WO2015016090A1 - Non-electric hydrogen collecting device - Google Patents

Non-electric hydrogen collecting device Download PDF

Info

Publication number
WO2015016090A1
WO2015016090A1 PCT/JP2014/069217 JP2014069217W WO2015016090A1 WO 2015016090 A1 WO2015016090 A1 WO 2015016090A1 JP 2014069217 W JP2014069217 W JP 2014069217W WO 2015016090 A1 WO2015016090 A1 WO 2015016090A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
containment vessel
collector
storage material
power
Prior art date
Application number
PCT/JP2014/069217
Other languages
French (fr)
Japanese (ja)
Inventor
直幸 橋本
惣明 大貫
繁人 礒部
竜太郎 日野
前川 康成
小島 由継
和彦 常世田
Original Assignee
国立大学法人北海道大学
国立大学法人広島大学
太平洋セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学, 国立大学法人広島大学, 太平洋セメント株式会社 filed Critical 国立大学法人北海道大学
Publication of WO2015016090A1 publication Critical patent/WO2015016090A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C9/00Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
    • G21C9/004Pressure suppression
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C9/00Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
    • G21C9/04Means for suppressing fires ; Earthquake protection
    • G21C9/06Means for preventing accumulation of explosives gases, e.g. recombiners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/108Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the present invention relates to a non-power type hydrogen collector.
  • Patent Document 1 As a technology for reducing hydrogen concentration by dilution, a portable nitrogen gas generator supplies nitrogen gas into the reactor containment vessel, deactivates the reactor containment vessel, and the atmosphere in the reactor containment vessel explodes with hydrogen. It is known to avoid reaching a flammable composition that causes oxidization (Patent Document 1). However, since the method of Patent Document 1 supplies nitrogen gas with a nitrogen gas generator, the nitrogen gas generator does not operate when the entire power source is lost, and the reactor containment vessel cannot be inactivated.
  • Patent Document 2 As a hydrogen concentration reduction technology by exhaust and release, when hydrogen in a building is detected, the building is filled with a hydrogen / air / inert gas mixture by injecting an inert gas into the building, It is known to release the mixed gas into the atmosphere while controlling the hydrogen concentration in the mixed gas so as to maintain a safe concentration below the explosion limit (Patent Document 2). According to the technique described in Patent Document 2, the inert gas is ejected into the building by the inert gas ejecting device, and the mixed gas is released into the atmosphere by opening the shielding plate of the exhaust pipe.
  • the inert gas ejection device is operated by an operation signal from the control panel, and the opening of the exhaust pipe shielding plate is operated in conjunction with the operation of the inert gas ejection device or by an operation from another monitoring device.
  • the power supply is secured. For this reason, when the situation of a total power supply loss generate
  • Patent Document 3 a method of reducing hydrogen by converting hydrogen to water using an oxidation catalyst
  • Patent Document 4 a method of converting hydrogen to ammonia using an ammonia catalyst
  • Patent Document 3 uses a heating type recombiner that recombines hydrogen and oxygen, but it is necessary to control the temperature by heating to about 700 ° C. is there. However, if all power is lost, heating is not possible. Patent Document 3 describes that hydrogen can be reduced without using power or electric power. However, a predetermined concentration of oxygen for reducing hydrogen is required. When a large amount of hydrogen is generated, if the amount of oxygen is small, the reduction of hydrogen is insufficient, and measures such as oxygen injection are required. If all power is lost, a sufficient reduction in hydrogen concentration cannot be expected. In addition, since the temperature rises to 700 ° C., there is a problem in that they are damaged when used in a relatively small room or a room with electrical equipment. Furthermore, it is necessary to use an expensive metal such as palladium.
  • Patent Documents 5 to 8 when hydrogen gas is generated, the hydrogen gas concentration is reduced by bringing the hydrogen gas into contact with the hydrogen storage alloy by opening / closing a valve or blowing with a blower under the control of a hydrogen detector or a controller. A method is presented. Since the hydrogen storage alloy generates heat, a cooling method is also proposed. However, when the entire power supply is lost, the control and the device cannot be operated, and the hydrogen gas cannot be reduced.
  • Patent Documents 9 to 11 propose a method capable of reducing hydrogen even without a power source.
  • Patent Document 9 is a method of suspending a hydrogen storage alloy in a thin plate shape
  • Patent Document 10 is a method of placing a hydrogen storage alloy powder in a porous metal
  • Patent Document 11 is storing a hydrogen storage alloy in a metal box. And how to install it. In these methods, since the hydrogen storage alloy deteriorates due to oxidation when installed, there is a problem that the hydrogen storage capacity is lowered.
  • the present invention has been made in view of the circumstances as described above, and provides a non-power-type hydrogen collection device that can prevent hydrogen explosion in a nuclear power generation facility even when the entire power source is lost. It is an issue.
  • a non-powered hydrogen collector having a hydrogen selective permeable diaphragm and a hydrogen storage material is used in a reactor containment vessel in a nuclear reactor building. It has been found that by collecting hydrogen, hydrogen leakage from the reactor containment vessel to the reactor building can be prevented, and hydrogen explosion due to hydrogen retention in the reactor building can be prevented.
  • the non-powered hydrogen collecting apparatus of the present invention is a non-powered hydrogen collecting apparatus that collects hydrogen in a nuclear reactor containment vessel of a nuclear power generation facility, and is provided in the nuclear reactor containment vessel, It has a hydrogen selective permeable membrane and a hydrogen storage material that collects hydrogen, and the hydrogen storage material is provided in the hydrogen selective permeable membrane.
  • the hydrogen selective permeable membrane is a polymer porous membrane mainly containing a silicone resin containing silica or a polymer porous membrane mainly containing an aromatic hydrocarbon resin. Is preferred.
  • the hydrogen storage material is preferably a metal material mainly composed of magnesium.
  • the metal material containing magnesium as a main component is a mixture of magnesium hydride and Nb 2 O 5 with a maximum acceleration of 3 G (G is gravitational acceleration) or more and a maximum A material obtained by nanostructuring / organizing by mechanical milling treatment in which a value obtained by dividing the product of acceleration and processing time by the product of weight of the processing sample and acceleration of gravity is 110 (hour / g) or more is preferable.
  • this non-power-type hydrogen collector has a hydrogen detector, and the hydrogen detector is provided in the hydrogen selective permeable diaphragm.
  • FIG. 1 is a schematic configuration diagram of a non-powered hydrogen collecting apparatus according to an embodiment of the present invention.
  • the non-power-type hydrogen collection device 7 includes a hydrogen selective permeable diaphragm 1 and a hydrogen storage material 2, and the hydrogen storage material 2 is installed in a container surrounded by the hydrogen selective permeable diaphragm 1. It is. Accordingly, it is possible to suppress a decrease in activation degree due to oxidation of the hydrogen storage material 2, and the activation degree of the hydrogen storage material 2 can be effectively maintained.
  • the hydrogen selective permeable membrane 1 may be any material that allows hydrogen to permeate into the non-powered hydrogen collector 7.
  • the hydrogen selective permeable membrane 1 it is desirable to select one that has hydrogen selective permeability and does not hinder the effect of the hydrogen storage material 2, and is a polymer membrane or fragrance mainly composed of silica-containing silicone resin.
  • a polymer film mainly composed of an aromatic hydrocarbon resin and the form is preferably a porous film.
  • a material having high hydrogen selective permeability such as a polyimide porous membrane such as Kapton (registered trademark) is preferable.
  • a known material can be used as the hydrogen storage material 2.
  • a metal material such as a metal material mainly composed of rare earth elements, a metal material mainly composed of titanium, a metal material mainly composed of vanadium, a metal material mainly composed of magnesium, a metal alanade (for example, NaAlH 4 And lightweight inorganic compounds such as LiAlH 4 ), carbon and the like.
  • Metallic magnesium is rich in resource reserves, inexpensive, lightweight and has a large hydrogen storage capacity. Therefore, it is preferable to use a metal material mainly composed of magnesium as the hydrogen storage material 2.
  • a mixture of magnesium hydride and Nb 2 O 5 has a maximum acceleration of 3G (G is gravitational acceleration) or more, and the product of the maximum acceleration and the processing time is divided by the product of the weight of the processing sample and the gravitational acceleration.
  • G gravitational acceleration
  • the metal material mainly composed of magnesium that is nanostructured and organized by mechanical milling treatment with a measured value of 110 (hour / g) or more has a high hydrogen storage rate at room temperature
  • the hydrogen storage material in this embodiment 2 is preferable.
  • a specific method for producing the metal material containing magnesium as a main component is described in Japanese Patent No. 4986101, and the description thereof will be omitted.
  • the hydrogen occlusion material 2 can be reactivated by removing it by a treatment such as heat treatment or degassing.
  • a metal material containing magnesium as a main component can be reactivated by evacuating at a temperature of about 300 ° C.
  • the non-powered hydrogen collector 7 may be provided with the hydrogen detector 3 and the hydrogen detector 3 in the hydrogen selective permeable diaphragm 1 together with the hydrogen storage material 2.
  • the hydrogen detector 3 can confirm the hydrogen storage amount, set the replacement time of the hydrogen storage material 2 and determine the replacement at the time of inspection, etc., which is effective for maintenance. When the hydrogen storage material 2 is replaced, the above-described reactivation process can be performed as necessary.
  • a commercially available hydrogen detector 3 can be used.
  • the reactor containment vessel in the reactor building 4 of the nuclear power generation facility is installed in the reactor containment vessel 5 by installing the non-power type hydrogen collecting device 7 according to the embodiment of the present invention. Since hydrogen in the reactor 5 can be collected, hydrogen leakage from the reactor containment vessel 5 to the reactor building 4 can be prevented, and hydrogen explosion due to hydrogen retention in the reactor building 4 can be prevented.
  • a reactor containment vessel 5 is provided, and in the reactor containment vessel 5, a reactor pressure vessel 6, a steam generator (not shown), and the like are provided.
  • a non-power-type hydrogen collection device 7 is provided outside the reactor pressure vessel 6.
  • the hydrogen storage material in the non-powered hydrogen collector 7 passively collects hydrogen, the hydrogen in the reactor containment vessel 5 can be collected regardless of dynamic equipment. Hydrogen leakage from the reactor containment vessel 5 to the reactor building 4 is suppressed by the hydrogen collection in the reactor containment vessel 5 by the hydrogen storage material in the non-power-type hydrogen collector 7, so that the inside of the reactor building 4 It is possible to prevent the hydrogen from staying in the tank. Therefore, hydrogen explosion due to hydrogen retention in the reactor building 4 can be prevented even when all power is lost.
  • the powerless hydrogen collector 7 is installed in the reactor containment vessel 5, but the weight of the hydrogen storage material, the number of devices, and the shape of the powerless hydrogen collector 7 are not particularly limited. What is necessary is just to set suitably in consideration of the weight of the hydrogen storage material, the number of apparatuses, the assumed maximum hydrogen generation amount, and the like.
  • the non-powered hydrogen collection device 7 can be placed in the reactor containment vessel 5, suspended or attached to the wall, and can be shaped to suit each of them.
  • the arrangement position of the collection device 7 is not particularly limited.
  • the hydrogen is collected at a position where the hydrogen collection efficiency is good.
  • the device 7 may be arranged.
  • the power-free hydrogen collection device of the present invention is provided in the reactor containment vessel 5 and passively collects hydrogen, so even when the entire power supply is lost, the reactor containment vessel Hydrogen leakage from the reactor building 3 to the reactor building 3 can be prevented, and hydrogen explosion due to hydrogen retention in the reactor building 4 can be prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Mechanical Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

A non-electric hydrogen collecting device (7) is a device that collects the hydrogen inside a reactor containment vessel (5) of a nuclear power plant. The non-electric hydrogen collecting device (7) is provided within the reactor containment vessel (5) and has a hydrogen permselective diaphragm (1) and a hydrogen storage material (2) that collects hydrogen. The hydrogen storage material (2) is provided within the hydrogen permselective diaphragm (1).

Description

無電力型水素捕集装置Non-powered hydrogen collector
 本発明は、無電力型水素捕集装置に関する。 The present invention relates to a non-power type hydrogen collector.
 原子力発電施設において原子炉炉心に設置された燃料の冷却が不可能となるような事故が発生した場合、原子炉で燃料被覆管を構成するジルコニウム合金と水蒸気とが反応して水素が発生する。原子炉格納器内の雰囲気が可燃組成(水素ガス濃度4%、酸素ガス濃度5%)に達した場合には水素爆発が引き起こされる懸念がある。そこでこれまで水素爆発を防止する技術として、希釈による水素濃度低減、排気・放出による水素濃度低減、触媒による水素低減、吸蔵による水素低減による水素爆発防止技術が提案されている。 When an accident occurs in the nuclear power generation facility that makes it impossible to cool the fuel installed in the reactor core, hydrogen reacts with the zirconium alloy that forms the fuel cladding in the nuclear reactor and water vapor. When the atmosphere in the reactor containment reaches a combustible composition (hydrogen gas concentration 4%, oxygen gas concentration 5%), there is a concern that a hydrogen explosion may be caused. Thus, as a technology for preventing a hydrogen explosion, a hydrogen explosion prevention technology by reducing hydrogen concentration by dilution, reducing hydrogen concentration by exhaust / release, reducing hydrogen by catalyst, and reducing hydrogen by occlusion has been proposed.
 希釈による水素濃度低減技術としては、可搬式の窒素ガス発生装置で原子炉格納容器内に窒素ガスを供給し、原子炉格納容器内を不活性化して、原子炉格納容器内の雰囲気が水素爆発を引き起こすような可燃組成に達することを回避することが知られている(特許文献1)。しかしながら、特許文献1の方法は、窒素ガス発生装置で窒素ガスを供給するため、全電源喪失した場合には窒素ガス発生装置が作動せず原子炉格納容器内を不活性化することができない。 As a technology for reducing hydrogen concentration by dilution, a portable nitrogen gas generator supplies nitrogen gas into the reactor containment vessel, deactivates the reactor containment vessel, and the atmosphere in the reactor containment vessel explodes with hydrogen. It is known to avoid reaching a flammable composition that causes oxidization (Patent Document 1). However, since the method of Patent Document 1 supplies nitrogen gas with a nitrogen gas generator, the nitrogen gas generator does not operate when the entire power source is lost, and the reactor containment vessel cannot be inactivated.
 排気・放出による水素濃度低減技術としては、建屋内の水素を検知した際に該建屋内に不活性気体を噴出させることにより該建屋内に水素/空気/不活性気体の混合気体を充満せしめ、該混合気体における水素濃度を爆発限界以下の安全濃度に保持するように制御しつつ該混合気体を大気中に放出することが知られている(特許文献2)。特許文献2記載の技術によれば、建屋内への不活性気体の噴出は不活性気体噴出装置によって行われ、混合気体の大気中への放出は排気管の遮蔽板の開放によって行われる。ここで、不活性気体噴出装置は制御盤からの操作信号によって作動し、排気管の遮蔽板の開放は不活性気体噴出装置の作動に連動して、あるいは他の監視装置からの操作によって作動するなど、電源が確保された状態での作動が前提とされている。このため、全電源喪失という事態が発生した場合には不活性気体噴出装置及び排気管の遮蔽板が正常に作動しないことがあり得る。 As a hydrogen concentration reduction technology by exhaust and release, when hydrogen in a building is detected, the building is filled with a hydrogen / air / inert gas mixture by injecting an inert gas into the building, It is known to release the mixed gas into the atmosphere while controlling the hydrogen concentration in the mixed gas so as to maintain a safe concentration below the explosion limit (Patent Document 2). According to the technique described in Patent Document 2, the inert gas is ejected into the building by the inert gas ejecting device, and the mixed gas is released into the atmosphere by opening the shielding plate of the exhaust pipe. Here, the inert gas ejection device is operated by an operation signal from the control panel, and the opening of the exhaust pipe shielding plate is operated in conjunction with the operation of the inert gas ejection device or by an operation from another monitoring device. For example, it is assumed that the power supply is secured. For this reason, when the situation of a total power supply loss generate | occur | produces, the inert gas ejection apparatus and the shielding board of an exhaust pipe may not operate | move normally.
 触媒による水素低減技術としては、酸化触媒により水素を水に変換して水素を低減する方法(特許文献3)や、アンモニア触媒により水素をアンモニアに変換して水素を低減する方法(特許文献4)が知られている。 As a hydrogen reduction technique using a catalyst, a method of reducing hydrogen by converting hydrogen to water using an oxidation catalyst (Patent Document 3), or a method of converting hydrogen to ammonia using an ammonia catalyst (Patent Document 4). It has been known.
 特許文献3の酸化触媒により水素を水に変換して水素を低減する方法は、水素と酸素を再結合させる加熱式再結合器を用いるが、約700℃まで加熱して温度を制御する必要がある。しかし、全電源喪失した場合、加熱ができない。特許文献3には、動力や電力を使用せず水素を低減できると記載されている。しかし、水素を低減するための所定濃度の酸素が必要であり、水素が大量に発生した場合、酸素が少ないと水素の低減は不十分であるため、酸素の注入などの対策が必要となる。全電源喪失した場合、十分な水素濃度の低減効果は期待できない。また、700℃まで温度が上がるため、比較的小さい部屋や電気設備のある部屋で使用した場合に、それらの破損が起こってしまうといった問題点がある。さらに、パラジウム等の高価な金属を用いる必要がある。 The method of reducing hydrogen by converting hydrogen into water using the oxidation catalyst of Patent Document 3 uses a heating type recombiner that recombines hydrogen and oxygen, but it is necessary to control the temperature by heating to about 700 ° C. is there. However, if all power is lost, heating is not possible. Patent Document 3 describes that hydrogen can be reduced without using power or electric power. However, a predetermined concentration of oxygen for reducing hydrogen is required. When a large amount of hydrogen is generated, if the amount of oxygen is small, the reduction of hydrogen is insufficient, and measures such as oxygen injection are required. If all power is lost, a sufficient reduction in hydrogen concentration cannot be expected. In addition, since the temperature rises to 700 ° C., there is a problem in that they are damaged when used in a relatively small room or a room with electrical equipment. Furthermore, it is necessary to use an expensive metal such as palladium.
 特許文献4のアンモニア触媒により水素をアンモニアに変換して水素を低減する方法の場合も、水素を低減するための所定濃度の窒素が必要である。水素が大量に発生した場合、窒素が少ないと水素の低減は不十分であるため、窒素の注入などの対策が必要となる。全電源喪失した場合、十分な水素濃度の低減効果は期待できない。また、発生したアンモニアの処理も問題となる。
 水素吸蔵合金を用いて水素を低減する方法として、特許文献5~11がある。
In the case of the method of converting hydrogen into ammonia by the ammonia catalyst of Patent Document 4 to reduce hydrogen, a predetermined concentration of nitrogen for reducing hydrogen is required. When a large amount of hydrogen is generated, if the amount of nitrogen is small, the reduction of hydrogen is insufficient, and measures such as nitrogen injection are required. If all power is lost, a sufficient reduction in hydrogen concentration cannot be expected. Also, the treatment of the generated ammonia becomes a problem.
As methods for reducing hydrogen using a hydrogen storage alloy, there are Patent Documents 5 to 11.
 特許文献5~8は、水素ガスが発生したとき、水素検知器やコントローラーなどの制御により、バルブの開閉やブロワで送風して水素ガスと水素吸蔵合金を接触させて、水素ガス濃度を低減する方法が提示されている。水素吸蔵合金が発熱するため、冷却する方法も提示されている。しかし、全電源喪失した場合、制御や装置を稼動することできなくなり、水素ガスを低減することができなくなる。 In Patent Documents 5 to 8, when hydrogen gas is generated, the hydrogen gas concentration is reduced by bringing the hydrogen gas into contact with the hydrogen storage alloy by opening / closing a valve or blowing with a blower under the control of a hydrogen detector or a controller. A method is presented. Since the hydrogen storage alloy generates heat, a cooling method is also proposed. However, when the entire power supply is lost, the control and the device cannot be operated, and the hydrogen gas cannot be reduced.
 特許文献9~11は、電源がなくても、水素を低減することができる方法が提示されている。特許文献9は水素吸蔵合金を薄板状にして吊り下げる方法、特許文献10は水素吸蔵合金の粉末を多孔質金属に充填して設置する方法、特許文献11は金属ボックス内に水素吸蔵合金を格納して設置する方法が提示されている。これらの方法では、設置されているときに、水素吸蔵合金が酸化により劣化するため、水素吸蔵能力が低下するという問題がある。 Patent Documents 9 to 11 propose a method capable of reducing hydrogen even without a power source. Patent Document 9 is a method of suspending a hydrogen storage alloy in a thin plate shape, Patent Document 10 is a method of placing a hydrogen storage alloy powder in a porous metal, and Patent Document 11 is storing a hydrogen storage alloy in a metal box. And how to install it. In these methods, since the hydrogen storage alloy deteriorates due to oxidation when installed, there is a problem that the hydrogen storage capacity is lowered.
 このように、全電源喪失を想定した水素爆発を防止するための対策が依然として確立されていないのが実情である。 In this way, the current situation is that no measures have yet been established to prevent hydrogen explosions assuming the loss of all power sources.
特開2012-233728号公報JP 2012-233728 A 特開2012-225823号公報JP 2012-225823 A 特許第3151309号公報Japanese Patent No. 3151309 特許第4073065号公報Japanese Patent No. 4073065 特開昭59-116581号公報JP 59-116581 A 実開昭62-117599号公報Japanese Utility Model Publication No. 62-117599 特開平10-288694号公報Japanese Patent Laid-Open No. 10-288694 特開2010-190868号公報JP 2010-190868 A 特開平4-34395号公報JP-A-4-34395 特開平4-104096号公報Japanese Patent Laid-Open No. 4-104096 特開平11-14790号公報Japanese Patent Laid-Open No. 11-14790
 本発明は、以上のとおりの事情に鑑みてなされたものであり、全電源喪失時であっても原子力発電施設の水素爆発を防止することができる無電力型水素捕集装置を提供することを課題としている。 The present invention has been made in view of the circumstances as described above, and provides a non-power-type hydrogen collection device that can prevent hydrogen explosion in a nuclear power generation facility even when the entire power source is lost. It is an issue.
 上記の課題を解決するために、鋭意検討した結果、水素選択透過性隔膜と水素吸蔵材料とを有する無電力型水素捕集装置により、原子力発電施設の原子炉建屋内における原子炉格納容器内の水素を捕集することにより、前記原子炉格納容器から前記原子炉建屋への水素漏洩を防いで前記原子炉建屋内の水素滞留による水素爆発を防止できることを見出した。 As a result of intensive studies to solve the above-mentioned problems, a non-powered hydrogen collector having a hydrogen selective permeable diaphragm and a hydrogen storage material is used in a reactor containment vessel in a nuclear reactor building. It has been found that by collecting hydrogen, hydrogen leakage from the reactor containment vessel to the reactor building can be prevented, and hydrogen explosion due to hydrogen retention in the reactor building can be prevented.
 本発明の無電力型水素捕集装置は、原子力発電施設の原子炉格納容器内の水素を捕集する無電力型水素捕集装置であって、前記原子炉格納容器内に設けられており、水素選択透過性隔膜と水素を捕集する水素吸蔵材料とを有し、前記水素吸蔵材料は前記水素選択透過性隔膜内に設けられていることを特徴とする。 The non-powered hydrogen collecting apparatus of the present invention is a non-powered hydrogen collecting apparatus that collects hydrogen in a nuclear reactor containment vessel of a nuclear power generation facility, and is provided in the nuclear reactor containment vessel, It has a hydrogen selective permeable membrane and a hydrogen storage material that collects hydrogen, and the hydrogen storage material is provided in the hydrogen selective permeable membrane.
 この無電力型水素捕集装置においては、前記水素選択透過性隔膜がシリカを含むシリコーン樹脂を主成分とする高分子多孔膜または芳香族炭化水素樹脂を主成分とする高分子多孔膜であることが好ましい。 In this non-powered hydrogen collector, the hydrogen selective permeable membrane is a polymer porous membrane mainly containing a silicone resin containing silica or a polymer porous membrane mainly containing an aromatic hydrocarbon resin. Is preferred.
 この無電力型水素捕集装置においては、前記水素吸蔵材料が、マグネシウムを主成分とする金属材料であることが好ましい。 In this non-powered hydrogen collector, the hydrogen storage material is preferably a metal material mainly composed of magnesium.
 この無電力型水素捕集装置においては、前記マグネシウムを主成分とする金属材料が、水素化マグネシウムとNbとの混合物を、最大加速度が3G(Gは重力加速度)以上、かつ、最大加速度と処理時間との積を処理試料の重量と重力加速度との積で除した値が110(時間/g)以上のメカニカルミリング処理によりナノ構造化・組織化してなる材料であることが好ましい。 In this non-powered hydrogen collector, the metal material containing magnesium as a main component is a mixture of magnesium hydride and Nb 2 O 5 with a maximum acceleration of 3 G (G is gravitational acceleration) or more and a maximum A material obtained by nanostructuring / organizing by mechanical milling treatment in which a value obtained by dividing the product of acceleration and processing time by the product of weight of the processing sample and acceleration of gravity is 110 (hour / g) or more is preferable.
 また、この無電力型水素捕集装置においては、さらに水素検知器を有し、前記水素検知器は前記水素選択透過性隔膜内に設けられていることが好ましい。 In addition, it is preferable that this non-power-type hydrogen collector has a hydrogen detector, and the hydrogen detector is provided in the hydrogen selective permeable diaphragm.
 本発明によれば、全電源喪失時であっても原子力発電施設の水素爆発を防止することができる。 According to the present invention, it is possible to prevent a hydrogen explosion in a nuclear power generation facility even when the entire power source is lost.
本発明の一実施形態である無電力型水素捕集装置の概略構成図である。It is a schematic block diagram of the non-power-type hydrogen collector which is one Embodiment of this invention. 本発明の一実施形態である無電力型水素捕集装置を備えた原子力発電施設の概略構成図である。It is a schematic block diagram of the nuclear power generation facility provided with the non-power-type hydrogen collection device which is one Embodiment of this invention.
 以下、本発明の構成を図面に基づいて説明する。図1は、本発明の実施形態である無電力型水素捕集装置の概略構成図である。 Hereinafter, the configuration of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of a non-powered hydrogen collecting apparatus according to an embodiment of the present invention.
 無電力型水素捕集装置7は、水素選択透過性隔膜1と水素吸蔵材料2とを有して構成され、水素選択透過性隔膜1で囲われた容器内に水素吸蔵材料2を設置するものである。これによって、水素吸蔵材料2の酸化による活性化度低下の抑制が可能となり、水素吸蔵材料2の活性化度を効果的に保持することができる。 The non-power-type hydrogen collection device 7 includes a hydrogen selective permeable diaphragm 1 and a hydrogen storage material 2, and the hydrogen storage material 2 is installed in a container surrounded by the hydrogen selective permeable diaphragm 1. It is. Accordingly, it is possible to suppress a decrease in activation degree due to oxidation of the hydrogen storage material 2, and the activation degree of the hydrogen storage material 2 can be effectively maintained.
 水素選択透過性隔膜1は、無電力型水素捕集装置7内に水素を透過させるものであればよい。水素選択透過性隔膜1としては、水素選択透過性を有し、かつ水素吸蔵材料2の効果を阻害しないものを選定するのが望ましく、シリカを含むシリコーン樹脂を主成分とする高分子膜や芳香族炭化水素樹脂を主成分とする高分子膜などがあり、その形態としては多孔質膜であることが望ましい。特にカプトン(登録商標)などのポリイミド多孔膜のような水素選択透過性の高いものが好ましい。 The hydrogen selective permeable membrane 1 may be any material that allows hydrogen to permeate into the non-powered hydrogen collector 7. As the hydrogen selective permeable membrane 1, it is desirable to select one that has hydrogen selective permeability and does not hinder the effect of the hydrogen storage material 2, and is a polymer membrane or fragrance mainly composed of silica-containing silicone resin. There is a polymer film mainly composed of an aromatic hydrocarbon resin, and the form is preferably a porous film. In particular, a material having high hydrogen selective permeability such as a polyimide porous membrane such as Kapton (registered trademark) is preferable.
 水素吸蔵材料2は公知のものを使用することができる。例えば、希土類元素を主成分とする金属材料、チタンを主成分とする金属材料、バナジウムを主成分とする金属材料、マグネシウムを主成分とする金属材料等の金属材料、金属アラネード(例えば、NaAlHやLiAlH)等の軽量無機化合物、カーボン等が挙げられる。 As the hydrogen storage material 2, a known material can be used. For example, a metal material such as a metal material mainly composed of rare earth elements, a metal material mainly composed of titanium, a metal material mainly composed of vanadium, a metal material mainly composed of magnesium, a metal alanade (for example, NaAlH 4 And lightweight inorganic compounds such as LiAlH 4 ), carbon and the like.
 金属マグネシウム(金属Mg)は資源埋蔵量が豊富で安価であり、軽量で水素貯蔵容量が大きいので、水素吸蔵材料2としてマグネシウムを主成分とする金属材料を用いることが好ましい。 Metallic magnesium (metal Mg) is rich in resource reserves, inexpensive, lightweight and has a large hydrogen storage capacity. Therefore, it is preferable to use a metal material mainly composed of magnesium as the hydrogen storage material 2.
 特に、水素化マグネシウムとNbとの混合物を、最大加速度が3G(Gは重力加速度)以上、かつ、最大加速度と処理時間との積を処理試料の重量と重力加速度との積で除した値が110(時間/g)以上のメカニカルミリング処理によりナノ構造化・組織化してなるマグネシウムを主成分とする金属材料は、室温での水素吸蔵速度が速いため、本実施形態における水素吸蔵材料2として好適である。このマグネシウムを主成分とする金属材料の具体的な製造方法は日本国特許第4986101号の特許公報に記載されているので説明を省略する。 In particular, a mixture of magnesium hydride and Nb 2 O 5 has a maximum acceleration of 3G (G is gravitational acceleration) or more, and the product of the maximum acceleration and the processing time is divided by the product of the weight of the processing sample and the gravitational acceleration. Since the metal material mainly composed of magnesium that is nanostructured and organized by mechanical milling treatment with a measured value of 110 (hour / g) or more has a high hydrogen storage rate at room temperature, the hydrogen storage material in this embodiment 2 is preferable. A specific method for producing the metal material containing magnesium as a main component is described in Japanese Patent No. 4986101, and the description thereof will be omitted.
 水素吸蔵により水素吸蔵材料2の吸蔵能力や活性化度が低下したときには、該水素吸蔵材料2を熱処理や脱気などの処理によって除去することで再活性化することができる。例えば、マグネシウムを主成分とする金属材料であれば、300℃程度の温度で真空排気を行うことで再活性化することができる。 When the occlusion ability and activation degree of the hydrogen occlusion material 2 are reduced due to hydrogen occlusion, the hydrogen occlusion material 2 can be reactivated by removing it by a treatment such as heat treatment or degassing. For example, a metal material containing magnesium as a main component can be reactivated by evacuating at a temperature of about 300 ° C.
 また、無電力型水素捕集装置7は、水素吸蔵材料2とともに水素検知器3を水素選択透過性隔膜1内に設けてもよい。この水素検知器3により、水素吸蔵量を確認し、水素吸蔵材料2の交換時期を設定、点検時の交換の判断などをすることができるため、維持管理に効果がある。水素吸蔵材料2の交換の際に、必要に応じて上記した再活性化の処理を施すこともできる。水素検知器3は、市販されているものを用いることができる。 Further, the non-powered hydrogen collector 7 may be provided with the hydrogen detector 3 and the hydrogen detector 3 in the hydrogen selective permeable diaphragm 1 together with the hydrogen storage material 2. The hydrogen detector 3 can confirm the hydrogen storage amount, set the replacement time of the hydrogen storage material 2 and determine the replacement at the time of inspection, etc., which is effective for maintenance. When the hydrogen storage material 2 is replaced, the above-described reactivation process can be performed as necessary. A commercially available hydrogen detector 3 can be used.
 図2に示すように、原子炉格納容器5内に本発明の一実施形態である無電力型水素捕集装置7を設置することにより、原子力発電施設の原子炉建屋4内における原子炉格納容器5内の水素を捕集できるため、原子炉格納容器5から原子炉建屋4への水素漏洩を防いで原子炉建屋4内の水素滞留による水素爆発を防止することができる。 As shown in FIG. 2, the reactor containment vessel in the reactor building 4 of the nuclear power generation facility is installed in the reactor containment vessel 5 by installing the non-power type hydrogen collecting device 7 according to the embodiment of the present invention. Since hydrogen in the reactor 5 can be collected, hydrogen leakage from the reactor containment vessel 5 to the reactor building 4 can be prevented, and hydrogen explosion due to hydrogen retention in the reactor building 4 can be prevented.
 原子炉建屋4内には、原子炉格納容器5が設けられ、原子炉格納容器5の内部には、原子炉圧力容器6や図示しない蒸気発生器等が設けられている。 In the reactor building 4, a reactor containment vessel 5 is provided, and in the reactor containment vessel 5, a reactor pressure vessel 6, a steam generator (not shown), and the like are provided.
 原子炉格納容器5内には、原子炉圧力容器6の外部に、無電力型水素捕集装置7が設けられている。 In the reactor containment vessel 5, a non-power-type hydrogen collection device 7 is provided outside the reactor pressure vessel 6.
 無電力型水素捕集装置7内の水素吸蔵材料は受動的に水素を捕集するため、動的な機器によらず、原子炉格納容器5内の水素を捕集することができる。無電力型水素捕集装置7内の水素吸蔵材料による原子炉格納容器5内の水素捕集によって原子炉格納容器5から原子炉建屋4への水素漏洩が抑制されるので、原子炉建屋4内に水素が滞留するという事態を防ぐことができる。したがって、全電源喪失時であっても原子炉建屋4内の水素滞留による水素爆発を防止することができる。 Since the hydrogen storage material in the non-powered hydrogen collector 7 passively collects hydrogen, the hydrogen in the reactor containment vessel 5 can be collected regardless of dynamic equipment. Hydrogen leakage from the reactor containment vessel 5 to the reactor building 4 is suppressed by the hydrogen collection in the reactor containment vessel 5 by the hydrogen storage material in the non-power-type hydrogen collector 7, so that the inside of the reactor building 4 It is possible to prevent the hydrogen from staying in the tank. Therefore, hydrogen explosion due to hydrogen retention in the reactor building 4 can be prevented even when all power is lost.
 無電力型水素捕集装置7は原子炉格納容器5内に設置されるが、その無電力型水素捕集装置7の水素吸蔵材料の重量、装置の数、形状などは特に限定されない。水素吸蔵材料の重量、装置の数や想定水素最大発生量などを考慮して適宜設定すればよい。無電力型水素捕集装置7は、原子炉格納容器5内に据え置きにする場合、吊るす場合、壁に貼り付ける場合などが考えられ、それぞれに合わせた形状とすることができ、無電力型水素捕集装置7の配置位置も特に限定されない。原子炉格納容器5内の水素混合ガスの浮力乱流、水素の吸蔵初期における吸着律速による反応熱等による誘起対流などを考慮して水素の捕集効率が良好となるような位置に水素捕集装置7を配置すればよい。 The powerless hydrogen collector 7 is installed in the reactor containment vessel 5, but the weight of the hydrogen storage material, the number of devices, and the shape of the powerless hydrogen collector 7 are not particularly limited. What is necessary is just to set suitably in consideration of the weight of the hydrogen storage material, the number of apparatuses, the assumed maximum hydrogen generation amount, and the like. The non-powered hydrogen collection device 7 can be placed in the reactor containment vessel 5, suspended or attached to the wall, and can be shaped to suit each of them. The arrangement position of the collection device 7 is not particularly limited. Considering the buoyancy turbulent flow of the hydrogen mixed gas in the reactor containment vessel 5 and the induced convection due to the reaction heat due to the adsorption-controlled adsorption at the initial stage of hydrogen storage, the hydrogen is collected at a position where the hydrogen collection efficiency is good. The device 7 may be arranged.
 以上説明したように、本発明の無電力型水素捕集装置は、原子炉格納容器5内に設けられ、受動的に水素を捕集するので、全電源喪失時であっても原子炉格納容器5から原子炉建屋3への水素漏洩を防いで原子炉建屋4内の水素滞留による水素爆発を防止することができる。 As described above, the power-free hydrogen collection device of the present invention is provided in the reactor containment vessel 5 and passively collects hydrogen, so even when the entire power supply is lost, the reactor containment vessel Hydrogen leakage from the reactor building 3 to the reactor building 3 can be prevented, and hydrogen explosion due to hydrogen retention in the reactor building 4 can be prevented.
 なお、本発明は上記の実施形態に限定されるものではなく、その要旨を逸脱しない範囲において各種の変形例が採用可能である。 Note that the present invention is not limited to the above-described embodiment, and various modifications can be employed without departing from the scope of the present invention.
1 水素選択透過性隔膜
2 水素吸蔵材料
3 水素検知器
4 原子炉建屋
5 原子炉格納容器
6 原子炉圧力容器
7 水素捕集装置
DESCRIPTION OF SYMBOLS 1 Hydrogen selective permeable membrane 2 Hydrogen storage material 3 Hydrogen detector 4 Reactor building 5 Reactor containment vessel 6 Reactor pressure vessel 7 Hydrogen collection device

Claims (5)

  1.  原子力発電施設の原子炉格納容器内の水素を捕集する無電力型水素捕集装置であって、
     前記無電力型水素捕集装置は、前記原子炉格納容器内に設けられており、
     水素選択透過性隔膜と水素を捕集する水素吸蔵材料とを有し、前記水素吸蔵材料は前記水素選択透過性隔膜内に設けられていることを特徴とする無電力型水素捕集装置。
    A non-powered hydrogen collection device for collecting hydrogen in a nuclear reactor containment vessel,
    The non-powered hydrogen collector is provided in the reactor containment vessel,
    A non-power-type hydrogen collector having a hydrogen selective permeable diaphragm and a hydrogen storage material for collecting hydrogen, wherein the hydrogen storage material is provided in the hydrogen selective permeable diaphragm.
  2.  前記水素選択透過性隔膜は、シリカを含むシリコーン樹脂を主成分とする高分子多孔膜または芳香族炭化水素樹脂を主成分とする高分子多孔膜であることを特徴とする請求項1に記載の無電力型水素捕集装置。 The hydrogen selective permeable membrane is a porous polymer membrane mainly composed of a silicone resin containing silica or a porous polymer membrane mainly composed of an aromatic hydrocarbon resin. Non-powered hydrogen collector.
  3.  前記水素吸蔵材料が、マグネシウムを主成分とする金属材料であることを特徴とする請求項1または2に記載の無電力型水素捕集装置。 The non-power-type hydrogen collector according to claim 1 or 2, wherein the hydrogen storage material is a metal material mainly composed of magnesium.
  4.  前記マグネシウムを主成分とする金属材料が、水素化マグネシウムとNbとの混合物を、最大加速度が3G以上、かつ、最大加速度と処理時間との積を処理試料の重量と重力加速度との積で除した値が110時間/g以上のメカニカルミリング処理によりナノ構造化・組織化してなる材料であることを特徴とする請求項3に記載の無電力型水素捕集装置。 The magnesium-based metal material is a mixture of magnesium hydride and Nb 2 O 5 , the maximum acceleration is 3 G or more, and the product of the maximum acceleration and the processing time is the weight of the processing sample and the gravitational acceleration. The power-free hydrogen collector according to claim 3, wherein the material is a nanostructured / organized material obtained by mechanical milling with a value divided by a product of 110 hours / g or more.
  5.  さらに水素検知器を有し、前記水素検知器は前記水素選択透過性隔膜内に設けられていることを特徴とする請求項1から4のいずれか一項に記載の無電力型水素捕集装置。 The hydrogen detector according to any one of claims 1 to 4, further comprising a hydrogen detector, wherein the hydrogen detector is provided in the hydrogen selective permeable membrane. .
PCT/JP2014/069217 2013-08-01 2014-07-18 Non-electric hydrogen collecting device WO2015016090A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013160578A JP2015031570A (en) 2013-08-01 2013-08-01 Device for collecting hydrogen without using electric power
JP2013-160578 2013-08-01

Publications (1)

Publication Number Publication Date
WO2015016090A1 true WO2015016090A1 (en) 2015-02-05

Family

ID=52431628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069217 WO2015016090A1 (en) 2013-08-01 2014-07-18 Non-electric hydrogen collecting device

Country Status (2)

Country Link
JP (1) JP2015031570A (en)
WO (1) WO2015016090A1 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS471987U (en) * 1971-01-21 1972-08-22
JPS6428934U (en) * 1987-08-14 1989-02-21
JPH0434395A (en) * 1990-05-31 1992-02-05 Toshiba Corp Failure prevention equipment of reactor container
JPH07244193A (en) * 1993-12-13 1995-09-19 Anlagen & Reaktorsicherheit Grs Mbh:G Device for removing free hydrogen from gas mixture incorporating hydrogen and oxygen
JPH08334585A (en) * 1995-06-07 1996-12-17 Hitachi Ltd Reactor equipment and its operation method
JP2002107320A (en) * 2000-10-03 2002-04-10 Toyota Motor Corp Method and device for measuring amount of occluded hydrogen stored
JP2003107055A (en) * 2001-09-28 2003-04-09 Kansai Research Institute Method for monitoring amount of hydrogen storage
WO2005068058A1 (en) * 2004-01-15 2005-07-28 Sfc Co., Ltd. Hydrogen or helium permeation membrane and storage membrane and process for producing the same
JP2007042506A (en) * 2005-08-04 2007-02-15 Honda Motor Co Ltd Fuel cell system
JP2010067431A (en) * 2008-09-10 2010-03-25 Ushio Inc Discharge lamp
JP2010073560A (en) * 2008-09-19 2010-04-02 Nissan Motor Co Ltd Fuel cell cooling system
JP2010083687A (en) * 2008-09-30 2010-04-15 Hitachi Ltd Hydrogen storage system
JP2010163358A (en) * 2010-02-15 2010-07-29 Hitachi Ltd Hydrogen supply apparatus and method for supplying hydrogen
JP4986101B2 (en) * 2005-01-27 2012-07-25 太平洋セメント株式会社 Hydrogen storage material and method for producing the same

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS471987U (en) * 1971-01-21 1972-08-22
JPS6428934U (en) * 1987-08-14 1989-02-21
JPH0434395A (en) * 1990-05-31 1992-02-05 Toshiba Corp Failure prevention equipment of reactor container
JPH07244193A (en) * 1993-12-13 1995-09-19 Anlagen & Reaktorsicherheit Grs Mbh:G Device for removing free hydrogen from gas mixture incorporating hydrogen and oxygen
JPH08334585A (en) * 1995-06-07 1996-12-17 Hitachi Ltd Reactor equipment and its operation method
JP2002107320A (en) * 2000-10-03 2002-04-10 Toyota Motor Corp Method and device for measuring amount of occluded hydrogen stored
JP2003107055A (en) * 2001-09-28 2003-04-09 Kansai Research Institute Method for monitoring amount of hydrogen storage
WO2005068058A1 (en) * 2004-01-15 2005-07-28 Sfc Co., Ltd. Hydrogen or helium permeation membrane and storage membrane and process for producing the same
JP4986101B2 (en) * 2005-01-27 2012-07-25 太平洋セメント株式会社 Hydrogen storage material and method for producing the same
JP2007042506A (en) * 2005-08-04 2007-02-15 Honda Motor Co Ltd Fuel cell system
JP2010067431A (en) * 2008-09-10 2010-03-25 Ushio Inc Discharge lamp
JP2010073560A (en) * 2008-09-19 2010-04-02 Nissan Motor Co Ltd Fuel cell cooling system
JP2010083687A (en) * 2008-09-30 2010-04-15 Hitachi Ltd Hydrogen storage system
JP2010163358A (en) * 2010-02-15 2010-07-29 Hitachi Ltd Hydrogen supply apparatus and method for supplying hydrogen

Also Published As

Publication number Publication date
JP2015031570A (en) 2015-02-16

Similar Documents

Publication Publication Date Title
TWI360911B (en) Thermally primed hydrogen-producing fuel cell syst
CN104919677B (en) The electrical management of nuclear reactor system
KR102441539B1 (en) Remote monitoring of critical reactor parameters
KR20150046005A (en) Hydrogen recombiner
JP6034165B2 (en) Hydrogen removal device
O'Brien et al. High temperature electrolysis pressurized experiment design, operation, and results
JP2014115207A (en) Hydrogen removal facility for nuclear reactor building
WO2016104007A1 (en) Hydrogen production device and hydrogen generation vessel
WO2015016090A1 (en) Non-electric hydrogen collecting device
JP2016204177A (en) Hydrogen generating method and hydrogen generating device
Cristescu et al. Commissioning of water detritiation and cryogenic distillation systems at TLK in view of ITER design
CN105225704A (en) Non-active hydrogen recombiner with wind-powered electricity generation translation function and uses thereof
JP2007155355A (en) Nuclear power generation installation
CN205050566U (en) Active hydrogen recombiner of non - with wind -powered electricity generation, Thermoelectric conversion function
RU2623459C1 (en) Passive autocatalic hydrogen and oxygen recombinator by organization of environmental air additional flow to catalytic elements assembly in direction of transverse to main
JP2007265669A (en) Leak detecting method in fuel cell power generation system
KR20160038089A (en) Hydrogen getting apparatus for nuclear power plant
CN205069136U (en) Active hydrogen recombiner of non - with thermoelectric conversion function
JP2005003371A (en) Method and device for removing hydrogen in reactor containment vessel
JP6574893B2 (en) Hydrogen leak prevention system, hydrogen leak prevention method hydrogen production system, power storage system
RU2599145C1 (en) Recombiner and method for recombination of hydrogen or methane and oxygen in gas mixture
CN105225705A (en) There is the non-active hydrogen recombiner and uses thereof of wind-powered electricity generation, thermoelectricity translation function
JP2006322768A (en) Hydrogen remover and its removing method for reactor containment
JP2014095713A (en) Ordinary temperature nuclear fusion reaction method and ordinary temperature nuclear fusion reactor
JP2015141104A (en) radioactive iodine removal device

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831378

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 14831378

Country of ref document: EP

Kind code of ref document: A1