JPS59116581A - Device of removing hydrogen in reactor container or pressurevessel - Google Patents

Device of removing hydrogen in reactor container or pressurevessel

Info

Publication number
JPS59116581A
JPS59116581A JP57230867A JP23086782A JPS59116581A JP S59116581 A JPS59116581 A JP S59116581A JP 57230867 A JP57230867 A JP 57230867A JP 23086782 A JP23086782 A JP 23086782A JP S59116581 A JPS59116581 A JP S59116581A
Authority
JP
Japan
Prior art keywords
hydrogen
containment vessel
oxygen
reactor
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57230867A
Other languages
Japanese (ja)
Other versions
JPH046920B2 (en
Inventor
柏井 進一
中尾 俊次
元昭 宇多村
巖 横山
前田 勇一郎
増原 康博
氏田 博士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57230867A priority Critical patent/JPS59116581A/en
Publication of JPS59116581A publication Critical patent/JPS59116581A/en
Publication of JPH046920B2 publication Critical patent/JPH046920B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は原子炉格納容器又は原子炉圧力容器内の水素を
除去する装置に係シ、特に−次冷却材喪失事故時にノル
コニウムと水との反応(Z r −H20反応と略記す
る)によ多原子炉圧力容器内、ひいてはそれを格納して
いる原子炉格納容器内に短時間に大量に発生する水素を
処理するに適する水素除去装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a device for removing hydrogen in a nuclear reactor containment vessel or a reactor pressure vessel, and in particular to a device for removing hydrogen in a nuclear reactor containment vessel or a reactor pressure vessel, and in particular to a device for removing hydrogen in a nuclear reactor containment vessel or a reactor pressure vessel, and in particular to a device for removing hydrogen in a nuclear reactor containment vessel or a nuclear reactor pressure vessel. The present invention relates to a hydrogen removal device suitable for treating a large amount of hydrogen generated in a short period of time in a multi-nuclear reactor pressure vessel (abbreviated as Zr-H20 reaction), and furthermore, in a reactor containment vessel storing it.

〔従来技術〕[Prior art]

第1図は沸騰水型原子炉(BWRと略記する)の格納容
器内に存在する水素ガスを除去する従来の可燃性ガス処
理系(Fe2と略記する)の系統図である。Fe2は、
上流側隔離弁1、流量制御弁2、ブロワ3、再結合器4
、冷却器5、気水分離器6、下流側隔離弁7、再循環量
制御弁8、及びこれらを結ぶ配管9からなる閉ルーfを
成し、原子炉格納容器10の上部及び下部に接続11.
12されている、。
FIG. 1 is a system diagram of a conventional flammable gas treatment system (abbreviated as Fe2) for removing hydrogen gas present in the containment vessel of a boiling water reactor (abbreviated as BWR). Fe2 is
Upstream isolation valve 1, flow control valve 2, blower 3, recombiner 4
, a cooler 5, a steam separator 6, a downstream isolation valve 7, a recirculation amount control valve 8, and a closed loop f consisting of piping 9 connecting these, and connected to the upper and lower parts of the reactor containment vessel 10. 11.
12 has been done.

原子炉の冷却材喪失事故が発生するとFe2が起動され
、上流側隔離弁1、流量制御弁2及び下流側隔離弁7が
開かれる。一方、原子炉圧力容器(図示せず)内では燃
料被覆管の材料であるジルカロイによるZr−H20反
応および核分裂生成物などの放射性物質から出る放射線
による水の放射線分解で水素ガスと酸素ガ′スが発生す
る。(尤も、燃料破損が起きないときは、燃料被覆管の
遮蔽効果のための水の放射線分解は少い。)原子炉圧力
容器から原子炉格納容器10内に漏出した水素ガスと酸
素ガス及び格納容器10内に封入されていた窒素ガスは
プロワ3により格納容器10から弁1および2を通して
吸い出され、再結合器4に送られ、ここで酸素と水素が
再結合されて水になる。
When a loss of coolant accident occurs in a nuclear reactor, Fe2 is activated, and the upstream isolation valve 1, flow control valve 2, and downstream isolation valve 7 are opened. Meanwhile, inside the reactor pressure vessel (not shown), hydrogen gas and oxygen gas are generated by the Zr-H20 reaction caused by Zircaloy, which is the material of the fuel cladding tube, and by the radiolysis of water caused by the radiation emitted from radioactive materials such as nuclear fission products. occurs. (Of course, when fuel failure does not occur, the radiolysis of water due to the shielding effect of the fuel cladding is small.) Hydrogen and oxygen gas leaked from the reactor pressure vessel into the reactor containment vessel 10 and containment Nitrogen gas sealed in container 10 is sucked out from containment container 10 by blower 3 through valves 1 and 2 and sent to recombiner 4, where oxygen and hydrogen are recombined to form water.

再結合によって生じた水と9素ガスは冷却器5で冷却さ
れた後に気水分離器6に入シ、ここから窒素ガスの一部
は再結合器4の過度の温度上昇(再結合は発熱反応)を
防ぐために再循環量制御弁8を経てブロワ3の上流側に
再循環され、再結合器4に入る水素ガスと酸素ガスの濃
度を稀釈する。
The water and nitrogen gas generated by the recombination are cooled in the cooler 5 and then enter the steam/water separator 6, from which part of the nitrogen gas is released due to excessive temperature rise in the recombiner 4 (recombination causes heat generation). In order to prevent this reaction, the gas is recirculated to the upstream side of the blower 3 via the recirculation amount control valve 8, and dilutes the concentration of the hydrogen gas and oxygen gas entering the recombiner 4.

残シの窒素ガスと水は格納容器10下部の圧力抑制室1
3に入シ、窒素ガスは格納容器(ドライウェル)10に
戻る。
The remaining nitrogen gas and water are stored in the pressure suppression chamber 1 at the bottom of the containment vessel 10.
3, the nitrogen gas returns to the containment vessel (dry well) 10.

以上のように、従来のFe2は酸素ガスと水素ガスを結
合して水に戻すことに°よす、原子炉格納容器10内の
水素及び酸素ガスの濃度を低減させるものである。格納
容器lo内の水素と酸素の存在比が2:1で且つ水素と
酸素の発生量よシも再結合器4の再結合能力が大きけれ
ば、格納容器10内の水素、酸素ガスの濃度は低く抑え
ることができる。しかし、現状では、再結合器4はその
起動から定格運転状態に達するまでK !する時間が約
3.5時間であシ、との間では、酸素・水素再結合効率
が不安定且つ不十分であるばかりでなく、前記Z r 
−H20反応では次式のように水素ガスだけが発生して
再結合器4での再結合の相手たる酸素の発生がないので
、再結合器4は満足な効果を発揮しない。
As described above, conventional Fe2 reduces the concentration of hydrogen and oxygen gas in the reactor containment vessel 10 by combining oxygen gas and hydrogen gas and returning them to water. If the abundance ratio of hydrogen and oxygen in the containment vessel lo is 2:1 and the recombination capacity of the recombiner 4 is greater than the amount of hydrogen and oxygen generated, the concentration of hydrogen and oxygen gas in the containment vessel 10 is can be kept low. However, at present, the recombiner 4 has a K! If the time required for the Z r
In the -H20 reaction, only hydrogen gas is generated as shown in the following equation, and oxygen, which is the recombination partner in the recombiner 4, is not generated, so the recombiner 4 does not exhibit a satisfactory effect.

Zr + 2H20−Zr02+ 2H2このことに関
し更に詳しく考察すると、原子炉の運転においては、原
子炉格納容器内に発生した水素の爆発を防ぐため空気を
窒素ガスに置換して格納容器内の酸素量が常時4%以下
になるようにするという基準が設けられている。格納容
器内の酸素量を皆無にすることは技術的に困難であるか
ら、原子炉の通常運転時の格納容器内の残留酸素量は1
係〜4チの範囲にあると考えられる。
Zr + 2H20-Zr02+ 2H2 Considering this in more detail, during the operation of a nuclear reactor, in order to prevent the explosion of hydrogen generated in the reactor containment vessel, air is replaced with nitrogen gas to reduce the amount of oxygen in the containment vessel. The standard is to keep it below 4% at all times. Since it is technically difficult to completely eliminate the amount of oxygen in the containment vessel, the amount of residual oxygen in the containment vessel during normal operation of the reactor is 1.
It is thought to be in the range of 1 to 4.

他方、現状では、冷却材喪失事故時には炉心に在るZr
(約2.7トン)の0.73%が水と反応するとして原
子炉の安全解析を行っている。この0.73%l r 
−H20反応で発生する水素ガスの魚は約11ONm3
であ夛、これと結合するに必要な酸素の量は格納容器ド
ライウェル部容積(7900m3)の1%相当であるか
ら、前記の残留酸素量で十分である。
On the other hand, at present, Zr present in the core during a loss of coolant accident
A safety analysis of the reactor is being carried out assuming that 0.73% of the total amount (approximately 2.7 tons) will react with water. This 0.73% l r
-The amount of hydrogen gas produced by the H20 reaction is approximately 11ONm3
Since the amount of oxygen required to combine with this amount is equivalent to 1% of the volume of the dry well portion of the containment vessel (7900 m3), the amount of residual oxygen described above is sufficient.

しかし炉心のZrの4係以上がZr−H20反応を起す
と、残留酸素量が4係であると仮定しても酸素量が不足
で再結合されない水素ガスが残る。而して現に4%以上
のZ r −H20反応が起る可能性は否定し得ないも
のである。
However, if Zr of 4 or more in the core causes a Zr-H20 reaction, even if it is assumed that the amount of residual oxygen is 4 or more, the amount of oxygen is insufficient and hydrogen gas that is not recombined remains. Therefore, the possibility that 4% or more of the Z r -H20 reaction actually occurs cannot be denied.

Zr−H20反応は、炉心が露出して燃料被覆管の温度
が1000℃以上になると顕著になシ、それが発熱反応
であること及び発生した水素が熱伝達を阻害することと
も相俟って急激な温度上昇と共に盛になるが、崩壊熱の
指数関数的減少と緊急炉心冷却系の作用による炉心の再
冠水によって燃料被覆管の温度が低く々ると、該反応(
d止才る。通常、Z r −H20反応による水素の発
生は事故発生後1時間以内である。他方、水の放射線分
解はα線とγ線の放射が止壕ない限り続く。つまり水の
放射線分解は徐々に低下しつつ長期間続く。
The Zr-H20 reaction becomes noticeable when the reactor core is exposed and the temperature of the fuel cladding reaches 1000°C or higher, and this is coupled with the fact that it is an exothermic reaction and the generated hydrogen inhibits heat transfer. This reaction increases as the temperature rises rapidly, but when the temperature of the fuel cladding becomes low due to the exponential decrease in decay heat and the re-flooding of the core due to the action of the emergency core cooling system, this reaction (
d stop learning. Usually, hydrogen is generated by the Zr-H20 reaction within one hour after the accident occurs. On the other hand, radiolysis of water continues as long as the emission of alpha and gamma rays is not stopped. In other words, radiolysis of water continues for a long period of time, gradually decreasing.

例として、第2図に格納容器内の残留酸素量が3%であ
り、且つ冷却材喪失ザ°故によ多炉心内のZr−010
係がH2Oと反応するとした場合における事故発生後の
格納容器内の水素と酸素の濃度変化を示す。事故発生後
6分位まではZr−H20反応のため水素濃度が急激に
増大する。その後、Z r −H20反応が止まり水の
放射線分解だけが続いて水素と酸素の濃度は引さ続き僅
かに上昇するが、Fe2の酸素・水素結合効率が徐々に
良くなる分だけ土昇率は低下し、FC8定格運転後は水
素と酸素の濃度は低下する。酸素と水素は第3図の斜線
部に示すように体積割合で前者が5チ以上、後者が4%
以上の場合に爆発を起す。第2図のケースでは水素と酸
素が平均的に混在していると酸素濃度が爆発限界以下で
あるので爆発は起らないが、酸素ガスが偏在すると局所
的な爆発が起る恐れがある。また前記の如く再結合器4
は起動から定格運転状態になるまで3.5時間を要する
ので、その間では再結合効率が不十分であるばかシでな
く、仮りにこの時間を短かくしてもZr−H20反応で
発生した水素ガスの濃度に比べて酸素ガスの濃度が低い
ため再結合が満足に行われず、水素濃度を効果的に低下
させることは期待できない。また格納容器内の水素濃度
が高いことは圧力が高いことになるから、格納容器内の
核分裂生成物が外部に漏れる量が多くなるという点でも
望ましくない。
As an example, Fig. 2 shows that the amount of residual oxygen in the containment vessel is 3%, and due to loss of coolant, Zr-010 in the multiple core is
This figure shows the change in the concentration of hydrogen and oxygen in the containment vessel after an accident occurs when hydrogen reacts with H2O. Until about 6 minutes after the accident, the hydrogen concentration increases rapidly due to the Zr-H20 reaction. After that, the Zr-H20 reaction stops and only water radiolysis continues, and the concentrations of hydrogen and oxygen continue to rise slightly, but the rate of soil elevation increases as the oxygen-hydrogen bonding efficiency of Fe2 gradually improves. After FC8 rated operation, the concentration of hydrogen and oxygen decreases. As shown in the shaded area in Figure 3, oxygen and hydrogen have a volume ratio of 5% or more for the former and 4% for the latter.
An explosion occurs in the above cases. In the case shown in Figure 2, if hydrogen and oxygen are mixed evenly, an explosion will not occur because the oxygen concentration is below the explosive limit, but if oxygen gas is unevenly distributed, there is a risk that a local explosion will occur. Also, as mentioned above, the recombiner 4
Since it takes 3.5 hours from startup to the rated operating state, it is possible that the recombination efficiency is insufficient during that time, and even if this time is shortened, the hydrogen gas generated by the Zr-H20 reaction will be Since the concentration of oxygen gas is low compared to the concentration of oxygen gas, recombination is not performed satisfactorily, and it cannot be expected to effectively reduce the hydrogen concentration. Furthermore, a high hydrogen concentration within the containment vessel means high pressure, which is also undesirable in that a large amount of nuclear fission products within the containment vessel leaks to the outside.

以上は原子炉格納容器内の水素を除去する従来技術につ
いて述べたが、次に、原子炉圧力容器内に発生した水素
を除去する従来技術を第4図により説明する。第4図に
おいて、14は格納容器lO内に格納されているB■原
子炉圧力容器、15は該圧力容器14に接続された主蒸
気隔離弁、16はタービン、17は復水器、18は給水
ポンプである。水の放射線分解によシ炉心で生じた酸素
と水素はタービン16を通る蒸気と共に復水器17を通
るが、ここに併設された再結合器19で再結合されて水
となり除去される。但し希ガス類は希ガスホールドアラ
フ0系20により処理される。このように通常時には再
結合器19の作動により一次冷却系内での酸素と水素が
処理されるので水素の爆発などの問題は生じない。しか
し冷却水喪失事故が発生した時には主蒸気隔離弁15が
閉じ、その結果、圧力容器14内で発生した水素及び酸
素は圧力容器14FrJに蓄積され、その濃度が増大す
る。すなわち冷却材喪失事故発生後の原子炉の炉内の酸
素と水素の濃度の時間的変化は第5図の如くであって、
前記FC8で述べたと同様、水素濃度はZ r −H2
0反応により事故初期に急速な上昇を示し、やがて燃料
被覆管の温度が圓下してZ r −H20反応は終結す
る(このZr−H20反応による水素ガスの発生は一般
に事故発生後1時間以内である。)けれども、その後も
水の放射線分解が続くので酸素と水素の濃度は僅かでは
あるが増加する。事故発生後このように圧力容器14内
に発生する酸素・水素は前記再結合器19で除去するこ
とができず圧力容器内で爆発の恐れがあり、而して圧力
容器から漏出した水素に対し先述のFe2 fd特にZ
 r −H20反応の著しい事故初期には満足な対応を
することができないことは既に述べた通9であって、格
納容器内爆発や核分裂生成物逸出の可能性がある。
The conventional technique for removing hydrogen within the reactor containment vessel has been described above. Next, the conventional technique for removing hydrogen generated within the reactor pressure vessel will be explained with reference to FIG. 4. In FIG. 4, 14 is a B reactor pressure vessel stored in the containment vessel IO, 15 is a main steam isolation valve connected to the pressure vessel 14, 16 is a turbine, 17 is a condenser, and 18 is a It is a water pump. Oxygen and hydrogen produced in the reactor core by radiolysis of water pass through a condenser 17 together with steam passing through a turbine 16, where they are recombined in a recombiner 19 attached thereto and removed as water. However, rare gases are processed by the rare gas hold rough 0 system 20. In this way, under normal conditions, oxygen and hydrogen in the primary cooling system are treated by the operation of the recombiner 19, so problems such as hydrogen explosion do not occur. However, when a loss of cooling water accident occurs, the main steam isolation valve 15 closes, and as a result, hydrogen and oxygen generated within the pressure vessel 14 are accumulated in the pressure vessel 14FrJ, and their concentration increases. In other words, the temporal changes in the concentration of oxygen and hydrogen in the reactor after a loss of coolant accident is as shown in Figure 5.
As mentioned above in FC8, the hydrogen concentration is Z r −H2
The Zr-H20 reaction shows a rapid rise in the initial stage of the accident, and then the temperature of the fuel cladding tube drops and the Zr-H20 reaction is terminated (hydrogen gas is generally generated by this Zr-H20 reaction within one hour after the accident occurs). ) However, as water continues to undergo radiolysis, the concentrations of oxygen and hydrogen increase, albeit slightly. Oxygen and hydrogen generated in the pressure vessel 14 after an accident cannot be removed by the recombiner 19, and there is a risk of an explosion within the pressure vessel. The aforementioned Fe2 fd, especially Z
As already mentioned, it is not possible to take satisfactory measures in the early stages of an accident when the r-H20 reaction is significant, and there is a possibility of an explosion inside the containment vessel or escape of fission products.

このように、上述の従来技術では、事故発生後の短時間
にZ r −H20反応によシ大量に発生する水素を満
足に除去し得ないという欠点があり、このため圧力容器
ひいては格納容器内圧力上昇、水素の爆発、核分裂生成
物の逸出などの恐れがないとは言えなかった。
As described above, the above-mentioned conventional technology has the disadvantage that it is not possible to satisfactorily remove hydrogen that is generated in large quantities due to the Z r -H20 reaction in a short period of time after an accident occurs. It could not be said that there was no risk of pressure rise, hydrogen explosion, or escape of fission products.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、冷却材喪失事故発生後短時間内に原子
炉格納容器又は原子炉圧力容器内に急激に増加する水素
ガスを除去してこれら容器内の水素ガス濃度の急上昇を
防止し得る水素除去装置を提供することにあシ、以て、
事故発生後早期に起るZ r −H20反応による水素
の発生に対応し切れない前記の如き従来技術を補おうと
するものである。
An object of the present invention is to remove hydrogen gas that rapidly increases in a reactor containment vessel or a reactor pressure vessel within a short time after a loss of coolant accident occurs, and to prevent a sudden increase in the concentration of hydrogen gas in these vessels. In order to provide hydrogen removal equipment,
This is an attempt to compensate for the above-mentioned conventional technology which is unable to cope with the generation of hydrogen due to the Zr-H20 reaction that occurs early after an accident occurs.

〔発明の概要〕[Summary of the invention]

第1発明は原子炉格納容器内の水素ガスを除去する装置
に係り、その特徴とする所は原子炉格納。
The first invention relates to a device for removing hydrogen gas in a nuclear reactor containment vessel, and its feature is in a nuclear reactor containment vessel.

容器内の水素ガ゛スと接触せしめられる水素吸蔵金属か
らなる水素捕捉体を備えた点にある。
The present invention is equipped with a hydrogen trap made of a hydrogen storage metal that is brought into contact with the hydrogen gas in the container.

第2発明は沸騰水型原子炉の圧力容器内の水素ガスを除
去する装置に係り、その特徴とする所は沸騰水型原子炉
の圧力容器上部から原子炉格納容器内の圧力抑制室のプ
ール水中に至る管路を設け、この管路中に減圧弁及び該
減圧弁の下流に位置する水素吸蔵金属からなる水素捕捉
体を設けた点にある。
The second invention relates to a device for removing hydrogen gas in the pressure vessel of a boiling water reactor, and its feature is that from the top of the pressure vessel of the boiling water reactor to the pool of the pressure suppression chamber in the reactor containment vessel. A pipe line leading to water is provided, and a pressure reducing valve and a hydrogen trap made of a hydrogen storage metal located downstream of the pressure reducing valve are provided in this pipe line.

第3発明は原子炉格納容器内の水素ガスを除去する装置
に係り、その特徴とする所は、前記の如き閉ループをな
すFe2における酸素水素再結合器に酸素を該閉ループ
外から注入する酸素注入装置を設けた点にある。
The third invention relates to an apparatus for removing hydrogen gas in a reactor containment vessel, and its characteristics include oxygen injection in which oxygen is injected from outside the closed loop into the oxygen-hydrogen recombiner in Fe2 forming a closed loop as described above. The point is that the device was installed.

水素吸蔵金属としては例えばMgまたはMg−Ni合金
を用いるのがよい。元来、水素は金属中に拡散し易い性
質がちシ、水素吸蔵金属は水素ガス貯蔵用として開発さ
れたものである。これは他の材料に比べて次の%徴をも
っている。
As the hydrogen storage metal, it is preferable to use, for example, Mg or a Mg-Ni alloy. Originally, hydrogen tends to diffuse easily into metals, and hydrogen storage metals were developed for storing hydrogen gas. It has the following percentage characteristics compared to other materials.

(1)  水素の吸蔵量、放出量が大きく、またその速
度が速い。
(1) The amount of hydrogen absorbed and released is large, and the speed is fast.

(2)水素の吸蔵−放出サイクルを行なっても性能劣化
が少なく、再使用が可能である。
(2) There is little performance deterioration even after hydrogen storage-desorption cycles, and reuse is possible.

(3)比較的安価である。(3) It is relatively inexpensive.

水素吸蔵金属が水素ガスと接触すると、次のMg−Ni
合金の例で示すように金属水素化物を形成し、水素を吸
蔵する。
When the hydrogen storage metal comes into contact with hydrogen gas, the following Mg-Ni
As shown in the alloy example, metal hydrides are formed and hydrogen is absorbed.

これは可逆反応であり、金属水素化物は生成熱に相当す
る熱量を与え力いと吸蔵していた水素を放出しない。
This is a reversible reaction, and the metal hydride gives an amount of heat equivalent to the heat of formation and does not release the force or occluded hydrogen.

Mgの水素吸蔵特性は第6図で示される。図中りは吸蔵
平衡線であり、斜線部領域Aでは水素を吸蔵し、反対側
の領域Bでは水素を放出(解離)する。第1発明につい
て見るに、冷却材喪失事故時の原子炉格納容器ドライウ
ェル部の最高温度は149℃を超えない計算結果が得ら
れているので、水素吸蔵金属を原子炉格納容器内に設け
るとすれば、それは149℃でも水素吸蔵能を持たねば
ならない。この点、Mg (解離温度284℃)、Mg
2N1(同250℃)などが適している。第2発明につ
いて見ても、その水素吸蔵金属が冷却材喪失事故時に受
ける条件は実際上第6図の領域Cに入ることが確められ
るから、Mgを用いれば水素吸蔵能力は十分確保される
The hydrogen storage properties of Mg are shown in FIG. The middle part of the figure is an absorption equilibrium line, in which hydrogen is occluded in the shaded region A, and hydrogen is released (dissociated) in the region B on the opposite side. Regarding the first invention, calculation results have been obtained that the maximum temperature in the dry well section of the reactor containment vessel in the event of a loss of coolant accident does not exceed 149°C. Therefore, it must have hydrogen storage capacity even at 149°C. In this respect, Mg (dissociation temperature 284°C), Mg
2N1 (250°C) is suitable. Looking at the second invention, it is confirmed that the conditions that the hydrogen storage metal is subjected to in the event of a loss of coolant accident are actually in the area C in Figure 6, so if Mg is used, sufficient hydrogen storage capacity can be ensured. .

Mg及びMg 2N iの水素吸蔵能は夫々7.6及び
3.6重景係である。炉心に在るZrの10係がZ r
 −H20反応を起したと仮定すると、それにより発生
する水素の量は約120 kg(2688Nm3)であ
シ、これを吸蔵するに要するMgの量は1580 kg
となシ、実用上問題のない量であると言うことができる
The hydrogen storage capacities of Mg and Mg 2N i are 7.6 and 3.6 Mg, respectively. The 10th unit of Zr in the reactor core is Zr
Assuming that -H20 reaction occurs, the amount of hydrogen generated is approximately 120 kg (2688 Nm3), and the amount of Mg required to absorb this is 1580 kg.
It can be said that this is an amount that poses no practical problem.

これを更に分散配置すれば、その各々における量は更に
少くすることが可能である。例えば第2発明における管
路を18系統設ける力らば、その各各の系統当シの水素
吸蔵金属Mgは882となシ、更に実用上問題はなくな
る。
If these are further distributed, the amount in each can be further reduced. For example, if 18 lines of pipes were provided in the second invention, the hydrogen storage metal Mg for each line would be 882, which would cause no practical problems.

なお、水素吸蔵金属は一般に乾燥気体中で最も吸蔵能力
を発揮する性質がある。第2発明における減圧弁はこの
観点から設けたものであって、圧力容器内の飽和蒸気を
過熱蒸気に変換して乾燥性を持たせるためのものである
Note that hydrogen storage metals generally have the property that they exhibit the best storage capacity in dry gas. The pressure reducing valve in the second invention is provided from this point of view, and is for converting saturated steam within the pressure vessel into superheated steam to provide drying properties.

〔発明の実施例〕[Embodiments of the invention]

第7図に原子炉格納容器内の水素を除去する第1発明の
一実施例を示す。この実施例は、第1図に示した従来の
Fe2の再循環配管の途中に、先に例示したような水素
吸蔵金属をエレメント(水素捕捉体)としたフィルタ2
1及びバイノ9ス配管33とバイパス弁34を設けたも
のである。冷却材喪失事故が発生するとFe2が運転さ
れ、格納容器lO内のガ゛スが再結合器4に供給される
。しかし再結合器4は起動直後で再結合能力が極めて低
いので酸素と水素の結合は起らず、ガスは冷却器5と気
水分離器6を通ってフィルタ21に達する。
FIG. 7 shows an embodiment of the first invention for removing hydrogen within the reactor containment vessel. In this embodiment, a filter 2 is installed in the middle of the conventional Fe2 recirculation piping shown in FIG.
1, a binoculars pipe 33, and a bypass valve 34. When a loss of coolant accident occurs, Fe2 is operated and the gas in the containment vessel IO is supplied to the recombiner 4. However, since the recombiner 4 has a very low recombination ability immediately after starting, the combination of oxygen and hydrogen does not occur, and the gas passes through the cooler 5 and the steam/water separator 6 and reaches the filter 21.

ここで水素は水素吸蔵金属に吸蔵さ、れ、残シのガスは
バイパス配管33を経て圧力抑制室13に入り、次の循
環に供される。
Here, hydrogen is stored in the hydrogen storage metal, and the remaining gas enters the pressure suppression chamber 13 via the bypass pipe 33 and is provided for the next circulation.

事故発生後時間の経過と共に再結合器4の酸素水素結合
効率は向上するが、事故初期のZr−H0反応で水素が
多量に発生したため酸素に対する水素の存在比が大きく
、再結合器4で酸素と結合しなかった余剰水素は気水分
離器6で水と分離されてフィルタ21で吸蔵される。さ
らに時間が経過し、水素と酸素の存在比が2:lとなり
、且つ再結合器4の能力が十分になると再結合器4に入
る水素と酸素とは全て結合して水とな9、フィルタ21
で吸蔵する水素はなくなる。本実施例による濃度低減効
果は第8図に示す如くであって、事故初期に大量に発生
する水素をフィルタ21で捕捉し、再結合器4が定格運
転に達した後は再結合器4で酸素水素結合を行うことに
より、格納容器lO内の水素ガス及び酸素ガスの濃度上
昇(従って圧力上昇)を防止し得る。なおフィルタ21
はそのエレメントが水素を吸蔵しない限シ保守の必要が
ない。
The oxygen-hydrogen bonding efficiency of the recombiner 4 improves as time passes after the accident, but since a large amount of hydrogen was generated in the Zr-H0 reaction at the beginning of the accident, the ratio of hydrogen to oxygen is large, and the recombiner 4 Excess hydrogen that is not combined with water is separated from water in the steam-water separator 6 and stored in the filter 21. As more time passes, the abundance ratio of hydrogen and oxygen becomes 2:l, and the capacity of the recombiner 4 becomes sufficient, all of the hydrogen and oxygen entering the recombiner 4 combine to form water 9, and the filter 21
There will be no more hydrogen to absorb. The concentration reduction effect of this embodiment is as shown in FIG. 8, in which hydrogen generated in large quantities at the early stage of an accident is captured by the filter 21, and after the recombiner 4 reaches its rated operation, the hydrogen is By performing oxygen-hydrogen bonding, it is possible to prevent an increase in concentration (and therefore pressure) of hydrogen gas and oxygen gas in the containment vessel IO. Note that the filter 21
requires no maintenance as long as the element does not store hydrogen.

本実施例は、気水分離器6の下流にフィルタ21を設け
たので、再結合器4で結合されなかった余剰水素が捕捉
されるから、格納容器10内の水素と酸素の濃度がバラ
ンスよく低下するという効果、及びフィルタのエレメン
トが濡れないので水素捕捉効率が低下しないという効果
がある。フィルタ21を再結合器4の上流側に設けると
、格納容器10内に酸素ガスが残ることがあシ、またフ
ィルタ21が濡れてその水素捕捉効率が低下すると考え
られる。
In this embodiment, since the filter 21 is provided downstream of the steam-water separator 6, surplus hydrogen that is not combined in the recombiner 4 is captured, so that the concentration of hydrogen and oxygen in the containment vessel 10 is well-balanced. There is an effect that hydrogen trapping efficiency is reduced, and that the hydrogen trapping efficiency is not reduced because the filter element is not wetted. If the filter 21 is provided upstream of the recombiner 4, oxygen gas may remain in the containment vessel 10, and it is thought that the filter 21 will become wet, reducing its hydrogen capture efficiency.

第9図ないし第13図は上記フィルタの代表的な構造を
示したものである。第9図はケース22内に粒形の水素
吸蔵金属25を入れ、バッフル24を配設し、出入口に
粒の脱落防止用金網23を設けたものである。第10図
は、水素吸蔵金属製の多数のバッフル26をケース22
内に配列したもの、第11図は水素吸蔵金属製の多数の
丸パイプ27をケース22内にガス流の方向に配列した
ものでガスはパイプの内外を流れる。第12図は水素吸
蔵金属製の多数の板状フィン28をケース22内の孔明
き板29の背後に設けたもの、第13図は水素吸蔵金属
のワイヤをメツシー状に組立てたもの30をケース22
内に収めたものである。上記いずれのフィルタ例におい
ても、水素吸蔵金属の表面積が大きく、且つケース内を
流れる水素ガスと十分に接触して水素捕捉効率を高める
ようになっている。
9 to 13 show typical structures of the above filter. In FIG. 9, a granular hydrogen storage metal 25 is placed in a case 22, a baffle 24 is provided, and a wire mesh 23 for preventing particles from falling off is provided at the entrance and exit. FIG. 10 shows a case 22 with a large number of baffles 26 made of hydrogen-absorbing metal.
FIG. 11 shows a case 22 in which a large number of round pipes 27 made of hydrogen-absorbing metal are arranged in the direction of gas flow, and the gas flows inside and outside the pipes. Fig. 12 shows a case 22 in which a large number of plate-like fins 28 made of hydrogen-absorbing metal are provided behind a perforated plate 29 inside the case 22, and Fig. 13 shows a case 30 in which hydrogen-absorbing metal wires are assembled in a mesh shape. 22
It is contained within. In any of the above filter examples, the hydrogen storage metal has a large surface area and is in sufficient contact with the hydrogen gas flowing inside the case to increase the hydrogen trapping efficiency.

フィルタエレメントを焼結金属のような多孔質にすれば
更に水素捕捉能力と捕捉速度を増大させることができる
Hydrogen trapping capacity and trapping speed can be further increased by making the filter element porous, such as sintered metal.

第14図は原子炉格納容器内の水素を除去する第1発明
の他の実施例を示す。この実施例は、三重円筒形に形成
された水素吸蔵金属31をドライウェルヘッド32の内
側に取付けたものであり、水素ガスが格納容器10内に
存在する酸素や窒素などの他のガスより比重が小さいた
め容器10の上部に集まることに着目して水素を速やか
に捕捉するものである。水素吸蔵金属31はドライウェ
ルヘッド32と一緒に容器10から取外すことができ、
また図示していないが前述のFe2が格納容器lOに接
続されている。本実施例によれば、Fe2のブロワ3の
送風能力に関係なく水素を捕捉するので、第15図に示
したように、格納容器10内の水素濃度を更に低く抑え
る効果がある。また重要な効果は、電源喪失等により従
来のFe2が無効となっても水素を捕捉できる点にある
FIG. 14 shows another embodiment of the first invention for removing hydrogen within the reactor containment vessel. In this embodiment, a hydrogen storage metal 31 formed in a triple cylindrical shape is installed inside a dry well head 32, and hydrogen gas has a specific gravity higher than other gases such as oxygen and nitrogen present in the containment vessel 10. Hydrogen is quickly captured by focusing on the fact that hydrogen is small and therefore collects in the upper part of the container 10. The hydrogen storage metal 31 can be removed from the container 10 together with the dry well head 32,
Further, although not shown, the aforementioned Fe2 is connected to the containment vessel IO. According to this embodiment, since hydrogen is captured regardless of the blowing capacity of the Fe2 blower 3, there is an effect of suppressing the hydrogen concentration in the containment vessel 10 even lower, as shown in FIG. 15. Another important effect is that hydrogen can be captured even if conventional Fe2 becomes ineffective due to power loss or the like.

第16図は原子炉格納容器内の水素を除去する第1発明
の更に他の実施例を示す。ドライウェルヘッド32を貫
通したノヤイゾ40の上側に隔離弁39及び水素吸蔵金
属粒36を入れたタンク35を設け、タンク35には弁
41で封止した窒素ガス注入管を接続しである。格納容
器10内には受皿38の方向に勾配をつけた複数のバッ
フル37を設ける。なお図示していないが、前述のFe
2が格納容器10に接続されている。冷却材喪失事故発
生の検知信号または容器lO内の水素濃度検出信号に応
じて弁41を開いてタンク35に窒素ガスを供給し、隔
離弁39を開くと水素吸蔵金属の粒36は格納容器10
内に噴出し、バッフル37に従って受皿38まで落ちる
。この間に水素吸蔵金属粒36は水素を吸蔵し、容器1
0内の水素温度を速やかに低下させる。本実施例では水
素吸蔵金属が粒体であって且つ容器10内で落下するの
で水素ガスとの接触が効果的に々す、水素吸蔵効果が増
大する。
FIG. 16 shows still another embodiment of the first invention for removing hydrogen within the reactor containment vessel. An isolation valve 39 and a tank 35 containing hydrogen-absorbing metal particles 36 are provided above the noizo 40 passing through the dry well head 32, and a nitrogen gas injection pipe sealed with a valve 41 is connected to the tank 35. A plurality of baffles 37 are provided within the containment vessel 10 with a slope toward the receiving tray 38. Although not shown, the aforementioned Fe
2 is connected to the containment vessel 10. When the valve 41 is opened to supply nitrogen gas to the tank 35 and the isolation valve 39 is opened in response to a detection signal of a loss of coolant accident or a detection signal of hydrogen concentration in the container 10, the hydrogen storage metal grains 36 are removed from the containment vessel 10.
The water ejects inside and falls to the saucer 38 according to the baffle 37. During this time, the hydrogen storage metal particles 36 store hydrogen, and the container 1
Rapidly lower the hydrogen temperature within 0. In this embodiment, since the hydrogen storage metal is in the form of particles and falls within the container 10, contact with hydrogen gas increases effectively, increasing the hydrogen storage effect.

第17図は原子炉格納容器内の水素を除去する第1発明
の更に他の実施例を示す。原子炉格納容器内には冷却材
再循環系配管、主蒸気管、給水配管など多くの配管があ
る。これらの配管42の外周には保温材43が巻かれ、
更にその外周を金属薄板44でカバーしているのが普通
である。本実施例は、この金属薄板44を水素吸蔵金属
にしたもので、このようにすれば水素吸蔵金属を設置す
るための特別なスペースを必要としない効果かある。
FIG. 17 shows still another embodiment of the first invention for removing hydrogen within the reactor containment vessel. There are many pipes inside the reactor containment vessel, including coolant recirculation system pipes, main steam pipes, and water supply pipes. A heat insulating material 43 is wrapped around the outer periphery of these pipes 42,
Further, its outer periphery is usually covered with a thin metal plate 44. In this embodiment, the thin metal plate 44 is made of a hydrogen-absorbing metal, which has the effect of not requiring a special space for installing the hydrogen-absorbing metal.

他に、保温材カバー44の周シや格納容器10の内壁に
水素吸蔵金属の粉末をバインダーと共に吹き付は又は塗
布しておくことも可能である。
Alternatively, it is also possible to spray or apply hydrogen storage metal powder together with a binder to the periphery of the heat insulating material cover 44 and the inner wall of the containment vessel 10.

これらの実施例においても格納容器10には従来のFe
2が接続されている。
In these embodiments as well, the containment vessel 10 contains conventional Fe.
2 are connected.

第18図は原子炉圧力容器内の水素を除去する第2発明
の実施例を示す。45は原子炉圧力容器14に接続され
た水素ガス検出器である。46は圧力容器14の上部に
設けられ該検出器45の信号で作動する減圧弁、47は
減圧弁46の下流に接続された水素吸蔵器、48はこれ
らを接続する配管であり、その下流側末端は、主蒸気管
から逃がし弁49を介して分岐し圧力抑制室13の70
−加水中に開口している排気管50に接続されている。
FIG. 18 shows an embodiment of the second invention for removing hydrogen within the reactor pressure vessel. 45 is a hydrogen gas detector connected to the reactor pressure vessel 14. 46 is a pressure reducing valve provided at the upper part of the pressure vessel 14 and activated by a signal from the detector 45; 47 is a hydrogen storage device connected downstream of the pressure reducing valve 46; 48 is a pipe connecting these; The end branches off from the main steam pipe via a relief valve 49 and is connected to the pressure suppression chamber 13 at 70.
- connected to an exhaust pipe 50 which is open during addition of water;

52は格納容器10に接続されている前記従来のFe2
を表わしている。
52 is the conventional Fe2 connected to the containment vessel 10.
It represents.

事故発生時、主蒸気隔離弁15が閉じられると、炉心で
先に述べたようにして発生した酸素と水素ガスは圧力容
器14内に蓄積する。圧力容器14内の蒸気中の水素濃
度を常時監視している水素検出器45の検出濃度がしき
い値を超えると電気回路51を介して減圧弁46が作動
される。減圧弁46の作動によシ圧力容器14内の飽和
蒸気は過熱蒸気となって水素吸蔵器47に導かれ水素が
除去される。水素の除去された蒸気は酸素と共に逃がし
弁49の後方排気管50を通って圧力抑制室13のプー
ル水の中に排出される。
In the event of an accident, when the main steam isolation valve 15 is closed, the oxygen and hydrogen gases generated in the reactor core as described above accumulate in the pressure vessel 14. When the hydrogen concentration detected by the hydrogen detector 45, which constantly monitors the hydrogen concentration in the steam within the pressure vessel 14, exceeds a threshold value, the pressure reducing valve 46 is activated via the electric circuit 51. By operating the pressure reducing valve 46, the saturated steam in the pressure vessel 14 becomes superheated steam and is led to the hydrogen storage device 47, where hydrogen is removed. The steam from which hydrogen has been removed is discharged together with oxygen through the rear exhaust pipe 50 of the relief valve 49 into the pool water of the pressure suppression chamber 13.

この実施例で用いる水素吸蔵器47は、第8図ないし第
12図で示したのとほぼ同様の構造のものとすることが
できる。
The hydrogen storage device 47 used in this embodiment can have a structure substantially similar to that shown in FIGS. 8 to 12.

減圧弁46は上記のように飽和蒸気を過熱蒸気にする機
能を有する。水素吸蔵金属は乾燥状態で最も水素吸蔵効
率がよいから、減圧弁46を設けることによって水素吸
蔵器47に乾燥蒸気が導かれるようにしたのである。
The pressure reducing valve 46 has the function of converting saturated steam into superheated steam as described above. Since hydrogen storage metal has the highest hydrogen storage efficiency in a dry state, dry steam is introduced to the hydrogen storage device 47 by providing the pressure reducing valve 46.

原子炉圧力容器内の水素を除去する第18図の実施例に
おける冷却材喪失事故発生後の炉水中酸素及び水素濃度
の時間的変化を第19図に示す。
FIG. 19 shows temporal changes in the oxygen and hydrogen concentrations in the reactor water after the occurrence of a loss of coolant accident in the embodiment of FIG. 18 in which hydrogen is removed from the reactor pressure vessel.

図中、実線カーブは本実施例が適用されていない場合で
あシ、鎖線カーブは本実施例を適用した場合である。本
実施例適用の場合には、事故発生初期に急速なZ r 
−H20反応に追随できないための過渡的な水素濃度ピ
ークが現われるが、この時期では炉水中の酸素量が少な
く爆発には至らない。その後、時間の経過と共に水素吸
蔵金属の水素機R量は飽和に達し、数時間後水素吸蔵器
47を流れる酸素及び水素ガスは水素を吸蔵されずに排
気管50からプール水中を通って格納容器10内に移行
する。しかし、この時点で発生する水素は主に核分裂生
成物の放射線による水の放射線分解によるものだけであ
って比較的少く、格納室器に接続した従来のFe226
で十分に処理することができる。
In the figure, the solid line curve is the case where this embodiment is not applied, and the dashed line curve is the case where this embodiment is applied. When this embodiment is applied, rapid Z r
A transient hydrogen concentration peak appears because the -H20 reaction cannot be followed, but at this time the amount of oxygen in the reactor water is too small to cause an explosion. Thereafter, as time passes, the amount of hydrogen in the hydrogen storage metal reaches saturation, and after several hours, the oxygen and hydrogen gas flowing through the hydrogen storage device 47 passes through the pool water from the exhaust pipe 50 into the containment vessel without storing hydrogen. Move within 10. However, the hydrogen generated at this point is mainly due to the radiolysis of water due to the radiation of fission products, and is relatively small.
can be adequately processed.

すなわち、Fe226は定格運転状態に至るのに3〜4
時間を要するが、水素吸蔵金属が飽和に達して水素が格
納容器10内に移行する頃にはFe2は定格運転状態に
あplその機能を期待することができるから、格納容器
10内の爆発の危険はない。
In other words, Fe226 requires 3 to 4 to reach the rated operating state.
Although it takes time, by the time the hydrogen storage metal reaches saturation and hydrogen has migrated into the containment vessel 10, Fe2 is in its rated operating state and can be expected to perform its function. There's no danger.

第20図は原子炉圧力容器内の水素を除去する第2発明
の他の実施例を示す。この実施例は第18図に示した実
施例において水素吸蔵器47の下流側に酸素・水素再結
合器53を直列に接続したものであり、これによシ、第
18図に示した実施例では回収不能であった圧力容器内
発生酸素を処理し得る。
FIG. 20 shows another embodiment of the second invention for removing hydrogen within the reactor pressure vessel. In this embodiment, an oxygen/hydrogen recombiner 53 is connected in series to the downstream side of the hydrogen absorber 47 in the embodiment shown in FIG. 18. The oxygen generated in the pressure vessel, which could not be recovered, can be treated.

再結合器53は立ち上りに3〜4時間を要するので事故
初期に発生する水素は主として水素吸蔵器47で除去さ
れるが、その水素吸蔵金属が事故発生の数時間後に飽和
に達する頃には再結合器53が定格運転状態になってい
て炉心から流出して来る酸素と水素を結合させることが
できる。従って、格納容器10内に排出される酸素及び
水素ガスの量を爆発限界未満に抑えることができ、Fe
226の負担を軽減することができる。
Since the recombiner 53 takes 3 to 4 hours to start up, the hydrogen generated in the early stages of an accident is mainly removed by the hydrogen storage device 47, but by the time the hydrogen storage metal reaches saturation several hours after the accident, it is regenerated. The combiner 53 is in a rated operating state and can combine oxygen and hydrogen flowing out from the core. Therefore, the amount of oxygen and hydrogen gas discharged into the containment vessel 10 can be suppressed below the explosive limit, and Fe
226 can be reduced.

第21図は、酸素を注入することにより原子炉格納容器
内の水素濃度を低減させる第3発明の実施レリを示す。
FIG. 21 shows an embodiment of the third invention in which the hydrogen concentration in the reactor containment vessel is reduced by injecting oxygen.

これは、第1図に示した従来のFCSループにおける再
結合器4に酸素注入装置54を備えると共に、上流側配
管の途中にガス蔭度分析器55、流量計56を設けたも
のである。先に述べたようにZr H20反応では発生
した水素に対して再結合すべき酸素の発生がなく、この
ことが再結合器4で水素ガスを満足に処理できない一因
になっていた。本実施例によれば、冷却材喪失事故時に
Z r −H20反応で水素が発生しても、ガス濃度分
析器55並びに流量計56による水素及び酸素ガスの濃
度並びに流量の測定値に応じて酸素注入装置54からの
酸素注入量を制御して再結合器4で水素をそれに見合っ
た量の酸素と結合させることにより、格納容器10内の
内圧上昇や爆発の危険を極力避けられる。
In this system, the recombiner 4 in the conventional FCS loop shown in FIG. 1 is equipped with an oxygen injection device 54, and a gas shading analyzer 55 and a flow meter 56 are installed in the middle of the upstream piping. As mentioned above, in the Zr H20 reaction, no oxygen is generated to recombine the generated hydrogen, which is one of the reasons why the recombiner 4 cannot satisfactorily process the hydrogen gas. According to this embodiment, even if hydrogen is generated by the Zr-H20 reaction during a coolant loss accident, oxygen is By controlling the amount of oxygen injected from the injector 54 and combining hydrogen with an appropriate amount of oxygen in the recombiner 4, an increase in internal pressure within the containment vessel 10 and the risk of explosion can be avoided as much as possible.

〔発明の効果〕〔Effect of the invention〕

第1発明によれば、冷却材喪失事故時に原子炉格納容器
内に増加する水素ガスを速やかに除去して格納容器内の
圧力と水素濃度を低下させ、該格納容器内での水素爆発
及び格納容器からの核分裂生成物の漏洩の恐れを減らす
ことができる。第2発明によれば、上記事故時に炉心で
発生した水素ガスを速やかに除去して原子炉圧力容器内
の水素濃度を低下させて該圧力容器内での水素爆発の恐
れを減らすことができるばかりでなく、冷却材への水素
ガス混入による熱伝達劣化を防止して炉心の冷却に資す
ること、従って燃料被覆管の酸化反応を抑制してその損
傷を減らすと共に発生水素の総量を低減し得ることとい
う効果があると共に、圧力容器から格納容器に排出され
る水素ガスを減少させることかできる。
According to the first invention, hydrogen gas that increases in the reactor containment vessel in the event of a loss of coolant accident is quickly removed to reduce the pressure and hydrogen concentration in the containment vessel, thereby preventing a hydrogen explosion and containment in the containment vessel. The risk of leakage of fission products from the container can be reduced. According to the second invention, the hydrogen gas generated in the reactor core at the time of the above accident can be quickly removed to reduce the hydrogen concentration in the reactor pressure vessel, thereby reducing the risk of hydrogen explosion within the pressure vessel. Rather, it contributes to core cooling by preventing heat transfer deterioration due to hydrogen gas mixing in the coolant, and therefore suppresses the oxidation reaction of the fuel cladding, reducing its damage and reducing the total amount of hydrogen generated. In addition to this effect, hydrogen gas discharged from the pressure vessel to the containment vessel can be reduced.

壕だ第1発明及び第2発明のいずれにおいても、水素吸
蔵金属は水素吸蔵速度が速く、水素吸蔵能力が大きく、
且つ一旦水素を吸蔵したこれら水素吸蔵金属は冷却材喪
失事故時のそれらの作動環境の下では化学的に安定であ
って水素を放出しないので、急激な水素の増加に速やか
に対応し且つ事故の拡大を防止し得る。そして水素を吸
蔵した水素吸蔵金属は後に所要熱量を与えることにより
水素を放出し、性能の劣化を殆んど伴わすに再使用し得
る利点がある。しかも水素吸蔵金属の水素吸蔵作用は外
部からのエネルギの供給の必要がない自発的なものであ
るから、停電等の影響を受けず原子炉安全設備として信
頓性が高い。
In both the first and second inventions, the hydrogen storage metal has a high hydrogen storage rate, a large hydrogen storage capacity,
In addition, these hydrogen storage metals that have once stored hydrogen are chemically stable and do not release hydrogen under the operating environment at the time of a loss of coolant accident, so they can quickly respond to a sudden increase in hydrogen and prevent accidents. Can prevent spread. The hydrogen-absorbing metal that has occluded hydrogen can later release hydrogen by applying the required amount of heat, and has the advantage of being able to be reused with almost no deterioration in performance. Moreover, since the hydrogen storage function of the hydrogen storage metal is spontaneous and does not require an external supply of energy, it is not affected by power outages and has high reliability as a safety equipment for nuclear reactors.

第3発明によれば、従来のFe2が殆ど処理し得なかっ
たZr−H20反応により発生した水素を酸素との結合
により処理することができる。
According to the third invention, hydrogen generated by the Zr-H20 reaction, which conventional Fe2 could hardly treat, can be treated by combining with oxygen.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のFe2の系統図、第2図は従来のFe2
による原子炉格納容器内の水素及び酸素濃度の変化を示
す図、第3図は酸素と水素の混合ガスの爆発限界を示す
図、第4図は原子炉圧力容器内の水素を除去する従来の
手段を備えたBWR−次冷却系の略図、第5図は第4図
による場合の事故発生後の炉水中の酸素及び水素濃度の
変化を示す図、第6図は水素吸蔵金属Mgの水素吸蔵特
性を示す図、菓7シは原子炉格納容器内の水素を除去す
る本発明の実施例を示す系統図、第8図は第7図の実施
例による格納容器内の水素及び酸素濃度の変化を示す図
、第9図ないし第13図は本発明の実施例に使用される
水素吸蔵フィルタの幾つかの例を示す断面図、第14図
は原子炉格納容器内の水素を除去する本発明の他の実施
例を示す格納容器断面図、第15図は第14図の実施例
による格納容器内の水素及び酸素濃度の変化を示す図、
第16図及び第17図は格納容器内の水素を除去する本
発明の夫々異る他の実施例を示す格納容器断面図、第1
8図は原子炉圧力容器内の水素を除去する本発明の実施
例を示す格納容器断面図、第19図は第18図の実施例
による炉水中酸素及び水素濃度の変化を示す図、第20
図は原子炉圧力容器内の水素を除去する本発明の他の実
施例を示す格納容器断面図、第21図は酸素を注入する
ことによシ原子炉格納容器内の水素を除去する本発明の
実施例を示す系統図である。 4・・・再結合器     5・・・冷却器6・・・気
水分離器    lO・・・原子炉格納容器13・・・
圧力抑制室    14・・・原子炉圧力容器16・・
・タービン       17・・・復水器19・・・
再結合器     21・・・水素吸蔵器31・・・水
素吸蔵金属円筒  36・・・水素吸蔵金属粒37・・
・バッフル     38・・・受皿42・・・配管 
        44・・・水素吸蔵金属製カバー45
・・・水素濃度検出器  46・・・減圧弁47・・・
水素吸蔵器     49・・・逃がし弁50・・・排
気管      52・・・FC853・・・再結合器
、     54・・・酸素注入装置55・・・ガス濃
度分析器  56・・・流量計代理人  本 多 小 
i平 ¥1図 1  ”玉 第3図 水素濃度 児4図 1 m= −■ 事故発生後のH行間(hr) 1品   1度 じC) 事故発生後の時間(hr) 児9図 ’24 第12図 寓15図 事故発止後の時間(陀r) 鳥19図 事故発生後め時間(にr) 兜20図 日立市森山町1168番地株式会社 エネルギー研究所内 448−
Figure 1 is a conventional Fe2 system diagram, Figure 2 is a conventional Fe2 system diagram.
Figure 3 is a diagram showing the explosion limit of a mixed gas of oxygen and hydrogen, and Figure 4 is a diagram showing the changes in hydrogen and oxygen concentrations in the reactor pressure vessel. Figure 5 is a diagram showing changes in oxygen and hydrogen concentrations in reactor water after an accident occurs in the case shown in Figure 4, Figure 6 is a schematic diagram of a BWR secondary cooling system equipped with a hydrogen storage metal Mg. Diagrams showing the characteristics, Figure 7 is a system diagram showing an embodiment of the present invention for removing hydrogen in the reactor containment vessel, and Figure 8 shows changes in hydrogen and oxygen concentrations in the containment vessel according to the embodiment of Figure 7. 9 to 13 are sectional views showing some examples of hydrogen storage filters used in embodiments of the present invention, and FIG. 14 is a cross-sectional view showing some examples of hydrogen storage filters used in embodiments of the present invention. FIG. 15 is a cross-sectional view of the containment vessel showing another embodiment, and FIG. 15 is a diagram showing changes in hydrogen and oxygen concentrations in the containment vessel according to the embodiment of FIG.
16 and 17 are sectional views of the containment vessel showing other different embodiments of the present invention for removing hydrogen in the containment vessel, the first
Figure 8 is a sectional view of the containment vessel showing an embodiment of the present invention for removing hydrogen in the reactor pressure vessel, Figure 19 is a diagram showing changes in the oxygen and hydrogen concentration in the reactor water according to the embodiment of Figure 18, and Figure 20
The figure is a cross-sectional view of the containment vessel showing another embodiment of the present invention for removing hydrogen within the reactor pressure vessel, and Figure 21 is the present invention for removing hydrogen within the reactor containment vessel by injecting oxygen. It is a system diagram showing an example of. 4... Recombiner 5... Cooler 6... Steam-water separator lO... Reactor containment vessel 13...
Pressure suppression chamber 14... Reactor pressure vessel 16...
・Turbine 17... Condenser 19...
Recombiner 21...Hydrogen storage device 31...Hydrogen storage metal cylinder 36...Hydrogen storage metal particles 37...
・Baffle 38...Saucer 42...Piping
44... Hydrogen storage metal cover 45
... Hydrogen concentration detector 46 ... Pressure reducing valve 47 ...
Hydrogen storage device 49... Relief valve 50... Exhaust pipe 52... FC853... Recombiner, 54... Oxygen injection device 55... Gas concentration analyzer 56... Flow meter agent Honda small
i flat ¥1 Figure 1 ``Ball Figure 3 Hydrogen concentration Figure 4 Figure 1 m = -■ H line spacing after the accident (hr) 1 item 1 degree C) Time after the accident (hr) Figure 9 '24 Fig. 12 Fig. 15 Time after the accident occurred (Nir) Fig. 19 Time after the accident (Nir) Fig. 20 448-448 Energy Research Institute Co., Ltd., 1168 Moriyama-cho, Hitachi City

Claims (1)

【特許請求の範囲】 1、原子炉格納容器内の水素ガスに接触せしめられる水
素吸蔵金属からなる水素捕捉体を備えたことを特徴とす
る原子炉格納容器内水素ガスの除去装置。 2、一端が原子炉格納容器の上部に、他端が該格納容器
の下部に接続され、流体の流れる方向にプロア、酸素水
素再結合器及び気水分離器をこの順に含む閉ループ流路
中に、上記水素捕捉体を上記気水分離器の下流に設けた
ことを特徴とする特許請求の範囲第1項記載の原子炉格
納容器内水素ガスの除去装置。 3、水素捕捉体を原子炉格納容器の内部に設けたことを
特徴とする特許請求の範囲第1項記載の原子炉格納容器
内水素ガスの除去装置。 4、水素吸蔵金属からなる多数の粒形の水素捕捉体を原
子炉格納容器内に上部から噴出させるようにしたことを
特徴とする特許請求の範囲第1項記載の原子炉格納容器
内水素ガスの除去装置。 5、沸騰水型原子炉の圧力容器の上部から原子炉格納容
器内の圧力抑制室のプール水中に至る管路中に減圧弁と
、該減圧弁の下流に位置する水素吸蔵金属からなる水素
捕捉体とを設けたことを特徴とする沸騰水型原子炉の圧
力容器内水素ガスを除去する装置。 6、水素捕捉体の下流において上記管路中に酸素水素再
結合器を設けたことを特徴とする特許請求の範囲第5項
記載の沸騰水型原子炉の圧力容器内水素ガスの除去装置
。 7、一端が原子炉格納容器の上部、に、他端が該格納容
器の下部に接続され、流体の流れる方向にプロア、酸素
水素再結合器及び気水分離器をこの順に含む閉ループ流
路と、上記酸素水素再結合器に酸素を該閉ループ外から
注入する装置とからなることを特徴とする原子炉格納容
器内水素ガスの除去装置。
[Scope of Claims] 1. A device for removing hydrogen gas in a reactor containment vessel, characterized by comprising a hydrogen trap made of a hydrogen storage metal and brought into contact with hydrogen gas in the reactor containment vessel. 2. One end is connected to the upper part of the reactor containment vessel, the other end is connected to the lower part of the containment vessel, and the closed loop flow path includes a proa, an oxygen hydrogen recombiner, and a steam/water separator in this order in the direction of fluid flow. 2. The device for removing hydrogen gas in a reactor containment vessel according to claim 1, wherein the hydrogen trap is provided downstream of the steam separator. 3. The device for removing hydrogen gas in a reactor containment vessel according to claim 1, characterized in that a hydrogen trap is provided inside the reactor containment vessel. 4. Hydrogen gas in the reactor containment vessel according to claim 1, characterized in that a large number of granular hydrogen traps made of hydrogen storage metal are ejected from the upper part of the reactor containment vessel. removal device. 5. Hydrogen capture consisting of a pressure reducing valve in the pipeline from the top of the pressure vessel of a boiling water reactor to the pool water of the pressure suppression chamber in the reactor containment vessel, and a hydrogen storage metal located downstream of the pressure reducing valve. 1. A device for removing hydrogen gas in a pressure vessel of a boiling water reactor, characterized in that it is provided with a body. 6. The device for removing hydrogen gas in a pressure vessel of a boiling water nuclear reactor according to claim 5, characterized in that an oxygen-hydrogen recombiner is provided in the pipeline downstream of the hydrogen trapping body. 7. A closed loop flow path having one end connected to the upper part of the reactor containment vessel and the other end connected to the lower part of the containment vessel, including a proa, an oxygen hydrogen recombiner, and a steam water separator in this order in the direction of fluid flow; and a device for injecting oxygen into the oxygen-hydrogen recombiner from outside the closed loop.
JP57230867A 1982-12-24 1982-12-24 Device of removing hydrogen in reactor container or pressurevessel Granted JPS59116581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57230867A JPS59116581A (en) 1982-12-24 1982-12-24 Device of removing hydrogen in reactor container or pressurevessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57230867A JPS59116581A (en) 1982-12-24 1982-12-24 Device of removing hydrogen in reactor container or pressurevessel

Publications (2)

Publication Number Publication Date
JPS59116581A true JPS59116581A (en) 1984-07-05
JPH046920B2 JPH046920B2 (en) 1992-02-07

Family

ID=16914545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57230867A Granted JPS59116581A (en) 1982-12-24 1982-12-24 Device of removing hydrogen in reactor container or pressurevessel

Country Status (1)

Country Link
JP (1) JPS59116581A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4631164A (en) * 1981-11-05 1986-12-23 Kraftwerk Union Aktiengesellschaft Nuclear power station with a containment
JP2011506990A (en) * 2007-12-21 2011-03-03 テーエヌ・アンテルナシオナル Radioactive material transport and / or storage device designed to allow controlled release of oxygen in a sealed container
CN110379526A (en) * 2019-06-11 2019-10-25 岭澳核电有限公司 Pressurized water reactor nuclear island container blowing method and row's hydrogen purge system
KR102202856B1 (en) * 2019-10-31 2021-01-14 한국과학기술원 Underground passive severe accident mitigation apparatus with toroidal shape for preventing containment integrity and for natural decontamination of radioactive materials
JP2021096200A (en) * 2019-12-19 2021-06-24 日立Geニュークリア・エナジー株式会社 Nuclear power plant
EP4047618A4 (en) * 2019-10-19 2023-04-26 Takashi Sato Nuclear power plant

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52135000A (en) * 1976-05-07 1977-11-11 Mitsubishi Heavy Ind Ltd Treating method for radioactive waste gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52135000A (en) * 1976-05-07 1977-11-11 Mitsubishi Heavy Ind Ltd Treating method for radioactive waste gas

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4631164A (en) * 1981-11-05 1986-12-23 Kraftwerk Union Aktiengesellschaft Nuclear power station with a containment
JP2011506990A (en) * 2007-12-21 2011-03-03 テーエヌ・アンテルナシオナル Radioactive material transport and / or storage device designed to allow controlled release of oxygen in a sealed container
CN110379526A (en) * 2019-06-11 2019-10-25 岭澳核电有限公司 Pressurized water reactor nuclear island container blowing method and row's hydrogen purge system
EP4047618A4 (en) * 2019-10-19 2023-04-26 Takashi Sato Nuclear power plant
KR102202856B1 (en) * 2019-10-31 2021-01-14 한국과학기술원 Underground passive severe accident mitigation apparatus with toroidal shape for preventing containment integrity and for natural decontamination of radioactive materials
JP2021096200A (en) * 2019-12-19 2021-06-24 日立Geニュークリア・エナジー株式会社 Nuclear power plant

Also Published As

Publication number Publication date
JPH046920B2 (en) 1992-02-07

Similar Documents

Publication Publication Date Title
JPH04230893A (en) Passive cooling apparatus for storing space of atomic reactor using isolated condenser
JP2014048043A (en) Gas treatment facility of nuclear power plant
JP2020041834A (en) Hydrogen treatment system, nuclear reactor facility and hydrogen treatment method
JP2016507758A (en) Pressurized water reactor depressurization system
JPS59116581A (en) Device of removing hydrogen in reactor container or pressurevessel
JP6000614B2 (en) Containment vessel vent device and vent method
JPH07209488A (en) Radioactivity emission reducing device
US4075060A (en) Method for removing fission products from a nuclear reactor coolant
US3910817A (en) Method and apparatus for removing radioactive gases from a nuclear reactor
JP2011252837A (en) Heat removal system and method for reactor container
JPH0298689A (en) Container pressure suppressor
JPH0990092A (en) Reactor container
JPH06230166A (en) Protective system for reactor vessel
Zhang et al. Thermal-Hydraulic comparative analysis of G-III+ BWR and PWR passive safety features under Loss of coolant accident
JPS6375691A (en) Natural circulation type reactor
JPH04254795A (en) Cooling system of nuclear power station
JPH07117595B2 (en) PCV decompression vent system
JPH0434395A (en) Failure prevention equipment of reactor container
FR2944377A1 (en) COLD STOP SYSTEM FOR SODIUM COOLED REACTOR.
JPH0283498A (en) Method and apparatus for suppressing diffusion of tritium
JPH03200097A (en) Control system for concentration of combustible gas in atomic power plant
JP7348814B2 (en) nuclear power plant
Choia et al. A Study on Hydrogen Explosion Possibility in the Containment Filtered Venting System During Severe Accident
JPS62150198A (en) Hydrogen-gas injection-recovery device for boiling water type reactor
JPH0376439B2 (en)