JPH03200097A - Control system for concentration of combustible gas in atomic power plant - Google Patents

Control system for concentration of combustible gas in atomic power plant

Info

Publication number
JPH03200097A
JPH03200097A JP1339734A JP33973489A JPH03200097A JP H03200097 A JPH03200097 A JP H03200097A JP 1339734 A JP1339734 A JP 1339734A JP 33973489 A JP33973489 A JP 33973489A JP H03200097 A JPH03200097 A JP H03200097A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen absorbing
combustible gas
control system
blower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1339734A
Other languages
Japanese (ja)
Inventor
Akihiro Iwata
章裕 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering Corp
Toshiba Corp
Original Assignee
Toshiba Engineering Corp
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering Corp, Toshiba Corp filed Critical Toshiba Engineering Corp
Priority to JP1339734A priority Critical patent/JPH03200097A/en
Publication of JPH03200097A publication Critical patent/JPH03200097A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PURPOSE:To absorb the hydrogen generated in the event of a loss of coolant accident by a hydrogen absorbing device without delay by providing the hydrogen absorbing device which absorbs the hydrogen in a combustible gas sent into the device by a blower by a hydrogen absorbing alloy. CONSTITUTION:A hydrogen absorbing line 11 is so mounted as to bypass a stop valve 10 provided between the blower 2 and a heater 3. The hydrogen absorbing device 12 for ordinary use and the hydrogen absorbing device 13 for spare are provided in parallel at the intermediate point of the hydrogen absorbing line 11. The hydrogen absorbing devices 12, 13 are constituted by housing the hydrogen absorbing alloys into hydrogen absorbing containers. The combustible gas generated in a reactor container 1 is sucked by the blower 2 when a sepn. valve 8 is opened and the stop valve 10 is closed and the blower 2 starts operating in the event of the generation of the loss of coolant accident in the atomic power plant. The gas is introduced through a stop valve 14 installed in the hydrogen absorbing line 11 into the hydrogen absorbing device 12. The combustible gas introduced into the hydrogen absorbing device 12 is subjected to the absorption of the hydrogen contained therein by the hydrogen absorbing alloy.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、原子力発電所における可燃性ガス濃度制御装
置の改良に係り、特に、水素吸収装置を備えた可燃性ガ
ス濃度制御系に関する。
Detailed Description of the Invention [Objective of the Invention] (Industrial Application Field) The present invention relates to an improvement of a combustible gas concentration control device in a nuclear power plant, and in particular, to an improvement of a combustible gas concentration control device equipped with a hydrogen absorption device. Regarding control systems.

(従来の技術) 原子力発電所において冷却材喪失事故が発生すると、水
−金属反応、あるいは水の放射線分解等により水素およ
び酸素が発生する。一般に、水素と酸素を含んだ可燃性
ガスは水素と酸素が可燃性限界以上(酸素濃度が5%以
上、かつ水素濃度が4%以上)の場合には、自然発火す
る危険性がある。
(Prior Art) When a loss of coolant accident occurs in a nuclear power plant, hydrogen and oxygen are generated due to a water-metal reaction or radiolysis of water. Generally, a combustible gas containing hydrogen and oxygen has a risk of spontaneous combustion if the hydrogen and oxygen are above the flammability limit (oxygen concentration is 5% or more and hydrogen concentration is 4% or more).

そこで、この濃度領域になるのを防止し、原子炉格納容
器の健全性を維持するため、原子力発電所においては、
可燃性ガス濃度制御系を設置し、原子力格納容器内に発
生した可燃性ガス(水素、酸素)を再結合させるように
している。
Therefore, in order to prevent the concentration from reaching this range and maintain the integrity of the reactor containment vessel, nuclear power plants
A flammable gas concentration control system has been installed to recombine the flammable gases (hydrogen, oxygen) generated within the containment vessel.

この場合、可燃性ガス濃度制御系は、事故時の安全性を
維持するため、完全に独立した100%容量の系統を2
系統、並列的に設置して使用されている。
In this case, in order to maintain safety in the event of an accident, the combustible gas concentration control system is divided into two completely independent systems with 100% capacity.
They are installed and used in parallel.

第3図は従来の可燃性ガス濃度制御系を備えた原子力発
電所を例示するもので、可燃性ガス濃度制御系(A系統
のみ詳細を示すが、B系統の構成も同じである。)は、
いずれも原子炉格納容器1内に発生する可燃性ガス(水
素、酸素)をブロア2で吸引し、加熱器3を介して再結
合装置4に導き、再結合反応により生じた水蒸気を冷却
装置5により冷却凝縮させた後、気水分離器6で水分を
除去し、残りのガスをサプレッションチェンバ7を通し
て原子炉格納容器1へ戻すよう構成されている。8.9
は隔離弁(通常開)を示す。
Figure 3 shows an example of a nuclear power plant equipped with a conventional combustible gas concentration control system. ,
In both cases, combustible gas (hydrogen, oxygen) generated in the reactor containment vessel 1 is sucked in by a blower 2, guided to a recombination device 4 via a heater 3, and water vapor generated by the recombination reaction is transferred to a cooling device 5. After cooling and condensing the gas, a steam separator 6 removes moisture, and the remaining gas is returned to the reactor containment vessel 1 through a suppression chamber 7. 8.9
indicates an isolation valve (normally open).

上記の構成の可燃性ガス濃度制御系を備えた原子力発電
所において冷却材喪失事故が発生した場合、可燃性ガス
濃度制御系(A系統、B系統)は中央制御室(図示せず
)からの指令により、冷却材喪失事故発生の約30分後
に手動操作により再結合装置4の加熱を開始し、その後
、約3時間以内に暖機運転が完了し、ガス濃度制御機能
を発揮し得る状態になる。
If a loss of coolant accident occurs in a nuclear power plant equipped with a flammable gas concentration control system configured as described above, the flammable gas concentration control system (system A, system B) will be operated from the central control room (not shown). According to the instruction, heating of the recombination device 4 was started by manual operation approximately 30 minutes after the loss of coolant accident occurred, and the warm-up operation was completed within approximately 3 hours and the system was in a state where it could perform the gas concentration control function. Become.

そこで、隔離弁8.9を開き、ブロア2によって原子炉
格納容器1内の可燃性ガスを吸気し、加熱器3で加熱し
て再結合装置4へ導き、ガス中の水素と酸素を再結合さ
せることになる。
Therefore, the isolation valve 8.9 is opened, and the flammable gas in the reactor containment vessel 1 is sucked in by the blower 2, heated by the heater 3, and guided to the recombination device 4, where the hydrogen and oxygen in the gas are recombined. I will let you do it.

(発明が解決しようとする課題) しかしながら、上述したような構成の従来の原子力発電
所においては、冷却材喪失事故の発生後、可燃性ガス濃
度制御系がその機能を発揮できる状態になるまでには相
当の時間がかがる上、起動操作に手間がかかるという欠
点があった。
(Problem to be Solved by the Invention) However, in conventional nuclear power plants configured as described above, after a loss of coolant accident occurs, it is difficult for the flammable gas concentration control system to reach a state where it can perform its functions. has the disadvantage that it takes a considerable amount of time and is troublesome to start up.

本発明は従来技術における上述のごとき欠点を除去し、
迅速に機能し得る可燃性ガス濃度制御系を提供すること
を目的とするものである。
The present invention eliminates the above-mentioned drawbacks in the prior art,
The object of the present invention is to provide a combustible gas concentration control system that can function quickly.

[発明の構成] (課題を解決するための手段) 本発明の原子力発電所における可燃性ガス濃度制御系は
、原子炉格納容器内の可燃性ガスを吸引するブロアと、
前記可燃性ガス中の水素と酸素を再結合させる再結合装
置とを備える可燃性ガス濃度制御系において、前記ブロ
アによって送込まれた前記可燃性ガス中の水素を水素吸
収合金によって吸収する水素吸収装置を付加したことを
特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) A flammable gas concentration control system in a nuclear power plant according to the present invention includes a blower that sucks combustible gas in a reactor containment vessel;
A combustible gas concentration control system comprising a recombination device for recombining hydrogen and oxygen in the combustible gas, a hydrogen absorption system in which hydrogen in the combustible gas sent by the blower is absorbed by a hydrogen absorption alloy. It is characterized by the addition of a device.

(作用) 上述のように構成した本発明の可燃性ガス濃度制御系に
おいては、原子力発電所で冷却材喪失事故が発生した場
合、原子炉格納容器内で生成する水素と酸素を含んだ可
燃性ガスはブロアによって吸引されて水素吸収装置に導
入され、可燃性ガス中の水素は水素吸収合金によって吸
収除去される。
(Function) In the flammable gas concentration control system of the present invention configured as described above, when a loss of coolant accident occurs in a nuclear power plant, combustible gas containing hydrogen and oxygen generated in the reactor containment vessel is The gas is sucked by a blower and introduced into the hydrogen absorption device, and the hydrogen in the combustible gas is absorbed and removed by the hydrogen absorption alloy.

(実施例) 以下、第1図と第2図を参照して本発明の詳細な説明す
る。なお、これらの図において、第3図におけると同一
部分には同一の符号を付し、説明は省略する。
(Example) The present invention will be described in detail below with reference to FIGS. 1 and 2. In these figures, the same parts as in FIG. 3 are denoted by the same reference numerals, and their explanation will be omitted.

第1図において、可燃性ガス濃度制御系(A系統のみを
詳細に示すが、B系統の構成も同じである。)内には、
ブロア2と加熱器3との間に開閉弁10が介挿され、こ
の開閉弁10をバイパスするようにして水素吸収ライン
11が取付けられている。
In Fig. 1, the combustible gas concentration control system (only the A system is shown in detail, but the B system has the same configuration) includes:
An on-off valve 10 is interposed between the blower 2 and the heater 3, and a hydrogen absorption line 11 is installed so as to bypass this on-off valve 10.

この水素吸収ライン11の途中には、常用の水素吸収装
置12と予備用の水素吸収装置13が並列して介挿され
ている。各水素吸収装置12.13の前後には、それぞ
れ止め弁14.15が介挿されている。
In the middle of this hydrogen absorption line 11, a regular hydrogen absorption device 12 and a standby hydrogen absorption device 13 are inserted in parallel. A stop valve 14.15 is inserted before and after each hydrogen absorption device 12.13, respectively.

水素吸収装置12.13は、第2図に示すように、水素
吸収容器20内に水素吸収合金21を収容したものであ
り、容器20の上下の開口は水素吸収ライン11を介し
て開閉弁10の前後に接続されている。
As shown in FIG. 2, the hydrogen absorption device 12.13 is a hydrogen absorption container 20 containing a hydrogen absorption alloy 21, and the upper and lower openings of the container 20 are connected to the on-off valve 10 via the hydrogen absorption line 11. are connected before and after.

上記構成の本発明の可燃性ガス濃度制御系において、原
子力発電所で冷却材喪失事故が発生した場合、原子炉格
納容器1内で発生した可燃性ガスは隔離弁8が開、開閉
弁10が閉とされ、ブロア2が動作を開始すると、これ
によって吸引され、水素吸収ライン11に設置されてい
る止め弁14を通して水素吸収装置12に導かれる。水
素吸収装置12に導かれた可燃性ガスは、それに含まれ
ている水素を水素吸収合金21によって吸収される。
In the flammable gas concentration control system of the present invention having the above configuration, when a loss of coolant accident occurs in a nuclear power plant, the isolation valve 8 opens and the on-off valve 10 opens the flammable gas generated in the reactor containment vessel 1. When the blower 2 is closed and starts operating, hydrogen is sucked in and guided to the hydrogen absorption device 12 through the stop valve 14 installed in the hydrogen absorption line 11. The hydrogen contained in the combustible gas introduced into the hydrogen absorption device 12 is absorbed by the hydrogen absorption alloy 21 .

水素吸収装置12にて吸収しきれなかった水素は、従来
と同様に、可燃性ガス濃度制御系の加熱器3を通して再
結合装置4へ導入され、酸素と再結合される。再結合反
応によって生じた水蒸気を冷却器5で冷却凝縮させ、気
水分離器6で水分を除去した後、残りのガスをサプレッ
ションチェンバ7を通して原子炉格納容器1へ戻す。
Hydrogen that cannot be completely absorbed by the hydrogen absorption device 12 is introduced into the recombination device 4 through the heater 3 of the combustible gas concentration control system, and is recombined with oxygen, as in the conventional case. After the water vapor generated by the recombination reaction is cooled and condensed in a cooler 5 and moisture is removed in a steam separator 6, the remaining gas is returned to the reactor containment vessel 1 through a suppression chamber 7.

上記において、2つの可燃性ガス濃度制御系(A系統、
B系統)は、1系統で100%処理容量を持つ制御系と
して構成されている。また、水素吸収装置12も予備1
3を1台設け、2台を並列的に設置して、いずれか1台
を常に使用できる状態としである。
In the above, two combustible gas concentration control systems (A system,
System B) is configured as a control system with 100% processing capacity in one system. In addition, the hydrogen absorption device 12 is also
3 is installed, and two are installed in parallel so that one of them can be used at all times.

水素吸収合金に関しては、近年、金属水素化物による水
素輸送技術等として青々と研究が進められており、特に
、高かさ密度合金水素吸蔵材料としてMg系合金の開発
が行われており、本発明はこれらの研究成果を利用する
ことができる。
Regarding hydrogen-absorbing alloys, in recent years, extensive research has been conducted on hydrogen transport technology using metal hydrides, and in particular, Mg-based alloys have been developed as high bulk density alloy hydrogen-absorbing materials. These research results can be used.

なお、水素吸収装置12.13の水素吸収容量は、原子
力発電所プラントの出力規模に合わせて設定されるが、
この設定容量が限界に達した時には、水素吸収合金21
は水素吸収度0の時に比べると約3倍に膨脹することか
ら、水素吸収容器20もこの膨脹を考慮した大きさのも
のとしておく必要がある。
Note that the hydrogen absorption capacity of the hydrogen absorption device 12.13 is set according to the output scale of the nuclear power plant,
When this set capacity reaches its limit, the hydrogen absorbing alloy 21
Since the hydrogen absorption capacity expands approximately three times as much as when the hydrogen absorption degree is 0, the hydrogen absorption container 20 also needs to be sized to take this expansion into account.

なお、第2図中、鎖線22は水素吸収合金21の、水素
吸収後における膨脂想定ラインを示している。
In addition, in FIG. 2, the chain line 22 indicates the assumed fat expansion line of the hydrogen absorbing alloy 21 after absorbing hydrogen.

また、水素吸収合金21は、吸収容量が限界になり、吸
収不可能になった時には、砂状と化す。
Further, when the hydrogen absorbing alloy 21 reaches its absorption capacity and becomes unable to absorb hydrogen, it becomes sand-like.

この場合、吸収作用を終えて砂状になった水素吸収合金
21は、容器20から取出した後に再処理を行い、再び
元の形に再生することによって、再利用が可能である。
In this case, the hydrogen-absorbing alloy 21, which has become sand-like after completing its absorption action, can be reused by being reprocessed after being taken out from the container 20 and regenerated into its original shape.

本発明の制御系は、中央制御室からの指令により起動さ
れるが、実際の操作は吸収ライン11に設置した弁14
の開作動だけであり、従来の可燃性ガス濃度制御系のよ
うな多数の操作は必要としない。
The control system of the present invention is activated by a command from the central control room, but the actual operation is performed by the valve 14 installed in the absorption line 11.
There is no need for multiple operations like in conventional combustible gas concentration control systems.

また、冷却材喪失事故後、直ぐに作動させるため、原子
炉格納容器内で発生する水素ガスの量の減少が図れ、原
子炉格納容器1内の安全はより高く保たれる。
In addition, since it is activated immediately after a loss of coolant accident, the amount of hydrogen gas generated within the reactor containment vessel 1 can be reduced, and safety within the reactor containment vessel 1 can be maintained at a higher level.

従来の可燃性ガス濃度制御系は、冷却材喪失事故発生の
約30分後に手動によって起動され、約3時間後に暖機
運転後機能を発揮するが、本発明の制御系によれば、暖
機運転中に水素の吸収が可能となる。
Conventional combustible gas concentration control systems are manually activated approximately 30 minutes after the occurrence of a coolant loss accident and function after warm-up approximately 3 hours, but according to the control system of the present invention, warm-up Hydrogen can be absorbed during operation.

また、本発明の制御系における水素吸収合金21による
吸収作用は、吸収ライン11に設置した弁14の作動だ
けであることから、その作動についても高い信頼性が得
られ、これによって、可燃性ガス濃度制御系の合理化も
可能となる。
In addition, since the absorption action by the hydrogen absorption alloy 21 in the control system of the present invention is only the operation of the valve 14 installed in the absorption line 11, high reliability can be obtained with respect to its operation. It also becomes possible to rationalize the concentration control system.

[発明の効果] 以上のように、本発明によれば、冷却材喪失事故に際し
て発生した水素を、遅滞なく、水素吸収装置によって吸
収することができるので、原子炉格納容器内の安全はよ
り高く保たれる。
[Effects of the Invention] As described above, according to the present invention, hydrogen generated during a loss of coolant accident can be absorbed by the hydrogen absorption device without delay, so the safety inside the reactor containment vessel is increased. It is maintained.

また、万一、水素吸収合金による吸収作動が不iiJ能
となった場合でも、従来と同様に、再結合装置によりガ
スの処理を行うことができ、冷却材喪失事故時の原子炉
格納容器の安全性を維持することができる。
In addition, even if the hydrogen absorption alloy becomes incapacitated, the gas can be processed by the recombination device as in the past, and the reactor containment vessel can be reused in the event of a loss of coolant accident. Safety can be maintained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す概略系統図、第2図は本
発明において使用される水素吸収装置を例示する一部縦
断説明図、第3図は従来の原子力発電所における可燃性
ガス濃度制御系を示す概略系統図である。 1・・・・・・・・・原子炉格納容器 2・・・・・・・・・ブロア 3・・・・・・・・・加熱器 4・・・・・・・・・再結合装置 5・・・・・・・・・冷却装置 6・・・・・・・・・気水分離器 7・・・・・・・・・サプレッションチェンバ8.9・
・・隔離弁 10・・・・・・・・・開閉弁 11・・・・・・・・・水素吸収ライン12.13・・
・水素吸収装置 14.15・・・止め弁 20・・・・・・・・・水素吸収容器 21・・・・・・・・・水素吸収合金 簗2図
Fig. 1 is a schematic system diagram showing an embodiment of the present invention, Fig. 2 is a partially longitudinal explanatory diagram illustrating a hydrogen absorption device used in the present invention, and Fig. 3 is a conventional nuclear power plant in which combustible gas FIG. 2 is a schematic system diagram showing a concentration control system. 1... Reactor containment vessel 2... Blower 3... Heater 4... Recombination device 5...... Cooling device 6... Steam water separator 7... Suppression chamber 8.9.
...Isolation valve 10...Opening/closing valve 11...Hydrogen absorption line 12.13...
・Hydrogen absorption device 14.15...Stop valve 20...Hydrogen absorption container 21......Hydrogen absorption alloy gauze 2 diagram

Claims (1)

【特許請求の範囲】[Claims] 原子炉格納容器内の可燃性ガスを吸引するブロアと、前
記可燃性ガス中の水素と酸素を再結合させる再結合装置
とを備える可燃性ガス濃度制御系において、前記ブロア
によって送込まれた前記可燃性ガス中の水素を水素吸収
合金によって吸収する水素吸収装置を付加したことを特
徴とする原子力発電所における可燃性ガス濃度制御系。
In a combustible gas concentration control system that includes a blower that sucks combustible gas in a reactor containment vessel and a recombination device that recombines hydrogen and oxygen in the combustible gas, the A combustible gas concentration control system in a nuclear power plant, characterized by adding a hydrogen absorption device that absorbs hydrogen in combustible gas using a hydrogen absorption alloy.
JP1339734A 1989-12-28 1989-12-28 Control system for concentration of combustible gas in atomic power plant Pending JPH03200097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1339734A JPH03200097A (en) 1989-12-28 1989-12-28 Control system for concentration of combustible gas in atomic power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1339734A JPH03200097A (en) 1989-12-28 1989-12-28 Control system for concentration of combustible gas in atomic power plant

Publications (1)

Publication Number Publication Date
JPH03200097A true JPH03200097A (en) 1991-09-02

Family

ID=18330298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1339734A Pending JPH03200097A (en) 1989-12-28 1989-12-28 Control system for concentration of combustible gas in atomic power plant

Country Status (1)

Country Link
JP (1) JPH03200097A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09292491A (en) * 1996-04-26 1997-11-11 Hitachi Ltd Flammability gas concentration reducer and its control method
JPH11166996A (en) * 1997-12-04 1999-06-22 Toshiba Corp Hydrogen removing device of reactor containment
JP2014010049A (en) * 2012-06-29 2014-01-20 Hitachi-Ge Nuclear Energy Ltd Hydrogen treatment system for nuclear power plant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09292491A (en) * 1996-04-26 1997-11-11 Hitachi Ltd Flammability gas concentration reducer and its control method
JPH11166996A (en) * 1997-12-04 1999-06-22 Toshiba Corp Hydrogen removing device of reactor containment
JP2014010049A (en) * 2012-06-29 2014-01-20 Hitachi-Ge Nuclear Energy Ltd Hydrogen treatment system for nuclear power plant

Similar Documents

Publication Publication Date Title
RU2492535C2 (en) Method of treating structure containing sodium and radioactive substance
JPH03200097A (en) Control system for concentration of combustible gas in atomic power plant
JPH02293002A (en) Device and method for regenerating cold trap
JP2000009873A (en) Hydrogen treatment facility in reactor container
JPH0990092A (en) Reactor container
JPH046920B2 (en)
JP2772053B2 (en) Vent apparatus for reactor containment vessel and method for reducing internal pressure
JPH06230166A (en) Protective system for reactor vessel
JP4443861B2 (en) Method and apparatus for removing hydrogen from containment vessel
JPH0298689A (en) Container pressure suppressor
RU2214634C2 (en) Post-accident inert-gas generating system
JPH0434395A (en) Failure prevention equipment of reactor container
Bracht et al. Analysis of strategies for containment venting in case of severe accidents
JPS63289488A (en) Pressure controller for containment vessel of nuclear reactor
JPH08201561A (en) Safety system reactor container
JP2685902B2 (en) Primary containment vessel
JPH09197085A (en) Method and device for ventilating nuclea reactor containment vessel
JPH05164892A (en) Inflammable gas control device for nuclear reactor
JP2857022B2 (en) How to clean closed containers
JPH0551115B2 (en)
JPS6247279B2 (en)
JPH0658421B2 (en) Primary vessel decompression device
JPH04104096A (en) Reactor container
JP3726689B2 (en) Hydrogen treatment facility and hydrogen treatment method
JPS59112295A (en) Oxygen.hydrogen recombiner