JPH0434395A - Failure prevention equipment of reactor container - Google Patents

Failure prevention equipment of reactor container

Info

Publication number
JPH0434395A
JPH0434395A JP2139758A JP13975890A JPH0434395A JP H0434395 A JPH0434395 A JP H0434395A JP 2139758 A JP2139758 A JP 2139758A JP 13975890 A JP13975890 A JP 13975890A JP H0434395 A JPH0434395 A JP H0434395A
Authority
JP
Japan
Prior art keywords
pcv
hydrogen
released
loca
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2139758A
Other languages
Japanese (ja)
Inventor
Kazuhiko Takayama
和彦 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2139758A priority Critical patent/JPH0434395A/en
Publication of JPH0434395A publication Critical patent/JPH0434395A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PURPOSE:To shut off the possibility of H2 explosion to prevent the destructive failure of a vessel by immediately absorbing H2 released in a reactor container at the time of a reactor coolant loss accident. CONSTITUTION:When a hydrogen absorber housing powder-like hydrogen absorbing metal 11 is set in a dry well 1 of a vessel and a suppression chamber 7, H2 released at the time of a loss accident is immediately absorbed by the metal 11 to maintain low H2 concentration in the vessel so as to prevent explosion by H2. In addition, if the elements of the hydrogen absorber is formed and arranged so as to heighten the absorbing efficiency of H2, reliability can be maintained very high because it does not basically have movable parts.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は原子炉格納容器(以下、PCvと記す)内に放
出された水素ガス(以下、H2と記す)の爆発によって
PCvが破壊されることを防止したPCvの破壊防止装
置に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention is directed to a nuclear reactor containment vessel (hereinafter referred to as PCv) due to an explosion of hydrogen gas (hereinafter referred to as H2) released inside the reactor containment vessel (hereinafter referred to as PCv). The present invention relates to a PCv destruction prevention device that prevents a PCv from being destroyed.

(従来の技術) 原子炉冷却材喪失事故(以下LOCAと記す)時にRP
V内で発生するH2がPCv内に放出された場合、この
日2を迅速に吸収してPCv内のH8濃度を希釈してH
2による爆発の可能性を未然に防止する必要がある。
(Conventional technology) RP in the event of a loss of reactor coolant accident (hereinafter referred to as LOCA)
If H2 generated in V is released into PCv, it will quickly absorb H2 on this day and dilute the H8 concentration in PCv, resulting in H2 being released into PCv.
It is necessary to prevent the possibility of explosion due to 2.

H2は次の原因で発生する。H2 occurs due to the following reasons.

核分裂または放射性崩壊に伴う強い電離性放射線により
水()120)が分解してH2および酸素ガス(以下0
□と記す)を生ずる。これはLOGAにかかわらず常に
生じているが、LOGA時でない場合にはRPV内で発
生した後、主蒸気管、タービンを経て復水器に入り排ガ
ス処理装置で水に再結合させられて取除かれる。しかし
、 LOGA時には破断した配管からH2がPCv内に
放出される。
Strong ionizing radiation associated with nuclear fission or radioactive decay decomposes water ()120) into H2 and oxygen gas (hereinafter referred to as 0
(denoted as □) occurs. This always occurs regardless of LOGA, but if it is not LOGA, it occurs in the RPV, passes through the main steam pipe and turbine, enters the condenser, is recombined with water in the exhaust gas treatment equipment, and is removed. It will be destroyed. However, during LOGA, H2 is released into the PCv from the broken pipe.

他方、大口径破断によるLOGA時には燃料が一時的に
冷却材に囲まれなくなり露出することになって除熱量が
急減すると燃料被覆管の温度が急上昇する。この場合、
被覆管の主成分であるジルコニウム(Zr)が高温下で
は水を分解し酸化ジルコニウムとH2を発生する。これ
も破断配管からPCv内に放出される。
On the other hand, in the case of LOGA caused by a large-diameter fracture, the fuel is temporarily not surrounded by the coolant and is exposed, and the amount of heat removed rapidly decreases, causing the temperature of the fuel cladding to rise rapidly. in this case,
Zirconium (Zr), the main component of the cladding, decomposes water at high temperatures and generates zirconium oxide and H2. This is also released into the PCv from the broken pipe.

このようにLOGA時にはH2がPCv内に蓄積してい
くことになる。
In this way, H2 will accumulate in PCv during LOGA.

110万KWe級BWRの標準的な解析ではLOCA発
生の数分後にはPCvドライウェル内のH2濃度は2v
10(ボリュームバセント)程度に達して徐々に増加し
最大3v10を超えることになる。一方、o2濃度はL
OCA発生の数分後にはPCv内はLOCA以前から管
理方法にも依るが4v10程度を超え最大5V10程ま
で上昇する。PCv内はLOCA以前から管理方法にも
依るが4v70程度の02は存在している。
In a standard analysis of a 1.1 million KWe class BWR, the H2 concentration in the PCv dry well is 2v several minutes after the LOCA occurs.
It reaches about 10 (volume basis) and gradually increases to a maximum of 3v10. On the other hand, the o2 concentration is L
Several minutes after the occurrence of OCA, the internal temperature of PCv rises to more than 4v10 and reaches a maximum of 5v10, depending on the management method, even before LOCA. In PCv, 02 of about 4v70 has existed since before LOCA, depending on the management method.

Hlの爆発限界は02.5v10以上の存在下では4v
10以上であり、LOCA解析上ではLOCA発生後3
.5時間後に可燃性ガス濃度制御装置(以下FC5と記
す)の起動により爆発限界に達しないことになっている
The explosive limit of Hl is 4v in the presence of 02.5v10 or more.
10 or more, and according to LOCA analysis, 3 after LOCA occurs.
.. After 5 hours, the combustible gas concentration control device (hereinafter referred to as FC5) is activated to ensure that the explosion limit is not reached.

従来の技術でこのH2濃度を下げるためにFe2を用い
ている。
Conventional technology uses Fe2 to reduce this H2 concentration.

Fe2はpcvからHl、0□および窒素ガス(N2)
の混合気を導く導管、ブロワ−1予熱器、再結合器、冷
却器および弁、計装、電源から成る機器グループの総称
でありPCv外に置かれる。
Fe2 is converted from pcv to Hl, 0□ and nitrogen gas (N2)
It is a general term for a group of equipment that is located outside the PCv and consists of conduits that guide the air-fuel mixture, blower 1 preheater, recombiner, cooler and valves, instrumentation, and power supply.

Fe2の機能を第3図を参照しながら説明する。The function of Fe2 will be explained with reference to FIG.

pcvドライウェル1内の)I、、 02. N2混合
気は導管2によりブロワ−3に吸込まれる。ブロワ−3
から吐き出された混合気は予熱器4に入る。予熱器4は
混合気の温度を上げHlと02が化合し易くする。予熱
器4の加温には電気ヒーター8などが使われ温度を正確
にコントロールする予熱された混合気は次いで再結合器
5に入り、この再結合器5内で2Hl+O□→2H20
+反応熱という反応で水蒸気ができ減容化される。水蒸
気は冷却器6に入り反応熱を吸収すると共に水蒸気を凝
縮されたのち、導管10によってPCvサプレッション
チャンバー7に戻される。冷却器6内での除熱は標準的
なりWRではLOCAですでに起動している原子炉残留
熱除去(RHR)系の一次水9を用いている。
)I in pcv dry well 1, 02. The N2 mixture is drawn into the blower 3 via conduit 2. Blower 3
The air-fuel mixture discharged from the preheater 4 enters the preheater 4. The preheater 4 raises the temperature of the air-fuel mixture and makes it easier for Hl and 02 to combine. An electric heater 8 or the like is used to heat the preheater 4, and the temperature is accurately controlled.The preheated mixture then enters the recombiner 5, where it is converted to 2Hl+O□→2H20.
Water vapor is produced by the reaction called +reaction heat and the volume is reduced. The water vapor enters the cooler 6 and absorbs the heat of reaction and is condensed before being returned to the PCv suppression chamber 7 via a conduit 10. Heat removal in the cooler 6 is standard, and in the WR, primary water 9 of the reactor residual heat removal (RHR) system, which has already been activated in the LOCA, is used.

FCSシステムとしては、この設備の信頼性を確保する
ため、100%容量を2基持っている。
The FCS system has two units with 100% capacity to ensure the reliability of this equipment.

FCSシステムはLOCAが発生したのち、約30分間
程度で操作員がプラントの状況を判断して手動始動させ
る。始動信号が入ると予熱器4の加温が開始され約3時
間後(LOCA後3.5時間)で再結合機能が発揮でき
るようになる。この間、PCvドライウェル内はHl、
0□が蓄積し続けるが、爆発限界に至らないことが解析
上水されている。
After a LOCA occurs, the FCS system takes about 30 minutes for the operator to assess the plant situation and manually start the system. When the start signal is input, heating of the preheater 4 is started, and the recombination function becomes available after about 3 hours (3.5 hours after LOCA). During this time, Hl inside the PCv dry well,
Analysis shows that 0□ continues to accumulate, but does not reach the explosive limit.

(発明が解決しようとする課題) 前述したようにLOCA時にはHl、0□が発生しPC
v内に蓄積され、LOCA発生後3.5時間経過してか
らHl (同時に1/2体積の0□)を処理する様にな
るが、これ等の課題には次のようなものがある。
(Problem to be solved by the invention) As mentioned above, at the time of LOCA, Hl and 0□ occur and the PC
3.5 hours after the occurrence of LOCA, Hl (at the same time 1/2 volume of 0□) is processed, but these problems include the following.

Q)Fe2には回転体および可動部を持つ。Q) Fe2 has a rotating body and a moving part.

・・・故障の可能性がある。...There is a possibility of a malfunction.

■FC5作動には電源を必要とする。■Power supply is required for FC5 operation.

・・・停電の可能性がある。...There is a possibility of a power outage.

■pcv外に配管を持つ。■Have piping outside the PCV.

・・・LOCA時と同様に配管破断の可能性がある。...There is a possibility of pipe breakage as in the case of LOCA.

(6)FC5機能発揮までに時間を要する。(6) It takes time to demonstrate the FC5 function.

・・・即応性がない。...There is no immediate response.

■操作員の判断で始動させる。■Start at the discretion of the operator.

・・・LOCA時に始動されない可能性がある。...There is a possibility that it will not be started at the time of LOCA.

上記■〜■のためFCSシステムでは100%容量を2
基備えている。また、設備の信頼度も可能な限り高めて
はある。しかし、に)では即応性がなく、事故想定を単
一でないと仮定すると危険度が大きくなる。■は設計思
想によっては自動起動にもできる。
Due to the above ■~■, the FCS system has 100% capacity 2
It is equipped with basics. Additionally, the reliability of the equipment has been made as high as possible. However, there is no immediate response in (2), and assuming that the accident scenario is not unique, the risk increases. ■ can also be started automatically depending on the design philosophy.

本発明は上記課題を解決するためになされたもので、 
LOCA時にPCv内に放出されるHlを速やかに吸収
してHlによる爆発を未然に防止し、もってPCvの破
壊を防止することができるPCvの破壊防止装置を提供
することにある。
The present invention was made to solve the above problems,
To provide a PCv destruction prevention device capable of quickly absorbing Hl released into a PCv at the time of LOCA, preventing explosion due to Hl, and thereby preventing destruction of the PCv.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は原子炉格納容器内に水素ガスを吸着する水素吸
蔵合金を収容した水素吸着装置が設置されてなることを
特徴とする。
(Means for Solving the Problems) The present invention is characterized in that a hydrogen adsorption device containing a hydrogen storage alloy that adsorbs hydrogen gas is installed in a reactor containment vessel.

(作 用) 水素吸蔵金属を収容した水素吸着装置をPCV内ドラド
ライウェルびサプレッションチャンバなどに設置すると
、LOCA時に放出されたHlを該金属が速やかに吸収
し、PCv内のH2濃度を低い状態に保ち、Hlによる
爆発を未然に防止する。
(Function) When a hydrogen adsorption device containing a hydrogen storage metal is installed in the Doradry well or suppression chamber in the PCV, the metal quickly absorbs Hl released during LOCA, reducing the H2 concentration in the PCV to a low state. to prevent explosions caused by Hl.

また、水素吸着装置のエレメントを■2の吸収効率が高
くなるように形成しかつ配列すれば基本的に可動部を必
要としないため信頼度を極めて高く保つことができる。
Furthermore, if the elements of the hydrogen adsorption device are formed and arranged so as to increase the absorption efficiency (2), the reliability can be maintained extremely high since no moving parts are basically required.

(実施例) 第1図および第2図を参照しながら本発明に係る原子炉
格納容器の破壊防止装置の一実施例を説明する。
(Example) An example of the destruction prevention device for a reactor containment vessel according to the present invention will be described with reference to FIGS. 1 and 2.

第1図中、符号11は粉末状水素吸蔵金属を示しており
、この金属1が多孔質金属円筒12内に充填されてエレ
メント13が形成されている。
In FIG. 1, reference numeral 11 indicates a powdered hydrogen storage metal, and this metal 1 is filled into a porous metal cylinder 12 to form an element 13.

このエレメント13が第2図に示したように箱形状枠体
14内に格納されて破壊防止装置i15が構成される。
As shown in FIG. 2, this element 13 is housed within a box-shaped frame 14 to constitute a destruction prevention device i15.

水素吸蔵金属11としてはパラジウム黒、パラジウム、
鉄−チタン合金、ランタン−ニッケル合金、マグネシウ
ム−ニッケル、鉄−ニッケル合金などH2を吸収すると
発熱とともに形態が変化し、吸収したH2は加熱すれば
吐出するものを使用する。このため1選択される金属は
水素放出温度の高いものが望ましい。
As the hydrogen storage metal 11, palladium black, palladium,
We use materials such as iron-titanium alloys, lanthanum-nickel alloys, magnesium-nickel alloys, and iron-nickel alloys, which change their shape with heat generation when they absorb H2, and which discharge the absorbed H2 when heated. For this reason, it is desirable that the metal selected has a high hydrogen release temperature.

水素吸蔵金属11はH2との接触面積を大きくし、かつ
H2を吸蔵した時の変化を吸収するためには活性炭状の
微粉末またはコークス状のものを選択することが望まし
い。
For the hydrogen storage metal 11, in order to increase the contact area with H2 and to absorb changes when H2 is stored, it is desirable to select a fine powder in the form of activated carbon or a coke-like material.

また、水素吸蔵金属11を充填する多孔質金属円筒12
はH2を透過させるとともにある程度の重さを支え、か
つ吸収時の変形にも耐えることが必要である。そのため
には発熱を迅速に逃がすための銅製焼結フィルタを使用
することが望ましい。
Also, a porous metal cylinder 12 filled with hydrogen storage metal 11
must be able to transmit H2, support a certain amount of weight, and withstand deformation during absorption. For this purpose, it is desirable to use a copper sintered filter to quickly release heat.

しかして、第1図に示したエレメント13を複数個集合
して第2図に示した枠体14に格納して構成した破壊防
止装置15は第3図に示したようにPCVドライウェル
1およびPCvサプレッションチャンバ7内の壁面に取
り付けられる。
Therefore, the destruction prevention device 15, which is constructed by assembling a plurality of elements 13 shown in FIG. 1 and storing them in the frame 14 shown in FIG. It is attached to the wall inside the PCv suppression chamber 7.

この破壊防止装置!115のエレメント13はプラント
の定期点検毎に一部をサンプリングし、水素吸蔵の有無
を調へ、常時H2を吸蔵し得る状態にあることを確認す
る。水素吸蔵−吐出は熱の介在する可逆反応であり、再
生は極めて容易である。
This anti-destruction device! A portion of the element 13 of 115 is sampled at each periodic inspection of the plant to check whether it stores hydrogen or not, and to confirm that it is always in a state where it can store H2. Hydrogen storage and discharge is a reversible reaction mediated by heat, and regeneration is extremely easy.

上述したように、LOCA時の水素吸収は可能であるが
、設備の能力を100%確保するには二次的にエレメン
トエ3を冷却できる補助設備を設けるとより効率が上昇
する。逆に付帯設備の信頼度のため。
As described above, hydrogen absorption during LOCA is possible, but in order to ensure 100% capacity of the equipment, efficiency will be further improved if auxiliary equipment that can cool the element 3 secondarily is provided. On the contrary, it is because of the reliability of the incidental equipment.

必要以上の効率上昇は信頼度が低下するので好ましくな
い。
Increasing efficiency more than necessary is undesirable because it lowers reliability.

上記実施例において水素吸蔵金属11にパラジウムを使
用した場合、パラジウム黒粉末は自らの体積の900倍
の体積のH2を吸蔵する。パラジウム(比重12、原子
量206)黒の能力を身近な例で比較すると、パラジウ
ム黒70kgでH2を約450kg吸着できる。これは
70kg程度の7Nrriの気体を150気圧で貯蔵す
るボンベの重さであるが、7Nrriの)12の重さは
約600gであるからほぼH2ボンベ級の吸蔵能力を有
し、十分ボンベに代り得る能力を持っている6LOCA
時、110万KWe級プラントでのH2の放出量は約3
0kg程度(35ONrn’)と推定される。パラジウ
ム必要量に換算すると約5トン程度である。パラジウム
は貴金属であり、この量は高価であるが、吸蔵能力を多
少犠牲にして安価な金属とした場合でも、それ程多量に
はならない。
In the above embodiment, when palladium is used as the hydrogen storage metal 11, the palladium black powder stores H2 in a volume 900 times its own volume. Comparing the ability of palladium black (specific gravity 12, atomic weight 206) using a familiar example, 70 kg of palladium black can adsorb approximately 450 kg of H2. This is the weight of a cylinder that stores about 70 kg of 7Nrri gas at 150 atmospheres, but since the weight of 7Nrri) 12 is about 600g, it has almost the same storage capacity as an H2 cylinder, and is enough to replace a cylinder. 6LOCA that has the ability to obtain
At the same time, the amount of H2 released in a 1.1 million KWe class plant is approximately 3
It is estimated to be around 0kg (35ONrn'). The required amount of palladium is approximately 5 tons. Palladium is a noble metal, and this amount is expensive, but even if some storage capacity is sacrificed for a cheaper metal, the amount will not be that large.

上記実施例によればPCV内に放出される殆んどの12
を破壊防止装置で速やかに吸収できるため。
According to the above example, most of the 12
can be quickly absorbed by the anti-destruction device.

破壊防止装置をPCV内に広く、ところどころに分配配
置することによってその能力を十分発揮ささせることが
できる。
By widely distributing and arranging the destruction prevention device in various places within the PCV, its ability can be fully demonstrated.

〔発明の効果〕〔Effect of the invention〕

本発明によればLOCA時にPCV内に放出される!(
、を速やかに吸収してH2爆発の可能性を遮断しPCV
の破滅的な破壊を防止することができる。
According to the present invention, it is released into the PCV during LOCA! (
, to quickly absorb the H2 explosion and block the possibility of H2 explosion.
can prevent catastrophic destruction of

また、本発明では可動部分がないため、故障する恐れが
なく信頼性が向上する。
Furthermore, since there are no moving parts in the present invention, there is no risk of failure and reliability is improved.

さらしこ本発明はH2を吸着するものであり、 Fe2
のように結合させて水とするものではないからFe5と
併用することにより長時間にわたりH2の挙動に対応で
きる。
The present invention adsorbs H2, Fe2
Since it does not combine to form water as in the case of the above method, it is possible to cope with the behavior of H2 over a long period of time by using it together with Fe5.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る原子炉格納容器の破壊防止装置の
一実施例における水素吸着エレメントを示す斜視図、第
2図は第1図の水素吸着エレメントを集合して形成した
破壊防止装置を一部切欠して示す斜視図、第3図は従来
の原子炉格納容器の破壊防止装置を示す系統図である。 1・・・PCVドライウェル  2・・・導管3・・・
ブロワ−4・・・予熱器
FIG. 1 is a perspective view showing a hydrogen adsorption element in an embodiment of the destruction prevention device for a reactor containment vessel according to the present invention, and FIG. 2 shows a destruction prevention device formed by aggregating the hydrogen adsorption elements shown in FIG. FIG. 3 is a partially cutaway perspective view and a system diagram showing a conventional destruction prevention device for a reactor containment vessel. 1...PCV dry well 2...Conduit 3...
Blower 4...Preheater

Claims (1)

【特許請求の範囲】[Claims] 原子炉格納容器内に水素ガスを吸着する水素吸蔵合金を
収容した水素吸着装置が設置されてなることを特徴とす
る原子炉格納容器の破壊防止装置。
A destruction prevention device for a reactor containment vessel, characterized in that a hydrogen adsorption device containing a hydrogen storage alloy that adsorbs hydrogen gas is installed in the reactor containment vessel.
JP2139758A 1990-05-31 1990-05-31 Failure prevention equipment of reactor container Pending JPH0434395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2139758A JPH0434395A (en) 1990-05-31 1990-05-31 Failure prevention equipment of reactor container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2139758A JPH0434395A (en) 1990-05-31 1990-05-31 Failure prevention equipment of reactor container

Publications (1)

Publication Number Publication Date
JPH0434395A true JPH0434395A (en) 1992-02-05

Family

ID=15252705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2139758A Pending JPH0434395A (en) 1990-05-31 1990-05-31 Failure prevention equipment of reactor container

Country Status (1)

Country Link
JP (1) JPH0434395A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11166996A (en) * 1997-12-04 1999-06-22 Toshiba Corp Hydrogen removing device of reactor containment
JP2013185968A (en) * 2012-03-08 2013-09-19 Mitsubishi Heavy Ind Ltd Hydrogen removal device
WO2015016090A1 (en) * 2013-08-01 2015-02-05 国立大学法人北海道大学 Non-electric hydrogen collecting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11166996A (en) * 1997-12-04 1999-06-22 Toshiba Corp Hydrogen removing device of reactor containment
JP2013185968A (en) * 2012-03-08 2013-09-19 Mitsubishi Heavy Ind Ltd Hydrogen removal device
WO2015016090A1 (en) * 2013-08-01 2015-02-05 国立大学法人北海道大学 Non-electric hydrogen collecting device

Similar Documents

Publication Publication Date Title
Neeb The radiochemistry of nuclear power plants with light water reactors
US3406094A (en) Process and device for the discharge of fission gases from nuclear fuel elements
CN109166641B (en) Low-level radioactive waste gas treatment system in lead bismuth reactor
Lohnert The consequences of water ingress into the primary circuit of an HTR-Module-From design basis accident to hypothetical postulates
JPH0434395A (en) Failure prevention equipment of reactor container
US5337336A (en) Method and apparatus to decrease radioactive iodine release
JPS59116581A (en) Device of removing hydrogen in reactor container or pressurevessel
US3988075A (en) Nuclear fuel element
JP2000009873A (en) Hydrogen treatment facility in reactor container
EP0360240B1 (en) Method of restraining diffusion of tritium and apparatus for same
JP6760900B2 (en) Boiling water reactor
Tosti et al. Report review of gas treatment technologies
US3804709A (en) Nuclear fuel element
Henrie et al. Evaluation of special safety issues associated with handling the Three Mile Island Unit 2 core debris
JPH03200097A (en) Control system for concentration of combustible gas in atomic power plant
Bracht et al. Analysis of strategies for containment venting in case of severe accidents
EP0296954A1 (en) Modular neutron absorber element and modular capsule for such an element
JPH05164892A (en) Inflammable gas control device for nuclear reactor
JPS63289488A (en) Pressure controller for containment vessel of nuclear reactor
Heics et al. Design of a second generation secondary enclosure clean-up system
JPS6252276B2 (en)
Gual et al. Analysis of hydrogen control in a Small Modular Reactor during TLOFW severe accident
JPS6069599A (en) Hydrogen treater for light-water reactor
Antariksawan et al. The assessment of technological and safety aspects of small power reactor SMART
JP2012247331A (en) Nuclear power plant and method of operating the same