JPH05232293A - Treating equipment of tritium - Google Patents

Treating equipment of tritium

Info

Publication number
JPH05232293A
JPH05232293A JP4037884A JP3788492A JPH05232293A JP H05232293 A JPH05232293 A JP H05232293A JP 4037884 A JP4037884 A JP 4037884A JP 3788492 A JP3788492 A JP 3788492A JP H05232293 A JPH05232293 A JP H05232293A
Authority
JP
Japan
Prior art keywords
gas
exhaust
tritium
tower
hydrogen isotope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4037884A
Other languages
Japanese (ja)
Inventor
Shigetada Kobayashi
重忠 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4037884A priority Critical patent/JPH05232293A/en
Publication of JPH05232293A publication Critical patent/JPH05232293A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Abstract

PURPOSE:To enable easy and safe treatment of tritium by a method wherein the whole quantity of hydrogen isotope gas is oxidized, condensed-liquefied and stored. CONSTITUTION:An exhaust containing a hydrogen isotope mainly is introduced into an exhaust storage tank l and diluted with an inactive gas, while an oxygen gas being virtually in the same quantity as the hydrogen isotope is mixed therewith. The temperature of a mixed gas thus prepared is raised to a prescribed temperature by a heater 2 and introduced into a catalyst tower (oxidation accelerating means) 3. After the mixed gas is turned into water vapor and carbon dioxide and an inflammable is removed, cooling down near normal temperatures is made by a cooler 4 and the water vapor produced by oxidation in the catalyst tower 3 is passed through a dehumidifying tower 5 and removed. An exhaust gas from which humidity is removed is subjected to removal 6 and 7 of and particulates and led as an exhaust gas into an exhaust tube through a blower 8. Meanwhile, the dehumidifying tower 5 saturated by removal of the humidity is reactivated by heating by regenerating equipment for the dehumidifying tower. The humidity adsorbed by the dehumidifying tower 5 is vaporized and a reproduced gas obtained by the vaporization is cooled down and then collected and stored as drain in a storage tank for tritium and heavy water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は核融合炉施設およびその
関連装置、あるいは核融合炉施設の関連実験装置におい
て、燃料または炉心プラズマ用のガスとされる水素同位
体ガスを主成分とする燃料排気および中性粒子加熱装置
からの排気を安全に処理するトリチウム処理装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nuclear fusion reactor facility and its related equipment, or a related experimental equipment of the nuclear fusion reactor facility, in which a fuel containing hydrogen isotope gas as a main component is used as a fuel or a gas for core plasma. The present invention relates to a tritium treatment device that safely treats exhaust gas and exhaust gas from a neutral particle heating device.

【0002】[0002]

【従来の技術】核融合炉は現在までに実用化されておら
ず、臨界プラズマ試験用の大型装置段階から次の実験炉
の段階に進む途上にある。そして、核融合炉の燃料にな
るプラズマ用のガスとして、現在最も実現性の高い組み
合わせは、重水素(D)と三重水素(T:トリチウム)
をほぼ50%ずつ混合することである。
2. Description of the Related Art A nuclear fusion reactor has not been put to practical use until now, and is in the process of progressing from the stage of large-scale equipment for critical plasma test to the stage of the next experimental reactor. The most feasible combination currently available for plasma fusion gas is deuterium (D) and tritium (T: tritium).
Of about 50% each.

【0003】上記トリチウムは放射性を有し、天然にほ
とんど存在しないことから、現状の臨界実験装置までは
重水素(D)あるいは通常の水素(H:軽水素)で実験
をしている。また、炉心に注入された燃料ガスはプラズ
マを発生した後、真空排気されそのまま大気に放出され
ている。
Since the above-mentioned tritium is radioactive and hardly exists in nature, experiments have been conducted with deuterium (D) or normal hydrogen (H: light hydrogen) up to the current critical experimental device. Further, the fuel gas injected into the core generates plasma, is then evacuated, and is directly discharged to the atmosphere.

【0004】しかし、プラズマ用のガスとしてトリチウ
ムを用いる場合、トリチウムが放射性を有することか
ら、プラズマ排気をそのまま大気に放出することができ
ない。そのため、将来の重水素(D)と三重水素(T)
を混合する実験炉では、燃料排気から不純物を取り除
き、重水素(D),三重水素(T)あるいは混入する水
素(H)を同位体分離し、水素(H)は大気放出し、重
水素(D)および三重水素(T)は再使用するために貯
蔵する方式が考慮されている。この場合の貯蔵法は再使
用を可能にするため、不純物などの混じり気はほとんど
ないことが必要である。
However, when tritium is used as the gas for plasma, the plasma exhaust cannot be directly discharged to the atmosphere because tritium has a radioactive property. Therefore, future deuterium (D) and tritium (T)
In an experimental reactor that mixes with hydrogen, impurities are removed from the fuel exhaust, deuterium (D), tritium (T), or mixed hydrogen (H) isotope separated, and hydrogen (H) is released into the atmosphere and deuterium ( D) and tritium (T) are considered to be stored for reuse. Since the storage method in this case enables reuse, it is necessary that there is almost no mixture of impurities.

【0005】また、この実験炉では水素同位体ガスの同
位体分離装置が重要な役割を果たし、同位体分離装置と
して有力な方式には超低温ヘリウムで冷却して液化水素
ガスの同位体を蒸留で分離する深冷蒸留方式、中心熱線
および外部冷却式の熱拡散により水素ガスを同位体分離
する熱拡散法がある。しかし、前者の深冷蒸留方式はあ
る程度の処理量をコンスタントに必要とし連続して供給
し続ける必要があり、また温度調整も簡単ではない。後
者の熱拡散法は処理量が少なくても多段のカスケードを
必要とし、大きなスペースが必要となる。
In this experimental reactor, an isotope separation device for hydrogen isotope gas plays an important role, and a powerful method for the isotope separation device is to cool it with ultra-low temperature helium to distill the isotope of liquefied hydrogen gas. There are a cryogenic distillation method for separation, a thermal diffusion method for isotopically separating hydrogen gas by thermal diffusion of a central heating wire and an external cooling method. However, the former cryogenic distillation method requires a certain amount of treatment constantly and needs to be continuously supplied, and temperature adjustment is not easy. The latter thermal diffusion method requires a large number of cascades even if the throughput is small, and requires a large space.

【0006】したがって、これまでの実験装置や実験炉
の設計では、このようなトリチウムの除去装置を臨界装
置のように全く設置しないか、あるいは実験炉のように
本格的な同位体分離装置を設けるかのいずれかであっ
た。
Therefore, in the design of experimental equipment and experimental furnaces up to now, such a tritium removing apparatus is not installed like a critical apparatus at all, or a full-scale isotope separation apparatus is installed like an experimental furnace. It was either.

【0007】[0007]

【発明が解決しようとする課題】ところで、臨界実験装
置から実験炉に移行する過程の世代の装置では、主とし
て重水素を使用して実験するものの、このような実験で
は重水素(D)と重水素(D)とが僅かに反応をおこし
てトリチウムTを発生する。その発生量はそのまま大気
に放出するには多少抵抗がある量であるが、本格的な処
理設備を設置するには量が少なすぎる。また、実験が断
続的に行われるので、連続的にある程度の処理量がある
わけではない。
By the way, although deuterium is mainly used for the experiment in the generation equipment in the process of shifting from the critical experimental equipment to the experimental reactor, in such an experiment deuterium (D) and deuterium are used. Hydrogen (D) slightly reacts with each other to generate tritium T. Although the amount generated is somewhat resistant to being released into the atmosphere as it is, the amount is too small to install full-scale processing equipment. Moreover, since the experiment is performed intermittently, there is not a certain amount of processing continuously.

【0008】本発明は上述した事情を考慮してなされた
もので、炉心模擬実験レベルの炉に適応し、簡易で安全
なトリチウム処理装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a simple and safe tritium processing apparatus adapted to a core simulation experiment level reactor.

【0009】[0009]

【課題を解決するための手段】本発明に係るトリチウム
処理装置は、上述した課題を解決するために、水素同位
体ガスを主成分とする燃料排気および中性粒子加熱装置
からの排気を処理するトリチウム処理装置であって、上
記水素同位体ガスの全量を酸化する酸化促進手段と、こ
の酸化促進手段にて処理された再生蒸気を凝縮・液化す
る凝縮・液化手段と、この凝縮・液化手段にて液化され
た水を回収して貯蔵する貯蔵手段とを備えたものであ
る。
In order to solve the above-mentioned problems, a tritium processing apparatus according to the present invention processes fuel exhaust containing hydrogen isotope gas as a main component and exhaust from a neutral particle heating apparatus. In the tritium processing apparatus, an oxidation promoting means for oxidizing all the hydrogen isotope gas, a condensing / liquefying means for condensing / liquefying the regenerated vapor processed by the oxidation promoting means, and a condensing / liquefying means. And a storage means for collecting and storing the liquefied water.

【0010】[0010]

【作用】上記の構成を有する本発明においては、燃料排
気系統からの排出ガスおよび中性粒子加熱装置からの排
気の内、水素同位体ガスを全量酸化し、凝縮・液化して
貯蔵するので、実験炉の設計のような本格的な設備でな
く、貯蔵しても再利用はしないことから、純度は考慮せ
ずに簡易な装置で済む。また、燃料排気を直接大気へ放
出することがないから、一般環境の汚染もない。
In the present invention having the above-mentioned structure, since the hydrogen isotope gas is completely oxidized in the exhaust gas from the fuel exhaust system and the exhaust gas from the neutral particle heating device, it is stored after being condensed / liquefied. It is not a full-scale facility like the experimental furnace design and is not reused even when stored, so a simple device can be used without considering the purity. Moreover, since the fuel exhaust is not directly emitted to the atmosphere, there is no pollution of the general environment.

【0011】[0011]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】図1は本発明に係るトリチウム処理装置の
一実施例を示し、本実施例では設備規模として排ガス量
が1.5 m3 /hrのオーダー程度で、この中に 1/10000程
度のトリチウムを含むものとしている。
FIG. 1 shows an embodiment of the tritium treatment apparatus according to the present invention. In this embodiment, the facility scale is such that the amount of exhaust gas is of the order of 1.5 m 3 / hr, in which tritium of about 1/10000 is contained. It is supposed to include.

【0013】図1において、トリチウム処理装置は主系
統の最初の機器になる排気貯留タンク1を有し、この排
気貯留タンク1には炉心燃料プラズマが燃料真空排気系
あるいは中性粒子入射加熱装置(以下、NBIとい
う。)の排気系により排気されてここに導入される。ま
た、排気貯留タンク1はその後の安全のために不活性な
ガスを十分に希釈するとともに、排気を酸化させるため
の酸素ガスを水素同位体とほぼ等量混合させる。この調
整された混合ガスは加熱器2を経由して所定の温度に昇
温される。
In FIG. 1, the tritium processing apparatus has an exhaust gas storage tank 1 which is the first device of the main system, and in this exhaust gas storage tank 1, the core fuel plasma is a fuel vacuum exhaust system or a neutral particle injection heating device ( Hereinafter, it is exhausted by an exhaust system of NBI) and is introduced here. Further, the exhaust gas storage tank 1 sufficiently dilutes an inert gas for safety thereafter, and mixes oxygen gas for oxidizing exhaust gas with hydrogen isotope in substantially equal amounts. The adjusted mixed gas is heated to a predetermined temperature via the heater 2.

【0014】この昇温された混合ガスは酸化促進手段と
しての触媒塔3に導かれ、この触媒塔3は水素同位体や
炭化水素を触媒に通し、水蒸気と二酸化炭素に転換さ
せ、可燃物を除去する。この触媒塔3で処理されたガス
は高温であるので、次段の冷却器4で常温近くまで冷却
する。また、触媒塔3で酸化されて発生した水蒸気は分
子ふるい(モレキュラーシーブ:商品名)などの乾燥剤
を充填した脱湿塔5に通して吸着除去される。
The heated mixed gas is introduced into a catalyst tower 3 as an oxidation promoting means, and the catalyst tower 3 passes hydrogen isotopes and hydrocarbons through a catalyst to convert them into steam and carbon dioxide, thereby converting combustible substances. Remove. Since the gas treated in the catalyst tower 3 has a high temperature, it is cooled to near room temperature by the cooler 4 in the next stage. Further, the water vapor generated by being oxidized in the catalyst tower 3 is adsorbed and removed through a dehumidification tower 5 filled with a desiccant such as a molecular sieve (molecular sieve: trade name).

【0015】この湿分を除去された排ガスは放射性の成
分が除かれているので、分子ふるいなどの乾燥剤の微粉
などをメッシュ・フィルタ6で除去し、このメッシュ・
フィルタ6で除去できなかった微粒子を高性能フィルタ
7を通して除去する。この微粒子が除去された排気残ガ
スはブロワ8で排気筒に導く。このブロワ8の騒音対策
の必要があればサイレンサ9を設ける。
Since the radioactive component is removed from the exhaust gas from which the moisture has been removed, fine powder of a desiccant such as molecular sieve is removed by the mesh filter 6, and this mesh
Fine particles that could not be removed by the filter 6 are removed through the high-performance filter 7. The exhaust residual gas from which the fine particles have been removed is guided to the exhaust stack by the blower 8. A silencer 9 is provided if it is necessary to take measures against the noise of the blower 8.

【0016】一方、脱湿塔5には付属設備として脱湿塔
再生設備10が設けられ、この脱湿塔再生設備10は、
湿分を除去して飽和した脱湿塔5を加熱再生するもので
あって、再生ガスブロワ11により所定の運転温度に熱
せられた不活性ガスを脱湿塔5に送風すると、この脱湿
塔5が吸着している湿分は蒸発し、この蒸発した再生ガ
スを凝縮・液化手段としての再生ガス冷却器12で冷却
して液化する。この再生ガス冷却器12と接続された再
生ガスメッシュ・フィルタ13は同伴する水滴を除去
し、この水滴を除去した再生ガスは再生ガスブロワ11
を経て再生ガス加熱器14により加熱される。ここで、
再生ガスブロワ13から発生する騒音は、再生ガスブロ
ワ・サイレンサ15により除去される。
On the other hand, the dehumidification tower 5 is provided with a dehumidification tower regeneration equipment 10 as an accessory equipment.
The dehumidifying tower 5 is heated and regenerated by removing moisture, and when the inert gas heated to a predetermined operating temperature by the regeneration gas blower 11 is blown to the dehumidifying tower 5, the dehumidifying tower 5 is heated. Moisture adsorbed by is evaporated, and the evaporated regenerated gas is cooled and liquefied by the regenerated gas cooler 12 as a condensation / liquefaction means. The regenerated gas mesh filter 13 connected to the regenerated gas cooler 12 removes water droplets accompanying it, and the regenerated gas from which the water droplets have been removed is regenerated gas blower 11
And is heated by the regeneration gas heater 14. here,
The noise generated from the regenerated gas blower 13 is removed by the regenerated gas blower silencer 15.

【0017】また、再生ガス冷却器12で液化した水
は、貯蔵手段であるトリチウム重水貯蔵タンク16でド
レンとして回収して溜められ、この貯蔵タンク16は蓋
17により密閉され、貯蔵タンク16内の圧力が所定圧
力以上になると、逃がしベントライン18を通して排気
筒19から逃がす。
The water liquefied in the regeneration gas cooler 12 is collected and stored as a drain in a tritium heavy water storage tank 16 which is a storage means, and the storage tank 16 is sealed by a lid 17 and stored in the storage tank 16. When the pressure becomes equal to or higher than a predetermined pressure, it escapes from the exhaust pipe 19 through the escape vent line 18.

【0018】次に、本実施例の作用について説明する。Next, the operation of this embodiment will be described.

【0019】炉心燃料プラズマが燃料真空排気系あるい
はNBIの排気系によって排気された燃料排気およびN
BI排気は排出された後、排気貯留タンク1に溜める。
この排気貯留タンク1にはまず水素同位体を主体とした
排気が導入され、不活性なガスを十分に希釈するととも
に、酸素ガスを水素同位体とほぼ等量混合させる。但
し、この混合工程は排気貯留タンク1で行う方法の他に
タンクを出た後で合流させる方法も考えられる。排気貯
留タンク1の排気を触媒塔3に通して酸化などの反応を
おこさせるため、事前にガスの温度を触媒反応に適した
温度に調整する必要があり、この調整された混合ガスは
加熱器2を経由して所定の温度に昇温される。
The fuel exhaust gas and the N gas exhausted from the core fuel plasma by the fuel vacuum exhaust system or the NBI exhaust system.
The BI exhaust gas is discharged and then stored in the exhaust gas storage tank 1.
First, the exhaust gas mainly containing hydrogen isotope is introduced into the exhaust gas storage tank 1 to sufficiently dilute the inert gas and mix the oxygen gas with the hydrogen isotope in substantially equal amounts. However, in addition to the method of performing this mixing step in the exhaust gas storage tank 1, a method of combining after exiting the tank is also conceivable. Since the exhaust gas from the exhaust gas storage tank 1 is passed through the catalyst tower 3 to cause a reaction such as oxidation, it is necessary to adjust the temperature of the gas in advance to a temperature suitable for the catalytic reaction. The temperature is raised to a predetermined temperature via 2.

【0020】その後、上記混合ガスを触媒塔3に導入
し、この触媒塔3では水蒸気と二酸化炭素に転換させて
可燃物を除去する。次いで、この触媒塔3で処理された
ガスは高温であるので、冷却器4で常温近くまで冷却す
る。また、触媒塔3で発生した水蒸気はその他のより沸
点の低い成分と分離させるため、凝縮分離する。そのた
め、脱湿塔5に通し、触媒塔3で酸化されて発生した水
蒸気を吸着除去する。この脱湿塔5は待機系統を備えて
おき、飽和したときは待機系統に切り替え、再生運転を
行う。脱湿塔5は待機系統を含め2〜3系統とするのが
望ましい。
After that, the mixed gas is introduced into the catalyst tower 3, and in the catalyst tower 3, combustible substances are removed by converting it into steam and carbon dioxide. Next, since the gas processed in the catalyst tower 3 has a high temperature, it is cooled in the cooler 4 to near normal temperature. Further, the water vapor generated in the catalyst tower 3 is condensed and separated in order to separate it from other components having a lower boiling point. Therefore, the water vapor generated by being oxidized in the catalyst tower 3 is adsorbed and removed through the dehumidification tower 5. The dehumidifying tower 5 is provided with a standby system, and when saturated, switches to the standby system and performs a regeneration operation. It is desirable that the dehumidifying tower 5 has two to three systems including a standby system.

【0021】湿分を除去された排ガスはメッシュ・フィ
ルタ6により微粉を除去し、このメッシュ・フィルタ6
で除去できなかった微粒子は高性能フィルタ7を通して
除去され、ブロワ8を通して排気筒に排気残ガスを導
く。
Exhaust gas from which moisture has been removed is subjected to fine powder removal by a mesh filter 6, and this mesh filter 6
The particulates that could not be removed in step 1 are removed through the high performance filter 7, and the exhaust residual gas is guided to the exhaust stack through the blower 8.

【0022】一方、湿分を除去して飽和した脱湿塔5は
脱湿塔再生設備10で加熱再生される。この脱湿塔再生
設備10は所定の運転温度に熱せられた不活性ガスを脱
湿塔5に再生ガスブロワ11で送風し加熱再生する。こ
の時、脱湿塔5が吸着している湿分は蒸発し、この蒸発
した再生ガスは再生ガス冷却器12で冷却され、ドレン
としてトリチウム重水貯蔵タンク16に回収されて溜め
られる。
On the other hand, the dehumidification tower 5 which has been saturated by removing moisture is heated and regenerated in the dehumidification tower regeneration equipment 10. The dehumidifying tower regenerating equipment 10 blows the inert gas heated to a predetermined operating temperature to the dehumidifying tower 5 with a regenerating gas blower 11 to regenerate it by heating. At this time, the moisture adsorbed by the dehumidification tower 5 is evaporated, and the regenerated gas thus evaporated is cooled by the regenerated gas cooler 12 and is collected and stored as a drain in the tritium heavy water storage tank 16.

【0023】また、再生ガスメッシュ・フィルタ13は
同伴する水滴を除去し、この水滴を除去した再生ガスは
再生ガスブロワ11を経て、再生ガス加熱器14で加熱
する。したがって、トリチウム重水貯蔵タンク16には
排気の重水素、トリチウムが全量酸化されて水の形態で
貯蔵される。
Further, the regenerated gas mesh filter 13 removes the entrained water droplets, and the regenerated gas from which the water droplets have been removed is heated by the regenerated gas heater 14 through the regenerated gas blower 11. Therefore, the deuterium and tritium in the exhaust gas are completely oxidized and stored in the tritium heavy water storage tank 16 in the form of water.

【0024】このように、本実施例によれば、トリチウ
ム重水貯蔵タンク16の大きさは1m3 程度でよく、全
体にコンパクトである。したがって、熱拡散塔方式を有
するシステムのような広いスペースは不要であるととも
に、実験が断続的に行われるので、深冷蒸留方式の欠点
も除かれる。
As described above, according to the present embodiment, the size of the tritium heavy water storage tank 16 may be about 1 m 3 , which is compact as a whole. Therefore, a wide space such as a system having a heat diffusion tower system is not necessary, and since the experiment is performed intermittently, the disadvantage of the cryogenic distillation system is also eliminated.

【0025】なお、上記実施例において、排気貯留タン
ク1、加熱器2、触媒塔3、メッシュ・フィルタ6、高
性能フィルタ7、およびブロワ8は主系統にそれぞれ補
機を備えているが、脱湿塔5のように待機系統を複数設
け、且つそれぞれに補機を備えるようにしてもよい。
In the above embodiment, the exhaust gas storage tank 1, the heater 2, the catalyst tower 3, the mesh filter 6, the high-performance filter 7, and the blower 8 are each equipped with auxiliary machines in the main system. A plurality of standby systems may be provided like the wet tower 5 and each may be equipped with an auxiliary machine.

【0026】[0026]

【発明の効果】以上説明したように、本発明に係るトリ
チウム処理装置によれば、燃料排気系統からの排出ガス
および中性粒子加熱装置からの排気の内、水素同位体ガ
スを全量酸化し、凝縮・液化して貯蔵するので、重水素
プラズマ反応によってプラズマ容器内で発生するトリチ
ウムを除去し、一般環境への放出量を公衆安全上影響の
ないように低減させることができる。また、排ガスから
除去したトリチウムを漏洩しないように安全に管理する
ことができるとともに、可燃性である排ガスを安全に処
理可能である。そして、燃料排気を直接大気へ放出する
ことがないから、一般環境の汚染も防止することができ
る。
As described above, according to the tritium treatment apparatus of the present invention, the hydrogen isotope gas is completely oxidized in the exhaust gas from the fuel exhaust system and the exhaust gas from the neutral particle heating device, Since it is condensed and liquefied and stored, the tritium generated in the plasma container by the deuterium plasma reaction can be removed, and the amount released to the general environment can be reduced without affecting public safety. In addition, the tritium removed from the exhaust gas can be safely managed so as not to leak, and the combustible exhaust gas can be safely processed. Further, since the fuel exhaust is not directly emitted to the atmosphere, it is possible to prevent pollution of the general environment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るトリチウム処理装置の一実施例を
示す系統図。
FIG. 1 is a system diagram showing an embodiment of a tritium processing apparatus according to the present invention.

【図2】トリチウム処理装置に設けられた脱湿塔再生設
備を示す系統図。
FIG. 2 is a system diagram showing a dehumidifying tower regenerating facility provided in a tritium treatment device.

【符号の説明】[Explanation of symbols]

1 排気貯留タンク 2 加熱器 3 触媒塔(酸化促進手段) 4 冷却器 5 脱湿塔 10 脱湿塔再生設備 11 再生ガスブロワ 12 再生ガス冷却器(凝縮・液化手段) 13 再生ガスメッシュ・フィルタ 14 再生ガス加熱器 15 再生ガスブロワ・サイレンサ 16 トリチウム重水貯蔵タンク(貯蔵手段) 1 Exhaust Storage Tank 2 Heater 3 Catalyst Tower (Oxidation Accelerator) 4 Cooler 5 Dehumidification Tower 10 Dehumidification Tower Regeneration Facility 11 Regeneration Gas Blower 12 Regeneration Gas Cooler (Condensation / Liquefaction Means) 13 Regeneration Gas Mesh Filter 14 Regeneration Gas heater 15 Regenerated gas blower / silencer 16 Tritium heavy water storage tank (storage means)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水素同位体ガスを主成分とする燃料排気
および中性粒子加熱装置からの排気を処理するトリチウ
ム処理装置であって、上記水素同位体ガスの全量を酸化
促進する酸化促進手段と、この酸化促進手段にて処理さ
れた再生蒸気を凝縮・液化する凝縮・液化手段と、この
凝縮・液化手段にて液化された水を回収して貯蔵する貯
蔵手段とを備えたことを特徴とするトリチウム処理装
置。
1. A tritium treatment device for treating fuel exhaust containing hydrogen isotope gas as a main component and exhaust from a neutral particle heating device, and an oxidation promoting means for promoting oxidation of all the hydrogen isotope gas. A condensing / liquefying means for condensing / liquefying the regenerated vapor treated by the oxidation promoting means, and a storage means for collecting and storing the water liquefied by the condensing / liquefying means. Tritium processing equipment.
JP4037884A 1992-02-25 1992-02-25 Treating equipment of tritium Pending JPH05232293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4037884A JPH05232293A (en) 1992-02-25 1992-02-25 Treating equipment of tritium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4037884A JPH05232293A (en) 1992-02-25 1992-02-25 Treating equipment of tritium

Publications (1)

Publication Number Publication Date
JPH05232293A true JPH05232293A (en) 1993-09-07

Family

ID=12509972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4037884A Pending JPH05232293A (en) 1992-02-25 1992-02-25 Treating equipment of tritium

Country Status (1)

Country Link
JP (1) JPH05232293A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100893680B1 (en) * 2008-10-16 2009-04-17 (주)한국원자력 엔지니어링 Removing method of radioactive containment in air and apparatus using the same
CN105632574A (en) * 2016-01-15 2016-06-01 中国科学技术大学 Method and device for purifying and recycling cleaning waste gas of hot cell of fusion reactor by cryogenic rectification
CN105654997A (en) * 2016-01-15 2016-06-08 中国科学技术大学 Oxidation separation, purification, regeneration and utilization method and device for fusion reactor hot room by means of cleaning waste gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100893680B1 (en) * 2008-10-16 2009-04-17 (주)한국원자력 엔지니어링 Removing method of radioactive containment in air and apparatus using the same
CN105632574A (en) * 2016-01-15 2016-06-01 中国科学技术大学 Method and device for purifying and recycling cleaning waste gas of hot cell of fusion reactor by cryogenic rectification
CN105654997A (en) * 2016-01-15 2016-06-08 中国科学技术大学 Oxidation separation, purification, regeneration and utilization method and device for fusion reactor hot room by means of cleaning waste gas

Similar Documents

Publication Publication Date Title
US4053432A (en) Volume reduction of spent radioactive ion-exchange material
JPH0452437B2 (en)
JP2002058952A (en) Circulated gas-concentration method for recovered gas in dry-type dehumidifier
US4867762A (en) Method and a device for purifying a gas containing hydrogen isotopes
JPH05232293A (en) Treating equipment of tritium
JP2000000425A (en) Treatment of low-concentration gaseous organic solvent and its treatment apparatus
US4018704A (en) Method for desorption of methyl bromide
JPH0199000A (en) Method and equipment for processing solid organic waste polluted by tritium
JPH0952015A (en) Solvent treatment apparatus and method therefor
JP4548891B2 (en) Organic solvent recovery method
JP3282676B2 (en) Recovery method for solvents, etc.
CN203061024U (en) Organic waste gas adsorption and steam stripping recovery and treatment device
JPS6211886B2 (en)
JPH10337432A (en) Exhaust gas treatment and device therefor
JP2000070678A (en) Method and apparatus for treating 14c-containing graphite
US4277256A (en) Process for the purification of gases containing radioactive substances
JP5879881B2 (en) Organic solvent recovery system
US7344688B2 (en) Process for treating alkali metals charged with tritium or components contaminated with alkali metals charged with tritium
JPH10339794A (en) Gas waste treatment facility
JP3788814B2 (en) Solvent recovery method
JPS6372321A (en) Gaseous waste treating method
JP2006266967A (en) Processing method for waste ion exchange resin
JP2761917B2 (en) Argon recovery method
JPH09281290A (en) Radioactive gaseous waste treating device
JPS63274900A (en) Device for treating exhaust gas of nuclear reactor