JPS60239302A - Purification of single substance of hydrogen isotope - Google Patents

Purification of single substance of hydrogen isotope

Info

Publication number
JPS60239302A
JPS60239302A JP59095739A JP9573984A JPS60239302A JP S60239302 A JPS60239302 A JP S60239302A JP 59095739 A JP59095739 A JP 59095739A JP 9573984 A JP9573984 A JP 9573984A JP S60239302 A JPS60239302 A JP S60239302A
Authority
JP
Japan
Prior art keywords
hydrogen isotope
stage
oxygen
main system
recovered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59095739A
Other languages
Japanese (ja)
Inventor
Shigetada Kobayashi
重忠 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59095739A priority Critical patent/JPS60239302A/en
Publication of JPS60239302A publication Critical patent/JPS60239302A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To prevent leakage of single substance of hydrogen isotope to the outside of a system and to elevate safety of environment by cracking carbon compds. and nitrogen compds. removed and recovered in a main system in a section other than the main system. CONSTITUTION:Gaseous single substance of hydrogen isotope is introduced into an oxygen removing stage 12 from an inlet 11, where the hydrogen isotope is allowed to react with oxygen at 100-200 deg.C in the presence of a catalyst to generate steam, which is removed in a dehumidifying stage 13. The residual gas is introduced into an impurity removing stage 14 where impurities such as carbon compds. or nitrogen compds. are removed by allowing the gas to contact with an adsorbent cooled to cryogenic temp., and the purified hydrogen isotope is discharged from an outlet 15. Impurities removed in the stage 14 are introduced into a cracking stage 16 where it is decomposed at 400- 500 deg.C in the presence of a catalyst, and the hydrogen isotope in the impurities are oxidized to form steam, which is fed to a moisture recovering stage 17 together with a part of the steam introduced from a stage 13 and recovered. Further, another part of the steam from the stage 13 is fed to a water decomposing stage 18, where it is decomposed and the single substance of the hydrogen isotope is fed back to the inlet 11, and the oxygen is circulated to the stage 16.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は化学プラン)または核融合プラントを含む原子
カプラント等において、水素同位体単体ガス(H,、D
z、 HT、 DT、 HD )を主成分とすルカスカ
ら不純物を除去するための水素同位体単体の精製方法に
関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to hydrogen isotope gases (H, D
This invention relates to a method for purifying a simple hydrogen isotope for removing impurities from Lukaska whose main components are (Z, HT, DT, HD).

[発明の技術的背景とその問題点] 未精製の水素同位体単体ガスの中には、炭化水素などの
炭素化合物、アンモニアなどの情素化合物、および酸素
単体あるいは酸化物などの不純物を含んでいる。これら
不純物のうち、水素同位体の化合物は分解させて水素同
位体単体として主成分中に回収するのが理想であり、と
くに天然の存在比の小さい重水素や放射能をもち危険な
三重水素では不可避的な課題となる。
[Technical background of the invention and its problems] Unrefined hydrogen isotope gas contains impurities such as carbon compounds such as hydrocarbons, elemental compounds such as ammonia, and oxygen alone or oxides. There is. Among these impurities, it is ideal to decompose hydrogen isotope compounds and recover them as single hydrogen isotopes in the main components, especially deuterium, which has a small abundance in nature, and tritium, which is radioactive and dangerous. This becomes an unavoidable issue.

これら不純物としての水素同位体化合物のうち、窒素化
合物と炭素化合物については直接分解して水素同位体単
体とすることが難しいので、まず酸化して水蒸気に転換
させ、これを分解することによって水素同位体単体を得
るという方法をとる。
Among these hydrogen isotope compounds as impurities, nitrogen compounds and carbon compounds are difficult to decompose directly into hydrogen isotopes, so they are first oxidized and converted to water vapor, and then decomposed to form hydrogen isotopes. The method is to obtain a single body.

すなわち、水素同位体をH’で表記すると、下記の2段
階の式で表わされる。
That is, when a hydrogen isotope is expressed as H', it is expressed by the following two-step formula.

(1) 4NHB’ + 702 →4NO2+ 6H
2’0CH4’ + 204−> CO2,+ 2H2
’0(II) 2H2’O→ 2H2′+02ここで、
炭素および窒素の各水素化物はCH4’おj よびNH
8’で代表させである。
(1) 4NHB' + 702 →4NO2+ 6H
2'0CH4' + 204-> CO2, + 2H2
'0(II) 2H2'O→ 2H2'+02Here,
The carbon and nitrogen hydrides are CH4' and NH
It is represented by 8'.

この方法に従って、従来第1図に示す精製システムが考
えられてきた。すなわち、被処理ガスはシステム人口1
から入り、高温触媒塔2において炭化水素やアンモニア
等の水素同位体化合物がクラッキングされ、上記(1)
の反応によりこれら水素同位体化合物が各々酸化物に転
換される。次に低温触媒塔3に入り、ここで不純物であ
る酸素単体が水素同位体と反応して水蒸気を生成する。
According to this method, the purification system shown in FIG. 1 has been considered. In other words, the gas to be treated has a system population of 1
Hydrogen isotope compounds such as hydrocarbons and ammonia are cracked in the high-temperature catalyst tower 2, and the above (1)
Each of these hydrogen isotope compounds is converted into an oxide by the reaction. Next, it enters the low-temperature catalyst tower 3, where the impurity elemental oxygen reacts with hydrogen isotopes to generate water vapor.

ここで生成した水蒸気と上流から来た水蒸気は次の脱湿
器4で除去され、また高温触媒塔2で生成された二酸化
炭素や二酸化窒素は次の低温吸着塔5で除去される。以
上のようにして不純物が除かれた高純度ガスはシステム
出口6から送り出される。
The water vapor produced here and the water vapor coming from upstream are removed in the next dehumidifier 4, and carbon dioxide and nitrogen dioxide produced in the high temperature catalyst tower 2 are removed in the next low temperature adsorption tower 5. The high purity gas from which impurities have been removed as described above is sent out from the system outlet 6.

一方、脱湿器4で回収された湿分は水分解装置7で水素
同位体単体と酸素単体とに分解され、前者は水素同位体
単体回収ルート8をれてシステム人口1に戻され、後者
は酸素単体ルート9を紅て、低温吸着塔5で回収さj5
た二酸化炭素や二酸化窒素と共に排気ルートIOにより
糸外に排出される。
On the other hand, the moisture recovered by the dehumidifier 4 is decomposed into hydrogen isotope and oxygen in the water decomposition device 7, and the former is returned to the system population 1 through the hydrogen isotope recovery route 8, and the latter is is collected through the simple oxygen route 9 in the low-temperature adsorption tower 5.
It is discharged to the outside of the yarn along with carbon dioxide and nitrogen dioxide through the exhaust route IO.

ところが、上記の精製システムでは、高温触媒塔2が4
00〜500℃程度の高温度で運転されるので、被処理
ガス中の主成分である水素同位体単体が金属壁を通過漏
洩する危険がある。水素同位体単体は可燃性であるので
、系外に漏洩した場合確実な処理が施されないと爆発の
可能性があり、また同位体のうち三重水素は放射性であ
るので危険である。さらにこれらは天然存在比の小さな
元素であるので損失でもある。
However, in the above purification system, the high temperature catalyst tower 2 is
Since it is operated at a high temperature of about 00 to 500°C, there is a risk that hydrogen isotope, which is the main component in the gas to be treated, may leak through the metal wall. Hydrogen isotopes alone are flammable, so if they leak outside the system, there is a possibility of an explosion if proper treatment is not taken, and among isotopes, tritium is radioactive and therefore dangerous. Furthermore, since these are elements with a small natural abundance ratio, this is also a loss.

[発明の目的] 本発明は上記問題点を解決するためになされたもので、
水素同位体の系外リークの危険性を抑えて安全性を高め
た水素同位体単体の精製方法を提供することを目的とす
る0 [発明の概要] 本発明は炭化水素などの炭素化合物、アンモニアなどの
窒素化合物、および酸素単体、酸化物等を不純物として
含む水素同位体単体の精製方法に係わり、酸素を除去す
る工程、湿分を除去する工程および炭素化合物、窒素化
合物等からなる残りの不純物を除去する工程を精製シス
テムの主系統において順次行ない、該主系統において除
去回収された炭素化合物および窒素化合物のクラッキン
グ工程を主系統以外において行なうことにより、水素同
位体単体の系外リークの危険性を抑え安全性を高めたこ
とを特徴とするものである。
[Object of the invention] The present invention has been made to solve the above problems,
It is an object of the present invention to provide a method for refining a single hydrogen isotope that suppresses the risk of hydrogen isotope leaking out of the system and increases safety. This method involves the purification of hydrogen isotopes containing nitrogen compounds such as oxygen, oxides, etc. as impurities, including the process of removing oxygen, the process of removing moisture, and the remaining impurities consisting of carbon compounds, nitrogen compounds, etc. The risk of leakage of individual hydrogen isotopes to the outside of the system is reduced by sequentially performing the process of removing hydrogen isotopes in the main system of the refining system, and performing the cracking process of the carbon compounds and nitrogen compounds removed and recovered in the main system outside the main system. It is characterized by improved safety by suppressing

本発明の精製方法において主系統で除去された湿分け、
さらに分解され、生成した水素同位体単体は再び主系統
に戻すことによって、その損失を低減させることができ
る。
Moisture removed in the main system in the purification method of the present invention,
The hydrogen isotope generated through further decomposition can be returned to the main system to reduce its loss.

また上記クランキング工程においては、水素同位体を酸
化物として回収し、これをさらに分解して生成した水素
同位体化合物手可能 とにより、その損失を低減させることができる。
In addition, in the cranking step, hydrogen isotopes are recovered as oxides, which are further decomposed to generate hydrogen isotope compounds, thereby reducing the loss of the hydrogen isotopes.

本発明の精製方法において酸素を除去する工程は、触媒
の存在下100〜200°Cで酸素と主成分の水素同位
体単体ガスとを反応させ、水蒸気を生成させる方法によ
るのが好ましく、また湿分を除去する工程は低温凝縮法
または脱塩剤による吸着法によるのが好ましい。さらに
炭素化合物、窒素化合物等の不純物を除去する工程は、
極低温に耐却した吸着剤に吸着除去させる方式が好適で
ある。
In the purification method of the present invention, the step of removing oxygen is preferably carried out by a method of reacting oxygen with a hydrogen isotope gas as a main component at 100 to 200°C in the presence of a catalyst to generate water vapor. The step of removing the components is preferably carried out by a low-temperature condensation method or an adsorption method using a desalting agent. Furthermore, the process of removing impurities such as carbon compounds and nitrogen compounds is
A method of adsorption and removal using an adsorbent that has withstood extremely low temperatures is suitable.

[発明の実施例] 本発明の一実施例を第2図を参照しながら説明する。[Embodiments of the invention] An embodiment of the present invention will be described with reference to FIG.

被処理ガスはシステム人口1jから導入され、酸素除去
工程12.除湿工程13 、不純物除去工程14の順で
処理され、システム出口15から送り出される。
The gas to be treated is introduced from the system population 1j, and the oxygen removal step 12. It is processed in the order of dehumidification step 13 and impurity removal step 14, and then sent out from the system outlet 15.

不純物除去工程14で回収された不純物はクラッキング
工程16から湿分回収工程17を経て、排気出口19か
ら系外へ排出される。除湿工程13および湿分回収工程
17で回収された水分は、水分解工程18を経て、水素
同位体単体はシステム人口11へ戻され、酸素単体はク
ラッキング工程16に戻される。
The impurities recovered in the impurity removal step 14 pass through a cracking step 16, a moisture recovery step 17, and are discharged to the outside of the system from an exhaust outlet 19. The water recovered in the dehumidification process 13 and the moisture recovery process 17 passes through a water decomposition process 18, where the hydrogen isotope is returned to the system population 11 and the oxygen is returned to the cracking process 16.

以上が処理工程の大要であるが、次に各工程について説
明する。被処理ガスは前記したように炭化水素などの炭
素化合物、アンモニアなどの窒素化合物および酸素単体
ならびに酸化物などの不純物を含んだ水素同位体単体ガ
スであり、まず酸素除去工程12において、例えば10
0〜200℃の運転j 温度で触媒下に不純物でおる酸
素と主成分である水素同位体単体とを化合させることに
よって、水蒸気を生成させる。次に除湿工程13におい
て、低温冷媒を使ったコールドトラップ凝縮法、または
吸着剤や吸湿性架品による吸着法によってガス中の水分
が除去される。除濁処理されたガスは不純物除去工程1
4に入り、残りの不純物である炭化水素やアンモニアな
どが除去される。この工程では例えば液体窒素温度程度
に冷却した低温吸着塔を使用する。以上の三工程を経て
精製されたガスは、高純度水素同位体単体ガスとしてシ
ステム出口15から系外へ出る。
The above is an overview of the processing steps, and each step will be explained next. As described above, the gas to be treated is hydrogen isotope gas containing impurities such as carbon compounds such as hydrocarbons, nitrogen compounds such as ammonia, and oxygen and oxides.
Water vapor is generated by combining oxygen, which is an impurity, with hydrogen isotope, which is the main component, under a catalyst at an operating temperature of 0 to 200°C. Next, in a dehumidifying step 13, moisture in the gas is removed by a cold trap condensation method using a low-temperature refrigerant or an adsorption method using an adsorbent or a hygroscopic frame. The turbidity-treated gas undergoes impurity removal step 1.
4, remaining impurities such as hydrocarbons and ammonia are removed. In this step, for example, a low-temperature adsorption tower cooled to about the temperature of liquid nitrogen is used. The gas purified through the above three steps exits from the system through the system outlet 15 as a high-purity hydrogen isotope simple gas.

上記の除湿工程13および不純物除去工程14において
例示した処理方法は、いずれも除去された不純物を機器
の中に蓄積させる方式であるので、蓄積量が飽和すれば
交換する必要がある0したがってそれぞれ2基以上の機
器を設置し、1基のみを運転してそれが飽和に達したと
き他の1基と交換し、飽和した機器を再生させる。再生
の方法としては、加熱による方法、不活性ガス仁よりパ
ージする方法、真空引きする方法などがある。
The treatment methods exemplified in the dehumidification step 13 and the impurity removal step 14 above are all methods of accumulating the removed impurities in the equipment, so it is necessary to replace the equipment when the accumulated amount is saturated. Install more than one device, operate only one, and when it reaches saturation, replace it with another one, regenerating the saturated device. Examples of regeneration methods include heating, purging with an inert gas, and evacuation.

不純物除去工程14からこのような再生処理により得ら
れた不純物は、クラッキング工程16に移され、例えば
400〜500℃の運転温度で触媒下に炭化水素やアン
モニアを分解さ?、それぞれに含まれている水素同位体
を酸化1−て水蒸気を生成せしめる。ここで生成した水
蒸気は湿分回収工程17で回収され、残りけ排気出口1
9から排出される。この湿分回収工程17は除湿工程1
3と同じ方法によって行なわれ、同様(=再生される。
The impurities obtained by such regeneration treatment from the impurity removal step 14 are transferred to a cracking step 16, where hydrocarbons and ammonia are cracked under a catalyst at an operating temperature of, for example, 400 to 500°C. , hydrogen isotopes contained in each are oxidized to produce water vapor. The water vapor generated here is recovered in a moisture recovery step 17, and the remaining water vapor is
It is discharged from 9. This moisture recovery step 17 is the dehumidification step 1.
It is performed by the same method as 3, and is reproduced in the same way.

除湿工程13および湿分回収工程17から回収されて再
生された水分は液化されて、水分解工程■8において、
例えは電気分解によって分解され、水素同位体単体と酸
素単体とになる。前者はシステム人口13に戻し、後者
はクラッキング工程16に戻す0 以上のように処理することによって、運転温度の高いク
ラッキング工程を主系統からはずすことができるoした
がって、従来のように水素同位体単体が100チ近くに
なっている状態でクラッキングすることがないので、水
素同位体単体ガスが管壁から漏洩する危険を極めて低く
することができる0 また、上記実施例においては、主系統における各処理は
水素同位体の化合物を吸着剤等に固定した形態で回収す
るので、仮にシステムの破撰が起きた場合でも拡散に時
間がかかり、対応に時間的ゆとりが与えられ、この面で
も安全性を高くする ゛ことができる。
The water recovered and regenerated from the dehumidification process 13 and the moisture recovery process 17 is liquefied, and in the water decomposition process (8),
For example, it is decomposed by electrolysis into hydrogen isotopes and oxygen. The former is returned to the system population 13, and the latter is returned to the cracking process 16.0 By processing as described above, the cracking process, which requires high operating temperatures, can be removed from the main system. Since cracking does not occur when the hydrogen isotope is close to 100 cm, the risk of hydrogen isotope gas leaking from the pipe wall can be extremely reduced. Since hydrogen isotope compounds are recovered in the form of fixed substances such as adsorbents, even if the system were to fail, it would take time for the system to diffuse, giving more time for countermeasures and ensuring safety. You can make it higher.

[発明の効果] 本発明はクラッキング工程を精製システムの主系−統か
らはずしたことにより、水素同位体単体の管壁からの漏
洩を低減でき、安全性の高い精製方法を提供することが
できる。
[Effects of the Invention] By removing the cracking process from the main system of the refining system, the present invention can reduce leakage of hydrogen isotopes from the pipe wall, and provide a highly safe refining method. .

また本発明の精製方法l:よれば、水素同位体をほぼ完
全に回収できるので、特に三重水系の如き放射性のガス
が一般環境に放出さね、る危険性が避けられ、また天然
の存在比の小さい元素の損失を防ぐことができる。
In addition, according to the purification method 1 of the present invention, hydrogen isotopes can be almost completely recovered, so the risk of radioactive gases such as triplex water being released into the general environment can be avoided, and the natural abundance ratio can be avoided. The loss of small elements can be prevented.

さらに高温のクラッキング工程を主系統からはずした結
果、高温機器の管理が独立してできるので、設備面で簡
略化されるという利点もある。
Furthermore, by removing the high-temperature cracking process from the main system, the high-temperature equipment can be managed independently, which has the advantage of simplifying equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の水素同位体単体のn裏方法を示す工程図
、第2図は本発明の一実施例を示す工程図である0 2・・・高温触媒塔 3・・・低温触媒塔4・・・脱湿
器 5・・・低温吸着塔 7・・・水分解装置 IO・・・排気出口12・・・酸
素除去工程 13・・・除湿工程14・・・不純物除去
工程 16・・・クラッキング工程17・・・湿分回収
工程 18・・・水分解工程19・・・排気出口 代理人 弁理士 猪 股゛−祥 晃(はか1名)第 1
 図
Fig. 1 is a process diagram showing a conventional n-back method for producing a single hydrogen isotope, and Fig. 2 is a process diagram showing an embodiment of the present invention. 4... Dehumidifier 5... Low temperature adsorption tower 7... Water decomposition device IO... Exhaust outlet 12... Oxygen removal process 13... Dehumidification process 14... Impurity removal process 16...・Cracking process 17...Moisture recovery process 18...Water decomposition process 19...Exhaust outlet agent Patent attorney Akira Ino-Yoshi (1 person) 1st
figure

Claims (1)

【特許請求の範囲】 (1)酸素を除去する工程、湿分な除去する工程および
炭素化合物、窒素化合物等からなる残りの不純物を除去
する工程を18Mシステムの主系統において順次行ない
、該主系統において除去回収された炭素化合物および窒
素化合物のクランキング工程を主系統以外において行な
うことを特徴とする水素同位体単体の精製方法。 (2)精製システムの主系統において除去回収された湿
分を分解し、生成した水素同位体単体を主系統に戻す特
許請求の範囲第1項記載の精製方法。 (81炭素化合物および窒素化合物のクラッキング工程
(二おいて水素同位体を酸化物として回収し、これをさ
らに分解して、生成した水素同位体単体を主系統に戻す
特許請求の範囲第1項記載のn製方法。 (4)酸素を除去する工程は、触媒の存在下100℃〜
200℃で酸素と水素同位体単体ガスとを反応させて水
蒸気化させることによって行なう特許請求の範囲1g1
項記載の精製方法。 (6)湿分な除去する工程は低温凝縮法まfcは脱湿剤
による吸着法によって行なう特許請求の範囲第1項記載
の精製方法。 (6)炭素化合物および窒素化合物等よりなる残りの不
純物を除去する工程は、極低温に冷却した吸着剤に吸着
除去させることによって行なう特許請求の範囲第1項記
載の精製方法。
[Scope of Claims] (1) A step of removing oxygen, a step of removing moisture, and a step of removing remaining impurities such as carbon compounds and nitrogen compounds are performed in sequence in the main system of the 18M system, and the main system 1. A method for purifying a single hydrogen isotope, characterized in that a cranking step of carbon compounds and nitrogen compounds removed and recovered in the step is performed in a system other than the main system. (2) The refining method according to claim 1, in which the moisture removed and recovered in the main system of the refining system is decomposed and the generated hydrogen isotope is returned to the main system. (81 Cracking process for carbon compounds and nitrogen compounds (2) Hydrogen isotopes are recovered as oxides, which are further decomposed, and the generated hydrogen isotopes are returned to the main system as described in claim 1. (4) The step of removing oxygen is carried out at 100°C in the presence of a catalyst.
Claim 1g1, which is achieved by reacting oxygen and hydrogen isotope simple gas at 200°C to vaporize it.
Purification method described in section. (6) The purification method according to claim 1, wherein the step of removing moisture is carried out by a low temperature condensation method or fc is carried out by an adsorption method using a dehumidifying agent. (6) The purification method according to claim 1, wherein the step of removing remaining impurities such as carbon compounds and nitrogen compounds is carried out by adsorption and removal using an adsorbent cooled to an extremely low temperature.
JP59095739A 1984-05-15 1984-05-15 Purification of single substance of hydrogen isotope Pending JPS60239302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59095739A JPS60239302A (en) 1984-05-15 1984-05-15 Purification of single substance of hydrogen isotope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59095739A JPS60239302A (en) 1984-05-15 1984-05-15 Purification of single substance of hydrogen isotope

Publications (1)

Publication Number Publication Date
JPS60239302A true JPS60239302A (en) 1985-11-28

Family

ID=14145853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59095739A Pending JPS60239302A (en) 1984-05-15 1984-05-15 Purification of single substance of hydrogen isotope

Country Status (1)

Country Link
JP (1) JPS60239302A (en)

Similar Documents

Publication Publication Date Title
US4774065A (en) Process and apparatus for decontaminating exhaust gas from a fusion reactor fuel cycle of exhaust gas components containing chemically bonded tritium and/or deuterium
US5711926A (en) Pressure swing adsorption system for ammonia synthesis
JP5392745B2 (en) Xenon concentration method, xenon concentration device, and air liquefaction separation device
JP3572548B2 (en) Gas purification method and apparatus
JP5222327B2 (en) Gas separation method and apparatus
JP3824838B2 (en) Noble gas recovery method
US4055625A (en) Method of treatment of a mixture of air and at least partially radioactive rare gases
JPH0624962B2 (en) Method for recovering high-purity argon from exhaust gas from a single crystal manufacturing furnace
JPS62255894A (en) Method and device for decontaminating waste gas of fuel cycle of fusion reactor
JPS60239302A (en) Purification of single substance of hydrogen isotope
JPH02284618A (en) Method for reducing oxygen concentration
JP2003246611A (en) Helium purifying apparatus
JP3294067B2 (en) Krypton manufacturing method
JPS5930646B2 (en) Argon gas purification method
JP2000005561A (en) Treatment of fluoride
JP4580694B2 (en) Gas separation method and apparatus
JPH0377626A (en) Device for refining hydrogen isotope
JP3213851B2 (en) Removal method of carbon monoxide in inert gas
JP2006000733A (en) Gas treatment method and gas treatment apparatus
JPS6338197A (en) Hydrogen isotope gas removing device
KR790001185B1 (en) Method of treatment of a mixture of air and at least partially radioactive rare gas
JPS6097022A (en) Concentration and separation of carbon monoxide in carbon monoxide-containing gaseous mixture by using adsorbing method
JPS63274900A (en) Device for treating exhaust gas of nuclear reactor
JPS61217800A (en) Deoxidation treatment method of radioactive reprocessing offgas
JPS63178830A (en) Fuel purifying device for nuclear fusion furnace