen gas, and radioactive rare gas from the reactor pressure vessel 1 and in-leak air (oxygen gas and nitrogen gas) from the condenser 7 is extracted as waste gas through the waste gas processing pipe 15. is introduced into the container 16. The waste gas that has passed through the gas extractor 16 is introduced into the recombiner 17. In this recombiner 17, oxygen gas is removed in the form of H2O. At this time, since the nuclear reactor is operated with hydrogen gas injection, the amount of hydrogen gas in the waste gas is significantly larger than that of oxygen gas, and the hydrogen gas remains even after being removed in the form of H20. This remaining hydrogen gas is to be separated by the hydrogen gas separation column device 11. In other words, the waste gas containing hydrogen gas is sent to the condenser 1.
8, where water is removed. The waste gas from which moisture has been removed is introduced into hydrogen gas separation column device 2. Here, the structure of the hydrogen gas separation column device 2o will be explained in detail. The hydrogen gas separation column device 2-Ω is composed of two hydrogen gas separation columns 21A and 21B as described above. Respective hydrogen gas separation towers 21A and 2
A hydrogen storage alloy 30 is stored in 1B. This hydrogen storage alloy 30 is made of a Ca-Ni-Mn-Al alloy, and undergoes a reaction as shown in the following reversible chemical reaction formula.

M+H24MHx±ΔQ 但し M  ;水素貯蔵合金 MHx :金属水素化物 ΔQ ;反応熱 この式に示すように水素貯蔵合金30は、金、属水素化
物の形で水素ガスを選択的に吸蔵する特性を有している
。すなわち水素貯蔵合金30を低温に保持すると、熱を
発生しながら水素ガスを吸蔵し、逆に高温になると吸熱
しながら水素ガスを放出する。また夫々の水素ガス分離
塔21Aおよび21Bは図示しない熱交換器を備えてお
り、それによって水素貯蔵合金30の温度を調節するこ
とができる。また水素ガス分離塔装置ユは1つの水素ガ
ス分離塔21Aが水素ガスを分離・吸蔵している時には
、他の水素ガス分離塔21Bは、水素ガスを放出してい
るか又は待機中にある。これを前記切換弁22A、22
B、および三方切換弁23A、23Bとの関係で説明す
る。まず水素ガス分離塔21Aが水素ガス吸蔵をなし、
水素ガス分離塔21Bが放出している場合には、第1図
に示すように切換弁22Aは開弁し切換弁22Bは閉弁
している。一方三方切換弁23Aはスタック27側が開
弁し、水素ガス注入配管24側が閉弁しているとともに
、三方切換弁23Bはスタック27側が閉弁し、水素ガ
ス注入配管24側が開弁じている。よって水素ガスは水
素ガス分離塔2iA内の水素吸蔵合金30に吸蔵され、
水素ガス以外の廃ガスはスタック27を介して大気中に
放出される。これに対して水素ガス分離塔21B側は吸
蔵した水素ガスを放出しており、放出された水素ガスは
三方切換弁23Bを介して水素ガス注入配管24に放出
されている。以下上記切換弁22A。
M+H24MHx±ΔQ where M: Hydrogen storage alloy MHx: Metal hydride ΔQ: Heat of reaction As shown in this equation, the hydrogen storage alloy 30 has the property of selectively occluding hydrogen gas in the form of metal and metal hydrides. ing. That is, when the hydrogen storage alloy 30 is kept at a low temperature, it absorbs hydrogen gas while generating heat, and conversely, when the hydrogen storage alloy 30 reaches a high temperature, it releases hydrogen gas while absorbing heat. Further, each of the hydrogen gas separation columns 21A and 21B is equipped with a heat exchanger (not shown), so that the temperature of the hydrogen storage alloy 30 can be adjusted. Further, in the hydrogen gas separation column apparatus unit, when one hydrogen gas separation column 21A is separating and storing hydrogen gas, the other hydrogen gas separation column 21B is releasing hydrogen gas or is on standby. This is the switching valve 22A, 22
B, and the relationship with the three-way switching valves 23A and 23B. First, the hydrogen gas separation column 21A stores hydrogen gas,
When the hydrogen gas separation tower 21B is discharging gas, the switching valve 22A is open and the switching valve 22B is closed, as shown in FIG. On the other hand, the three-way switching valve 23A is open on the stack 27 side and closed on the hydrogen gas injection pipe 24 side, and the three-way switching valve 23B is closed on the stack 27 side and open on the hydrogen gas injection pipe 24 side. Therefore, hydrogen gas is stored in the hydrogen storage alloy 30 in the hydrogen gas separation tower 2iA,
Waste gases other than hydrogen gas are discharged into the atmosphere via the stack 27. On the other hand, the hydrogen gas separation column 21B side releases the stored hydrogen gas, and the released hydrogen gas is released into the hydrogen gas injection pipe 24 via the three-way switching valve 23B. The following is the switching valve 22A.

22B1および三方切換弁23A、23Bを切換るとと
もに、各熱交換器により水素吸蔵合金30を加熱あるい
は冷却することにより交互に水素吸蔵、あるいは放出を
行なう。これを第2図および第3図の運転ザイクル図を
参照して説明する。まず水素ガス分離塔21Aの方は水
素貯蔵合金30を冷却しながら水素ガス吸蔵工程にはい
る。そてし吸蔵工程の最終段階では水素ガス分離塔21
B側で水素貯蔵合金30の冷却が開始されており、水素
ガス分離塔2iA側で吸蔵が停止したと同時に吸蔵工程
にはいる。その際水素ガス分離塔21A側では水素貯蔵
合金30の加熱がなされ、放出工程が開始されている。
22B1 and the three-way switching valves 23A and 23B, and by heating or cooling the hydrogen storage alloy 30 with each heat exchanger, hydrogen storage or release is performed alternately. This will be explained with reference to the operation cycle diagrams shown in FIGS. 2 and 3. First, the hydrogen gas separation tower 21A enters the hydrogen gas storage process while cooling the hydrogen storage alloy 30. At the final stage of the hydrogen storage process, the hydrogen gas separation column 21
Cooling of the hydrogen storage alloy 30 is started on the B side, and the occlusion process starts at the same time as the occlusion stops on the hydrogen gas separation column 2iA side. At this time, the hydrogen storage alloy 30 is heated on the hydrogen gas separation tower 21A side, and the release process is started.

以下同様に吸蔵、放出が連続的かつ交互になされていき
、第3図に示すようになる。また上記水素ガス分離塔2
1Aおよび21Bとの間の切換はこれら各水素ガス分離
塔21Aおよび21Bの出口側に設置された図示しない
水素ガス検知器からの信号に基づいて行なわれる。
Thereafter, occlusion and release are performed continuously and alternately in the same manner, as shown in FIG. 3. In addition, the hydrogen gas separation tower 2
Switching between hydrogen gas separation towers 21A and 21B is performed based on a signal from a hydrogen gas detector (not shown) installed on the outlet side of each of these hydrogen gas separation towers 21A and 21B.

水素ガス貯蔵合金30より放出された水素ガスは水素ガ
ス圧縮器25内に導入されて圧縮され、蓄圧器26内に
蓄わえられる。その後前記給水ポンプ9を介して原子炉
圧力容器1内に注入される。
Hydrogen gas released from the hydrogen gas storage alloy 30 is introduced into the hydrogen gas compressor 25, compressed, and stored in the pressure accumulator 26. Thereafter, the water is injected into the reactor pressure vessel 1 via the water supply pump 9.

その際水素ガス注入弁31の開度は炉水酸素・水素濃度
計および給水流量計からの信号のいずれかにより、又は
両方により自動的に調節され、水素ガス流量が制御され
る。以上の操作をくりかえすことにより水素ガスの注入
・回収および廃ガスの放出が連続的になされる。
At this time, the opening degree of the hydrogen gas injection valve 31 is automatically adjusted by either or both signals from the reactor water oxygen/hydrogen concentration meter and the feed water flow meter, and the hydrogen gas flow rate is controlled. By repeating the above operations, hydrogen gas is continuously injected and recovered, and waste gas is discharged.

以上本実施例によると以下のような効果を奏することが
できる。すなわち従来過剰水素を注入し、かつこの過剰
注入した結果余剰となった水素を処理するために入用の
酸素を必要としていたのに対して、本実施例の場合には
余剰水素ガスを水素ガス分離塔装置20の水素貯蔵合金
30により回収し、これを再利用することができるので
、水素ガスの有効的な利用ができるとともに、従来のよ
うに酸素ガスを注入する必要がなくなる。したがって設
備も簡略化されコストも大幅に低減される。
According to this embodiment, the following effects can be achieved. In other words, whereas in the past, excess hydrogen was injected and necessary oxygen was required to treat the surplus hydrogen as a result of this excessive injection, in this example, the excess hydrogen gas was Since hydrogen gas can be recovered and reused by the hydrogen storage alloy 30 of the separation column device 20, hydrogen gas can be used effectively and there is no need to inject oxygen gas as in the conventional case. Therefore, the equipment is simplified and costs are significantly reduced.

これを800MWe級のBWRで考えると、炉水中の酸
素濃度を20 ppb以下に維持して運転し、50(1
g/塔の水素貯蔵合金30を収容した水素ガス分離塔2
1A、21Bを使用した場合、純度99.9%以上の水
素ガスを約96%の回収率で回収することができた。こ
こで回収率が100に達しないのは、復水器7のインリ
ーク空気中の酸素ガスとの結合反応に消費される分と、
水素ガス分離塔21Aおよび218間の切換操作時にス
タック27側に流出する分があるからである。この不足
分については前記補助水素貯蔵器28より補給される。
Considering this in an 800 MWe class BWR, the oxygen concentration in the reactor water is maintained at 20 ppb or less, and the
Hydrogen gas separation column 2 containing hydrogen storage alloy 30 of g/column
When 1A and 21B were used, hydrogen gas with a purity of 99.9% or more could be recovered at a recovery rate of about 96%. Here, the reason why the recovery rate does not reach 100 is due to the amount consumed in the bonding reaction with the oxygen gas in the in-leak air of the condenser 7.
This is because some of the hydrogen gas flows out to the stack 27 side during the switching operation between the hydrogen gas separation columns 21A and 218. This shortage is replenished from the auxiliary hydrogen storage device 28.

また本実施例の場合と従来との場合の水素ガスおよび酸
素ガスの消費量を比較してみると、次の表−1に示すよ
うな結果となる。
Furthermore, when the consumption amounts of hydrogen gas and oxygen gas are compared between the present example and the conventional case, the results are shown in Table 1 below.

表−1 この表−1に示すように本実施例の場合には従来の場合
と比べて水素ガスの消費量は大幅に低減しており、また
酸素ガスについては全く使用されていないので、消費量
は零となっている。よって運転コストが大幅に低減され
ることとなる。
Table 1 As shown in Table 1, in the case of this example, the consumption of hydrogen gas is significantly reduced compared to the conventional case, and as oxygen gas is not used at all, the consumption The quantity is zero. Therefore, operating costs are significantly reduced.

尚本発明は前記実施例に限定されるものではなく、水素
貯蔵合金30としては、ca−Ni・Mn−A I合金
以外にも、<La−Ni>、(Ti・Fe)、(Ti−
Mn)系等の水素貯蔵合金を使用することが可能であり
、水素ガス分離塔への圧入圧および内蔵される熱交換器
による熱交換温度を上記各合金の特性によって適宜変更
することにより同様の効果を奏することができる。
The present invention is not limited to the above-mentioned embodiments, and the hydrogen storage alloy 30 may include <La-Ni>, (Ti-Fe), (Ti-
It is possible to use hydrogen storage alloys such as Mn)-based hydrogen storage alloys, and by appropriately changing the pressure of injection into the hydrogen gas separation column and the heat exchange temperature by the built-in heat exchanger depending on the characteristics of each of the above alloys, similar results can be obtained. It can be effective.

また水素ガス分離塔の塔数についても前記実施例では2
塔の場合について説明したが、これに限定されるもので
はなく、3塔あるいはそれ以上でもよい。
In addition, the number of hydrogen gas separation columns was 2 in the above embodiment.
Although the case of towers has been described, the invention is not limited to this, and three or more towers may be used.

[発明の効果] 以上詳述したように本発明による沸騰水型原子炉の水素
ガス注入・回収装置によると、余剰水素ガスの回収利用
が可能となり、水素ガスの有効的な利用が可能となって
水素ガス消費量を大幅に低減させることができる。また
酸素ガスについては使用する必要がない。したがって設
備を大幅に簡略化することができるとともに、コスト、
特に運転コストを低減させることができる。
[Effects of the Invention] As detailed above, according to the hydrogen gas injection and recovery device for a boiling water reactor according to the present invention, surplus hydrogen gas can be recovered and used, and hydrogen gas can be used effectively. hydrogen gas consumption can be significantly reduced. Further, there is no need to use oxygen gas. Therefore, equipment can be greatly simplified, and costs can be reduced.
In particular, operating costs can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は本発明の一実施例を示ず図で、第1
図は沸騰水型原子炉および水素ガス注入・回収装置の構
成を示す図、第2図および第3図は水素注入・回収装置
の運転サイクルを示す図である。 1・・・原子炉圧力容器、2・・・冷却材、3・・・炉
心、5・・・主蒸気配管、6・・・蒸気タービン、7・
・・復水器、8・・・復水浄化器、9・・・給水ポンプ
、10・・・給水配管、A・・・水素ガス注入装置、B
・・・水素ガス分離・回収装置。
1 to 3 do not show one embodiment of the present invention;
The figure shows the configuration of the boiling water reactor and the hydrogen gas injection/recovery device, and FIGS. 2 and 3 are diagrams showing the operation cycle of the hydrogen injection/recovery device. DESCRIPTION OF SYMBOLS 1... Reactor pressure vessel, 2... Coolant, 3... Reactor core, 5... Main steam piping, 6... Steam turbine, 7...
...Condenser, 8...Condensate purifier, 9...Water supply pump, 10...Water supply piping, A...Hydrogen gas injection device, B
...Hydrogen gas separation/recovery equipment.

Claims (3)

【特許請求の範囲】[Claims] (1)冷却材および炉心を収容する原子炉圧力容器と、
この原子炉圧力容器内で発生した蒸気を蒸気タービンに
供給して発電に供せしめる蒸気系と、蒸気タービンを駆
動させた蒸気を導入して凝縮・液化して復水とする復水
器と、上記復水を浄化して原子炉圧力容器内に戻す給水
系とを備えた沸騰水型原子炉において、上記給水系に水
素ガスを注入する水素ガス注入装置と、前記復水器から
の廃ガスを導入して該廃ガスから水素ガスを連続的に分
離・回収して上記水素ガス注入装置に供給する水素ガス
分離・回収装置とを具備したことを特徴とする沸騰水型
原子炉の水素ガス注入・回収装置。
(1) A reactor pressure vessel containing coolant and a reactor core;
A steam system that supplies the steam generated in the reactor pressure vessel to a steam turbine for power generation, and a condenser that introduces the steam that drives the steam turbine and condenses and liquefies it into condensate. In a boiling water nuclear reactor equipped with a water supply system that purifies the condensate and returns it to the reactor pressure vessel, a hydrogen gas injection device that injects hydrogen gas into the water supply system, and waste gas from the condenser. Hydrogen gas for a boiling water reactor, characterized in that it is equipped with a hydrogen gas separation/recovery device that introduces hydrogen gas, continuously separates and recovers hydrogen gas from the waste gas, and supplies the hydrogen gas to the hydrogen gas injection device. Injection/recovery equipment.
(2)上記水素ガス分離・回収装置には、低温時には水
素ガスを吸蔵し高温時には水素ガスを放出する水素貯蔵
合金を内部に有する水素ガス分離塔を複数基備えてなる
水素ガス分離塔装置が設置されていることを特徴とする
特許請求の範囲第1項記載の沸騰水型原子炉の水素ガス
注入・回収装置。
(2) The above hydrogen gas separation/recovery device includes a hydrogen gas separation tower device comprising a plurality of hydrogen gas separation towers each having a hydrogen storage alloy inside that stores hydrogen gas at low temperatures and releases hydrogen gas at high temperatures. A hydrogen gas injection/recovery device for a boiling water reactor according to claim 1, wherein the hydrogen gas injection/recovery device is installed in a boiling water reactor.
(3)前記水素ガス注入装置は、補助水素ガス注入装置
を備えていることを特徴とする特許請求の範囲第1項記
載の沸騰水型原子炉の水素ガス注入・回収装置。
(3) The hydrogen gas injection/recovery device for a boiling water reactor according to claim 1, wherein the hydrogen gas injection device includes an auxiliary hydrogen gas injection device.
JP60295069A 1985-12-25 1985-12-25 Hydrogen-gas injection-recovery device for boiling water type reactor Pending JPS62150198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60295069A JPS62150198A (en) 1985-12-25 1985-12-25 Hydrogen-gas injection-recovery device for boiling water type reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60295069A JPS62150198A (en) 1985-12-25 1985-12-25 Hydrogen-gas injection-recovery device for boiling water type reactor

Publications (1)

Publication Number Publication Date
JPS62150198A true JPS62150198A (en) 1987-07-04

Family

ID=17815913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60295069A Pending JPS62150198A (en) 1985-12-25 1985-12-25 Hydrogen-gas injection-recovery device for boiling water type reactor

Country Status (1)

Country Link
JP (1) JPS62150198A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999048106A1 (en) * 1998-03-13 1999-09-23 Siemens Aktiengesellschaft Nuclear power station with gas injection device for a coolant
WO2004012205A1 (en) * 2002-07-26 2004-02-05 Alstom Technology Ltd Method for operating a nuclear power station and device for carrying out said method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999048106A1 (en) * 1998-03-13 1999-09-23 Siemens Aktiengesellschaft Nuclear power station with gas injection device for a coolant
US6968028B1 (en) 1998-03-13 2005-11-22 Framatome Anp Gmbh Nuclear power station having a gas-injection device for a coolant
WO2004012205A1 (en) * 2002-07-26 2004-02-05 Alstom Technology Ltd Method for operating a nuclear power station and device for carrying out said method

Similar Documents

Publication Publication Date Title
JPS60186793A (en) Vacuum degassing method of nuclear reactor refrigerant system
CN105006264A (en) High temperature gas-cooled reactor helium purification regeneration system and regeneration method
Zverev et al. RITM-200: new-generation reactor for a new nuclear icebreaker
Priambodo et al. Design of Helium Purification System for Indonesia Experimental Power Reactor-Reaktor Daya Eksperimental
JPS62150198A (en) Hydrogen-gas injection-recovery device for boiling water type reactor
CN204884595U (en) High temperature air cooling is piled helium and is purified regeneration system
JP4073065B2 (en) Reactor containment hydrogen removal equipment
US3964965A (en) Pressurized-water reactor coolant gas disposal system
JP2000009873A (en) Hydrogen treatment facility in reactor container
Aiello et al. European testing blanket modules auxiliaries design
JP4356012B2 (en) Nuclear power plant
CN112892409A (en) Uranium aluminum alloy target dissolving device
Dinner et al. Tritium system concepts for the Next European torus project
JPS59116581A (en) Device of removing hydrogen in reactor container or pressurevessel
Gastaldi et al. Helium purification
CN214671851U (en) Sodium-cooled fast reactor primary loop argon purification device
JPH03503805A (en) Auxiliary volume control and chemical circuit for the primary circuit of pressurized water reactors
JP2013113653A (en) Pressurized-water reactor and method for removing reactor core decay heat
Sood et al. Tritium systems concepts for the Next European Torus (NET)
Kawamura et al. Impact of blanket tritium against the tritium plant of fusion reactor
JPS6324479Y2 (en)
JPS59220687A (en) Method of controlling corrosion environment in reactor primary coolant circuit
Latgé Sodium coolant: activation, contamination and coolant processing
JPH0679074B2 (en) Hydrogen / tritium recovery system for fast breeder reactor
JPH0218872A (en) High temperature adsorption treatment device