JP2010190868A - Hydrogen treatment device for reactor container - Google Patents

Hydrogen treatment device for reactor container Download PDF

Info

Publication number
JP2010190868A
JP2010190868A JP2009038397A JP2009038397A JP2010190868A JP 2010190868 A JP2010190868 A JP 2010190868A JP 2009038397 A JP2009038397 A JP 2009038397A JP 2009038397 A JP2009038397 A JP 2009038397A JP 2010190868 A JP2010190868 A JP 2010190868A
Authority
JP
Japan
Prior art keywords
hydrogen
gas
containment vessel
hydrogen gas
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009038397A
Other languages
Japanese (ja)
Other versions
JP5189526B2 (en
Inventor
Tadashi Fujii
正 藤井
Shingo Oda
伸吾 織田
Taichi Takii
太一 滝井
Kenji Noshita
健司 野下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2009038397A priority Critical patent/JP5189526B2/en
Publication of JP2010190868A publication Critical patent/JP2010190868A/en
Application granted granted Critical
Publication of JP5189526B2 publication Critical patent/JP5189526B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen treatment device for treating safely and inexpensively hydrogen gas generated in a reactor container. <P>SOLUTION: Storage of hydrogen gas by a hydrogen gas storage device 2 and discharge of the hydrogen gas from the hydrogen gas storage device 2 are repeated by a controller 15, while detecting a treating capacity of the hydrogen gas storage device 2. In this case, since a large amount of hydrogen gas generated in the reactor container 1 is treated in a batch system, resultantly reduction of the size and cost of the hydrogen gas storage device 2 is achieved. Further, since a hazardous material such as ammonia is not generated following treatment of the hydrogen gas, the hydrogen gas is treated safely. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、原子炉格納容器内に放出された水素ガスを処理するための装置に関する。   The present invention relates to an apparatus for treating hydrogen gas released into a nuclear reactor containment vessel.

原子炉圧力容器内の水位が低下し、燃料温度が上昇すると、燃料被覆材のジルコニウムと水蒸気が反応して水素ガスが発生し、これが原子炉格納容器内に放出される。また、圧力抑制型格納容器を採用している沸騰水型原子炉では、原子炉格納容器内の配管が万一破断した場合、破断部から放出された放射性物質が圧力抑制プールに流入するため、プール水が放射線分解されて水素ガスと酸素ガスが発生することも想定される。   When the water level in the reactor pressure vessel decreases and the fuel temperature rises, the fuel cladding zirconium and water vapor react to generate hydrogen gas, which is released into the reactor containment vessel. In addition, in boiling water reactors that employ pressure suppression containment vessels, in the unlikely event that piping in the reactor containment vessel breaks, the radioactive material released from the broken portion flows into the pressure suppression pool, It is also assumed that pool water is radiolyzed to generate hydrogen gas and oxygen gas.

従来、沸騰水型原子炉では、水素ガスの発生に対処するため、予め通常運転時の原子炉格納容器内の雰囲気を窒素ガスで置換して酸素ガス濃度を制限し、水素ガスの燃焼を防止している。また、ブロアで原子炉格納容器内のガスを取り出し、電気ヒータで昇温して水素ガスと酸素ガスを再結合させ、水に戻すと共に、この水を残りの気体とともにクーラーで冷却してから原子炉格納容器に戻す熱反応式再結合器を用いた可燃性ガス濃度制御系を設置している。   Conventionally, in boiling water reactors, in order to cope with the generation of hydrogen gas, the atmosphere inside the reactor containment vessel during normal operation is replaced with nitrogen gas in advance to limit the oxygen gas concentration and prevent hydrogen gas combustion. is doing. Also, the gas in the reactor containment vessel is taken out with a blower, heated with an electric heater, recombined with hydrogen gas and oxygen gas, returned to water, and the water is cooled with a cooler with a cooler before the atoms are cooled. A combustible gas concentration control system using a thermal reaction type recombiner that returns to the reactor containment vessel is installed.

近年、外部動力を必要としない静的な水素処理方式として、水素ガスの酸化触媒を用いた再結合器が開発され、原子炉格納容器内に触媒型水素反応材からなる水素ガス濃度低減材を配置する技術が提案されている(例えば、特許文献1参照。)。   In recent years, a recombiner using a hydrogen gas oxidation catalyst has been developed as a static hydrogen treatment method that does not require external power, and a hydrogen gas concentration reducing material consisting of a catalytic hydrogen reactant is placed in the reactor containment vessel. A technique for arranging the image has been proposed (see, for example, Patent Document 1).

また、水素ガスと特異的に反応する水素吸蔵合金や酸化銅を用いて原子炉格納容器内の水素ガスを処理する技術も提案されている(例えば、特許文献2参照。)。   In addition, a technique for treating hydrogen gas in a reactor containment vessel using a hydrogen storage alloy or copper oxide that specifically reacts with hydrogen gas has been proposed (see, for example, Patent Document 2).

さらに、アンモニア合成触媒により水素ガスを格納容器内の窒素ガスと反応させ、アンモニアに変換して処理する技術も提案されている(例えば、特許文献3参照。)。   Furthermore, a technique has also been proposed in which hydrogen gas is reacted with nitrogen gas in the containment vessel using an ammonia synthesis catalyst and converted into ammonia (see, for example, Patent Document 3).

特開平6−130170号公報JP-A-6-130170 特開平10−288694号公報Japanese Patent Laid-Open No. 10-288694 特許第4073065号公報Japanese Patent No. 4073065

ところで、原子炉格納容器内において大量の水素ガスが発生しても、前述のように通常運転時において原子炉格納容器内の雰囲気が窒素ガスで置換されているために、直ちに水素ガスが燃焼する可能性は低いが、原子炉格納容器が加圧されることになるため、発生した大量の水素ガスを迅速かつ安全に処理する必要がある。   By the way, even if a large amount of hydrogen gas is generated in the reactor containment vessel, the hydrogen gas burns immediately because the atmosphere in the reactor containment vessel is replaced with nitrogen gas during normal operation as described above. Although the possibility is low, since the reactor containment vessel is pressurized, a large amount of generated hydrogen gas needs to be processed quickly and safely.

従来の熱反応式再結合器や特許文献1に記載の触媒型水素反応材からなる水素ガス濃度低減材を用いる方法は、水素ガスの処理に所定濃度以上の酸素ガスを要するので、雰囲気が窒素ガスで置換されており、酸素ガス濃度が低濃度に制限されている原子炉格納容器内においては、効率良く水素ガスを処理することができない。   The method using a conventional thermal reaction type recombiner or a hydrogen gas concentration reducing material comprising a catalytic hydrogen reaction material described in Patent Document 1 requires an oxygen gas having a predetermined concentration or more for the treatment of hydrogen gas, so that the atmosphere is nitrogen. In a reactor containment vessel that has been replaced with gas and the oxygen gas concentration is limited to a low concentration, hydrogen gas cannot be processed efficiently.

また、特許文献2に記載の水素吸蔵合金や酸化銅を用いる方法は、処理できる水素ガス量が水素吸蔵合金や酸化銅の重量の数%程度に過ぎないので、仮に数トンオーダの水素ガスが原子炉格納容器内に放出された場合を想定すると、これを処理するためには、数百トンオーダの水素吸蔵合金又は酸化銅が必要となり、水素処理装置が極めて大型かつ高価なものとなる。   Further, in the method using hydrogen storage alloy or copper oxide described in Patent Document 2, the amount of hydrogen gas that can be processed is only about several percent of the weight of the hydrogen storage alloy or copper oxide. Assuming the case where it is discharged into the reactor containment vessel, a hydrogen storage alloy or copper oxide of several hundred tons order is required to process this, and the hydrogen processing apparatus becomes very large and expensive.

さらに、特許文献3に記載のアンモニア合成触媒を用いる方法は、水素ガスの処理に伴い、原子炉格納容器内に強アルカリ性で毒性を持つアンモニアがガスあるいは液体の状態で大量に発生するので、その後の復旧作業に大きな障害となる。   Further, in the method using the ammonia synthesis catalyst described in Patent Document 3, a large amount of strongly alkaline and toxic ammonia is generated in the reactor containment vessel in the state of gas or liquid in the reactor containment vessel. Will be a major obstacle to recovery work.

本発明は、かかる従来技術の問題を解決するためになされたものであり、その目的は、原子炉格納容器内に発生する水素ガスを安全かつ低コストで処理可能な水素処理装置を提供することにある。   The present invention has been made in order to solve the problems of the prior art, and an object of the present invention is to provide a hydrogen treatment apparatus capable of processing hydrogen gas generated in a reactor containment vessel safely and at low cost. It is in.

本発明は、かかる課題を解決するため、第1に、原子炉格納容器外に備えられた水素ガス吸蔵装置と、吸蔵された水素ガスを放出させるために前記水素ガス吸蔵装置を加温する加温装置と、前記原子炉格納容器内の未処理ガスを前記水素ガス吸蔵装置のガス導入口に導くガス供給配管と、前記水素ガス吸蔵装置のガス排出口から排出される処理済みガスを前記原子炉格納容器内に導く戻し配管と、前記水素ガス吸蔵装置から放出される水素ガスを導く水素放出配管と、前記原子炉格納容器内の水素濃度を検出する第1の水素濃度検出センサと、前記戻し配管内を流れる処理済みガスの水素濃度を検出する第2の水素濃度検出手段と、前記水素放出配管内を流れる放出ガスの水素濃度を検出する第3の水素濃度検出手段と、前記各配管の適宜の位置に設けられた流路切替バルブと、前記加温装置及び前記流路切替バルブの駆動を制御するコントローラとを備え、
前記コントローラは、前記第1の水素濃度検出センサの検出値が予め定められた所定値以上で、前記第2及び第3の水素濃度検出センサの検出値が予め定められた所定値以下であるときには、前記加温装置を停止状態に切り替えた状態で、前記原子炉格納容器内の未処理ガスが前記ガス供給配管を通って前記水素ガス吸蔵装置のガス導入口に導かれ、かつ前記処理済みガスが前記戻し配管を通って前記原子炉格納容器内に導かれるように前記流路切替バルブを切り替えて、前記水素ガス吸蔵装置に水素ガスを吸蔵させ、
この状態から、前記第2の水素濃度検出センサの検出値が予め定められた所定値以上になったときには、前記ガス供給配管及び前記戻し配管が遮断され、かつ前記水素放出配管が開放されるように前記流路切替バルブを切り替えると共に、前記加温装置を駆動状態に切り替えて、前記水素ガス吸蔵装置に吸蔵された水素ガスを放出させ、
さらにこの状態から、前記第3の水素濃度検出センサの検出値が予め定められた所定値以下になったときには、前記加温装置を停止状態に切り替えると共に、前記原子炉格納容器内の未処理ガスが前記ガス供給配管を通って前記水素ガス吸蔵装置のガス導入口に導かれ、かつ前記処理済みガスが前記戻し配管を通って前記原子炉格納容器内に導かれるように前記流路切替バルブを切り替えて、前記水素ガス吸蔵装置に水素ガスを吸蔵させるという構成にした。
In order to solve such problems, the present invention firstly, a hydrogen gas storage device provided outside the reactor containment vessel, and a heating device for heating the hydrogen gas storage device to release the stored hydrogen gas. A temperature supply device, a gas supply pipe for guiding an untreated gas in the reactor containment vessel to a gas introduction port of the hydrogen gas storage device, and a processed gas discharged from a gas discharge port of the hydrogen gas storage device. A return pipe that leads into the reactor containment vessel, a hydrogen discharge pipe that guides the hydrogen gas released from the hydrogen gas storage device, a first hydrogen concentration detection sensor that detects the hydrogen concentration in the reactor containment vessel, and Second hydrogen concentration detection means for detecting the hydrogen concentration of the treated gas flowing in the return pipe, third hydrogen concentration detection means for detecting the hydrogen concentration of the discharge gas flowing in the hydrogen discharge pipe, and each pipe As appropriate Comprising a flow path switching valve provided in location, and a controller for controlling the heating device and a drive of the channel switching valve,
When the detection value of the first hydrogen concentration detection sensor is equal to or greater than a predetermined value and the detection value of the second and third hydrogen concentration detection sensors is equal to or less than a predetermined value, The untreated gas in the reactor containment vessel is led to the gas inlet of the hydrogen gas storage device through the gas supply pipe while the heating device is switched to the stopped state, and the treated gas Switching the flow path switching valve so that the gas is led into the reactor containment vessel through the return pipe, and the hydrogen gas storage device stores hydrogen gas,
From this state, when the detection value of the second hydrogen concentration detection sensor is equal to or higher than a predetermined value, the gas supply pipe and the return pipe are shut off and the hydrogen discharge pipe is opened. And switching the flow path switching valve to switch the heating device to a driving state to release the hydrogen gas stored in the hydrogen gas storage device,
Further, from this state, when the detection value of the third hydrogen concentration detection sensor becomes equal to or lower than a predetermined value, the heating device is switched to a stopped state and the untreated gas in the reactor containment vessel Is passed through the gas supply pipe to the gas inlet of the hydrogen gas storage device, and the processed gas switching valve is led into the reactor containment vessel through the return pipe. By switching, the hydrogen gas storage device is configured to store hydrogen gas.

かかる構成によると、原子炉格納容器内の水素濃度が所定値を超えた場合には、自動的に原子炉格納容器内の未処理ガスが水素ガス吸蔵装置に導入されて、水素ガス吸蔵装置による水素ガスの吸蔵が行われる。また、この状態から、戻し配管に備えられた第2の水素濃度検出センサの検出値が予め定められた所定値以上になったときには、水素ガス吸蔵装置の水素ガス吸蔵能力が限界に達したと判断されるので、自動的に原子炉格納容器から水素ガス吸蔵装置への未処理ガスの導入が停止され、水素ガス吸蔵装置が加温されて、水素ガス吸蔵装置から吸蔵された水素ガスが放出される。さらに、この状態から、水素放出配管に備えられた第3の水素濃度検出センサの検出値が予め定められた所定値以下になったときには、水素ガス吸蔵装置の水素ガス吸蔵能力が回復したと判断されるので、再度原子炉格納容器から水素ガス吸蔵装置への未処理ガスの導入が行われる。   According to this configuration, when the hydrogen concentration in the reactor containment vessel exceeds a predetermined value, the untreated gas in the reactor containment vessel is automatically introduced into the hydrogen gas storage device, and the hydrogen gas storage device Occlusion of hydrogen gas is performed. Further, from this state, when the detection value of the second hydrogen concentration detection sensor provided in the return pipe is equal to or higher than a predetermined value, the hydrogen gas storage capacity of the hydrogen gas storage device has reached the limit. Therefore, the introduction of untreated gas from the reactor containment vessel to the hydrogen gas storage device is automatically stopped, the hydrogen gas storage device is heated, and the stored hydrogen gas is released from the hydrogen gas storage device. Is done. Further, from this state, when the detection value of the third hydrogen concentration detection sensor provided in the hydrogen discharge pipe is equal to or lower than a predetermined value, it is determined that the hydrogen gas storage capacity of the hydrogen gas storage device has been recovered. Therefore, the untreated gas is again introduced from the reactor containment vessel into the hydrogen gas storage device.

本発明は第2に、前記第1の原子炉格納容器の水素処理装置において、前記ガス供給配管に、その上流側からミストフィルタ、ヨウ素フィルタ及び水素透過膜をこの順に備えると共に、前記水素透過膜を透過しなかったガスを前記原子炉格納容器に戻す迂回配管を設け、前記水素透過膜を透過した水素ガスを前記ガス供給配管を通して前記水素ガス吸蔵装置に導入すると共に、前記水素透過膜を透過しなかったガスを迂回配管を通して前記原子炉格納容器に戻すという構成にした。   The present invention secondly, in the hydrogen treatment apparatus for the first reactor containment vessel, the gas supply pipe is provided with a mist filter, an iodine filter and a hydrogen permeable membrane in this order from the upstream side, and the hydrogen permeable membrane. A bypass pipe is provided to return the gas that has not permeated to the reactor containment vessel, and hydrogen gas that has permeated through the hydrogen permeable membrane is introduced into the hydrogen gas storage device through the gas supply pipe and permeated through the hydrogen permeable membrane. The gas that has not been returned is returned to the reactor containment vessel through a bypass pipe.

かかる構成によると、原子炉格納容器からの未処理ガスを直接水素ガス吸蔵装置に導入するのではなく、水素透過膜を透過した水素ガスだけを水素ガス吸蔵装置に導入するので、水素ガス吸蔵装置による水素吸蔵効率を高めることができ、原子炉格納容器内に発生した水素ガスを迅速に処理することができる。また、ガス供給配管にミストフィルタ及びヨウ素フィルタを備えるので、下流側の放射能汚染を軽減することができる。   According to this configuration, since the untreated gas from the reactor containment vessel is not directly introduced into the hydrogen gas storage device, only the hydrogen gas that has passed through the hydrogen permeable membrane is introduced into the hydrogen gas storage device. The hydrogen occlusion efficiency can be increased, and the hydrogen gas generated in the reactor containment vessel can be quickly processed. Further, since the gas supply pipe is provided with the mist filter and the iodine filter, the radioactive contamination on the downstream side can be reduced.

本発明は第3に、前記第1の原子炉格納容器の水素処理装置において、前記水素放出配管に、ミストフィルタ、ヨウ素フィルタ及びバルブ付き不活性ガスボンベを備え、前記コントローラは、前記水素放出配管への水素ガスの放出時に、前記不活性ガスボンベに備えられたバルブを開いて、前記水素放出配管内に不活性ガスを放出するという構成にした。   Thirdly, in the hydrogen treatment apparatus for the first reactor containment vessel according to the present invention, the hydrogen discharge pipe includes a mist filter, an iodine filter, and an inert gas cylinder with a valve, and the controller supplies the hydrogen discharge pipe to the hydrogen discharge pipe. When releasing the hydrogen gas, the valve provided in the inert gas cylinder is opened to release the inert gas into the hydrogen discharge pipe.

かかる構成によると、水素放出配管に不活性ガスボンベを備え、水素放出配管への水素ガスの放出時に当該水素放出配管内に不活性ガスを放出するので、水素放出配管を通る水素ガスの濃度を不活性ガスにて希釈することができる。よって、高濃度の水素ガスが直接外部に放出されず、その燃焼を防止できる。   According to such a configuration, an inert gas cylinder is provided in the hydrogen discharge pipe, and the inert gas is released into the hydrogen discharge pipe when the hydrogen gas is discharged into the hydrogen discharge pipe. It can be diluted with an active gas. Therefore, high-concentration hydrogen gas is not released directly to the outside, and combustion can be prevented.

本発明は第4に、前記第1の原子炉格納容器の水素処理装置において、前記水素放出配管を前記原子炉格納容器に接続し、この水素放出配管に再結合反応装置を備えると共に、この再結合反応装置に空気供給装置又は酸素供給装置を接続し、前記コントローラは、前記水素放出配管への水素ガスの放出時に、前記空気供給装置又は前記酸素供給装置に備えられたバルブを開いて前記再結合反応装置に空気又は酸素を供給するという構成にした。   Fourthly, in the hydrogen treatment apparatus for the first reactor containment vessel according to the present invention, the hydrogen release pipe is connected to the reactor containment vessel, and the hydrogen release pipe is provided with a recombination reaction device. An air supply device or an oxygen supply device is connected to the combined reaction device, and the controller opens the valve provided in the air supply device or the oxygen supply device when the hydrogen gas is released into the hydrogen release pipe, and then restarts the operation. Air or oxygen was supplied to the combined reaction apparatus.

かかる構成によると、原子炉格納容器に接続された水素放出配管に再結合反応装置を備えるので、水素ガス吸蔵装置から放出された水素ガスを再結合反応装置にて水蒸気に変換して原子炉格納容器に戻すことができ、非凝縮性ガスである水素ガスの大量発生によって高まった原子炉格納容器内の圧力を早期に減圧することができる。   According to this configuration, the hydrogen release pipe connected to the reactor containment vessel is provided with the recombination reactor, so the hydrogen gas released from the hydrogen gas storage device is converted into water vapor by the recombination reactor and stored in the reactor. It can be returned to the vessel, and the pressure inside the reactor containment vessel, which has been increased by the generation of a large amount of non-condensable hydrogen gas, can be reduced quickly.

本発明によると、原子力格納容器内に発生した大量の水素ガスをバッチ方式で処理できるので、水素ガス吸蔵装置の小型化と低コスト化を図ることができると共に、水素ガスの処理に伴ってアンモニア等の有毒物質を発生しないので、水素ガスの処理を安全に行うことができる。   According to the present invention, since a large amount of hydrogen gas generated in a nuclear containment vessel can be processed in a batch system, the hydrogen gas storage device can be reduced in size and cost, and ammonia can be reduced along with the processing of hydrogen gas. Since no toxic substances such as these are generated, hydrogen gas can be treated safely.

実施例1に係る水素処理装置の配管系統図である。1 is a piping system diagram of a hydrogen treatment apparatus according to Embodiment 1. FIG. 実施例1に係る水素処理装置のコントローラによる制御手順を示すフローチャートである。3 is a flowchart illustrating a control procedure by a controller of the hydrogen treatment apparatus according to the first embodiment. 実施例1に係る水素処理装置を備えた場合の原子炉格納容器の水素濃度変化を示すグラフ図である。It is a graph which shows the hydrogen concentration change of the reactor containment vessel at the time of providing the hydrogen treatment apparatus which concerns on Example 1. FIG. 実施例2に係る水素処理装置の配管系統図である。6 is a piping system diagram of a hydrogen treatment apparatus according to Embodiment 2. FIG. 実施例3に係る水素処理装置の配管系統図である。6 is a piping system diagram of a hydrogen treatment apparatus according to Embodiment 3. FIG. 実施例4に係る水素処理装置の配管系統図である。6 is a piping system diagram of a hydrogen treatment apparatus according to Example 4. FIG.

以下、本発明に係る原子炉格納容器の水素処理装置の実施形態を、各実施例毎に図面を用いて説明する。   Hereinafter, embodiments of a hydrogen treatment apparatus for a nuclear reactor containment vessel according to the present invention will be described for each example with reference to the drawings.

図1に示すように、本例の水素処理装置は、原子炉格納容器1と、原子炉格納容器1の外部に備えられた水素ガス吸蔵装置2と、吸蔵された水素ガスを放出させるために水素ガス吸蔵装置2を加温する加温装置3と、原子炉格納容器1内の未処理ガスを水素ガス吸蔵装置2のガス導入口に導くガス供給配管4と、水素ガス吸蔵装置2のガス排出口から排出される処理済みガスを原子炉格納容器1内に導く戻し配管5と、水素ガス吸蔵装置2から放出される水素ガスを循環させる循環配管6と、この循環配管6から分岐された水素放出配管7と、原子炉格納容器1内の水素濃度を検出する第1の水素濃度検出センサ8と、戻し配管5内を流れる処理済みガスの水素濃度を検出する第2の水素濃度検出手段9と、循環配管6内を流れる循環ガスの水素濃度を検出する第3の水素濃度検出手段10と、水素ガス吸蔵装置2のガス排出口側に備えられたブロア11と、水素ガス吸蔵装置2のガス導入口をガス供給配管4側又は循環配管6側に切り替える第1の流路切替バルブ12と、水素ガス吸蔵装置2のガス排出口を戻し配管5側又は循環配管6側に切り替える第2の流路切替バルブ13と、水素放出配管7を開閉する第3の流路切替バルブ14と、加温装置3、ブロア11及び流路切替バルブ12,13,14の駆動を制御するコントローラ15とから主に構成されている。   As shown in FIG. 1, the hydrogen treatment apparatus of this example includes a nuclear reactor containment vessel 1, a hydrogen gas storage device 2 provided outside the nuclear reactor containment vessel 1, and a release of the occluded hydrogen gas. A heating device 3 for heating the hydrogen gas storage device 2, a gas supply pipe 4 for guiding the untreated gas in the reactor containment vessel 1 to the gas inlet of the hydrogen gas storage device 2, and a gas for the hydrogen gas storage device 2 A return pipe 5 for guiding the treated gas discharged from the discharge port into the reactor containment vessel 1, a circulation pipe 6 for circulating the hydrogen gas released from the hydrogen gas storage device 2, and a branch from the circulation pipe 6. A hydrogen discharge pipe 7, a first hydrogen concentration detection sensor 8 for detecting the hydrogen concentration in the reactor containment vessel 1, and a second hydrogen concentration detection means for detecting the hydrogen concentration of the processed gas flowing in the return pipe 5 9 and the circulation gas flowing through the circulation pipe 6 The third hydrogen concentration detecting means 10 for detecting the elementary concentration, the blower 11 provided on the gas outlet side of the hydrogen gas storage device 2, and the gas inlet of the hydrogen gas storage device 2 are connected to the gas supply pipe 4 side or the circulation. A first flow path switching valve 12 for switching to the pipe 6 side, a second flow path switching valve 13 for switching the gas discharge port of the hydrogen gas storage device 2 to the return pipe 5 side or the circulation pipe 6 side, and the hydrogen discharge pipe 7 And a controller 15 for controlling driving of the heating device 3, the blower 11, and the flow path switching valves 12, 13, and 14.

水素ガス吸蔵装置2としては、水素吸蔵合金を利用したものや酸化銅を利用したものなどを用いることができるが、以下においては、水素吸蔵合金を利用したものを用いた場合を例にとって説明する。   As the hydrogen gas storage device 2, a device using a hydrogen storage alloy, a device using copper oxide, or the like can be used. In the following, a case using a device using a hydrogen storage alloy will be described as an example. .

コントローラ15の入力端子には、第1乃至第3の水素濃度検出センサ8,9,10の検出信号が入力され、コントローラ15の出力端子は、加温装置3、ブロア11及び流路切替バルブ12,13,14に接続されている。このコントローラ15は、少なくとも原子炉格納容器1内に水素ガスが大量発生した段階において、第1乃至第3の水素濃度検出センサ8,9、10からの検出信号の取り込みと、加温装置3及び流路切替バルブ12,13,14の駆動状態の認識とを開始し、図2に示す手順にしたがって、原子炉格納容器1内に発生した水素ガスの処理を行う。   Detection signals of the first to third hydrogen concentration detection sensors 8, 9 and 10 are input to the input terminal of the controller 15, and the output terminals of the controller 15 are the heating device 3, the blower 11, and the flow path switching valve 12. , 13 and 14. The controller 15 captures detection signals from the first to third hydrogen concentration detection sensors 8, 9, 10, the heating device 3, and at least when a large amount of hydrogen gas is generated in the reactor containment vessel 1. Recognition of the driving state of the flow path switching valves 12, 13, and 14 is started, and hydrogen gas generated in the reactor containment vessel 1 is processed according to the procedure shown in FIG.

即ち、コントローラ15を起動した後、第1の水素濃度検出センサ8の検出値が予め定められた所定値以上で、第2及び第3の水素濃度検出センサ9,10の検出値が予め定められた所定値以下になった場合には、加温装置3を停止状態に保ったまま、第1の流路切替バルブ12をガス供給配管4側に切り替え、第2の流路切替バルブ13を戻し配管5側に切り替え、かつブロア11を起動する。これにより、図1(a)に示すように、原子炉格納容器1内の未処理ガスがガス供給配管4を通って水素ガス吸蔵装置2のガス導入口に導かれ、水素ガス吸蔵装置2を出た処理済みガスが戻し配管5を通って原子炉格納容器1内に導かれて、水素ガス吸蔵装置2による水素ガスの吸蔵が行われる。   That is, after the controller 15 is activated, the detection value of the first hydrogen concentration detection sensor 8 is equal to or greater than a predetermined value, and the detection values of the second and third hydrogen concentration detection sensors 9, 10 are predetermined. If the temperature is below the predetermined value, the first flow path switching valve 12 is switched to the gas supply pipe 4 side while the heating device 3 is kept stopped, and the second flow path switching valve 13 is returned. Switch to the pipe 5 side and activate the blower 11. As a result, as shown in FIG. 1 (a), the untreated gas in the reactor containment vessel 1 is guided to the gas inlet of the hydrogen gas storage device 2 through the gas supply pipe 4, and the hydrogen gas storage device 2 is The treated gas that has exited is introduced into the reactor containment vessel 1 through the return pipe 5, and hydrogen gas is occluded by the hydrogen gas occlusion device 2.

水素ガス吸蔵装置2内においては、下記の反応式(1)にしたがって、水素吸蔵合金に水素ガスが吸蔵される。水素吸蔵合金は、圧力を上げるか、温度を室温程度まで冷やすことによって水素が吸蔵されるので、このときには加温装置3を停止する。

Figure 2010190868
In the hydrogen gas storage device 2, hydrogen gas is stored in the hydrogen storage alloy according to the following reaction formula (1). In the hydrogen storage alloy, hydrogen is stored by increasing the pressure or cooling the temperature to about room temperature. At this time, the heating device 3 is stopped.
Figure 2010190868

水素吸蔵合金の水素ガス吸蔵量が増加すると、水素ガス吸蔵装置2の処理能力が低下するので、水素ガス吸蔵装置2を通過して戻し配管5に流入する水素ガス量が増加する。そして、戻し配管5に備えられた第2の水素濃度検出センサ9の検出値が予め定められた所定値以上になったときには、第1の流路切替バルブ12及び第2の流路切替バルブ13をそれぞれ循環配管6側に切り替え、かつ第3の流路切替バルブ14を開状態に切り替えると共に、加温装置3を駆動状態に切り替える。加温装置3は、水素ガス吸蔵装置2を200℃程度まで加熱する。   When the hydrogen gas storage amount of the hydrogen storage alloy increases, the processing capacity of the hydrogen gas storage device 2 decreases, so the amount of hydrogen gas that passes through the hydrogen gas storage device 2 and flows into the return pipe 5 increases. When the detection value of the second hydrogen concentration detection sensor 9 provided in the return pipe 5 becomes equal to or higher than a predetermined value, the first flow path switching valve 12 and the second flow path switching valve 13 are used. Are switched to the circulation pipe 6 side, the third flow path switching valve 14 is switched to the open state, and the heating device 3 is switched to the driving state. The heating device 3 heats the hydrogen gas storage device 2 to about 200 ° C.

水素ガス吸蔵装置2を200℃程度まで加熱すると、下記の反応式(2)にしたがって、水素吸蔵合金に吸蔵されていた水素ガスが放出される。

Figure 2010190868
When the hydrogen gas storage device 2 is heated to about 200 ° C., the hydrogen gas stored in the hydrogen storage alloy is released according to the following reaction formula (2).
Figure 2010190868

水素ガス吸蔵装置2から放出された水素ガスは、図1(b)に示すように、循環配管6を循環しながら、水素放出配管7を通って外部に放出される。   As shown in FIG. 1B, the hydrogen gas released from the hydrogen gas storage device 2 is released to the outside through the hydrogen release pipe 7 while circulating through the circulation pipe 6.

水素吸蔵合金から水素ガスが放出されると、それに伴って、水素ガス吸蔵装置2の処理能力が回復すると共に、循環配管6及び水素放出配管7内を流れるガス中の水素濃度が低下する。そして、循環配管6に備えられた第3の水素濃度検出センサ10の検出値が予め定められた所定値以上になったときには、加温装置3を停止状態に切り替えると共に、第1の流路切替バルブ12をガス供給配管4側に切り替え、第2の流路切替バルブ13を戻し配管5側に切り替え、かつ第3の流路切替バルブ14を閉状態に切り替える。これにより、回路構成が再度図1(a)に示すものとなり、水素ガス吸蔵装置2による水素ガスの吸蔵が開始される。   When hydrogen gas is released from the hydrogen storage alloy, the processing capacity of the hydrogen gas storage device 2 is restored, and the hydrogen concentration in the gas flowing through the circulation pipe 6 and the hydrogen release pipe 7 is reduced. When the detection value of the third hydrogen concentration detection sensor 10 provided in the circulation pipe 6 becomes equal to or higher than a predetermined value, the heating device 3 is switched to the stopped state and the first flow path switching is performed. The valve 12 is switched to the gas supply pipe 4 side, the second flow path switching valve 13 is switched to the return pipe 5 side, and the third flow path switching valve 14 is switched to the closed state. As a result, the circuit configuration becomes as shown in FIG. 1A again, and the hydrogen gas storage device 2 starts storing hydrogen gas.

本例の水素処理装置は、水素ガス吸蔵装置2の処理能力を検出しつつ、水素ガス吸蔵装置2による水素ガスの吸蔵と水素ガス吸蔵装置2からの水素ガスの放出とを繰り返すので、原子力格納容器1内に発生した大量の水素ガスをバッチ方式で処理することができ、水素ガス吸蔵装置2の小型化と低コスト化とを図ることができて、図3に示すように、原子炉格納容器1内における水素濃度を段階的に低減することができる。また、本例の水素処理装置は、水素ガスの処理に伴ってアンモニア等の有毒物質を発生しないので、水素ガスの処理を安全に行うことができる。   The hydrogen treatment apparatus of this example repeatedly stores hydrogen gas by the hydrogen gas storage apparatus 2 and releases hydrogen gas from the hydrogen gas storage apparatus 2 while detecting the processing capacity of the hydrogen gas storage apparatus 2. A large amount of hydrogen gas generated in the vessel 1 can be processed in a batch system, and the hydrogen gas storage device 2 can be reduced in size and cost. As shown in FIG. The hydrogen concentration in the container 1 can be reduced stepwise. Moreover, since the hydrogen treatment apparatus of this example does not generate toxic substances such as ammonia with the treatment of hydrogen gas, the treatment of hydrogen gas can be performed safely.

図4に示すように、本例の水素処理装置は、ガス供給配管4に、その上流側からミストフィルタ16、ヨウ素フィルタ17及び水素透過膜18をこの順に備えると共に、水素透過膜18を透過しなかったガスを原子炉格納容器1に戻す迂回配管19を設けたことを特徴とする。ミストフィルタ16としては、水分粒子の慣性衝突等を利用したものを適用できる。また、ヨウ素フィルタ17としては、チャコールフィルタや、銀とヨウ素が化合物を生成する反応を利用した銀フィルタを適用できる。さらに、水素透過膜18としては、シリコンゴム製の透過膜やセラミック膜、それに水素透過金属等を適用できる。その他については、実施例1に係る水素処理装置と同じであるので、対応する部分に同一の符号を付して説明を省略する。   As shown in FIG. 4, the hydrogen treatment apparatus of this example includes a mist filter 16, an iodine filter 17, and a hydrogen permeable membrane 18 in this order from the upstream side of the gas supply pipe 4, and transmits the hydrogen permeable membrane 18. A detour pipe 19 for returning the gas that has not been returned to the reactor containment vessel 1 is provided. As the mist filter 16, a filter using inertial collision of moisture particles can be applied. Moreover, as the iodine filter 17, a charcoal filter or a silver filter using a reaction in which silver and iodine generate a compound can be applied. Furthermore, as the hydrogen permeable film 18, a silicon rubber permeable film, a ceramic film, a hydrogen permeable metal, or the like can be applied. The other parts are the same as those of the hydrogen treatment apparatus according to the first embodiment, and therefore the corresponding parts are denoted by the same reference numerals and description thereof is omitted.

本例の水素処理装置によると、原子炉格納容器1からの未処理ガスを直接水素ガス吸蔵装置2に導入するのではなく、水素透過膜18を透過した水素ガスだけを水素ガス吸蔵装置2に導入するので、水素ガス吸蔵装置2による水素吸蔵効率を高めることができ、原子炉格納容器1内に発生した水素ガスを迅速に処理することができる。また、ガス供給配管4にミストフィルタ16及びヨウ素フィルタ17を備えるので、下流側の放射能汚染を軽減することができる。   According to the hydrogen treatment apparatus of this example, the untreated gas from the reactor containment vessel 1 is not directly introduced into the hydrogen gas storage device 2, but only the hydrogen gas that has permeated the hydrogen permeable membrane 18 is supplied to the hydrogen gas storage device 2. Since it introduce | transduces, the hydrogen storage efficiency by the hydrogen gas storage apparatus 2 can be improved, and the hydrogen gas generated in the reactor containment vessel 1 can be processed rapidly. In addition, since the gas supply pipe 4 includes the mist filter 16 and the iodine filter 17, downstream radioactive contamination can be reduced.

なお、実施例2では、ガス供給配管4にミストフィルタ16、ヨウ素フィルタ17及び水素透過膜18を備えたが、このうちの少なくとも1つを備える構成にすることも可能である。   In the second embodiment, the gas supply pipe 4 includes the mist filter 16, the iodine filter 17, and the hydrogen permeable membrane 18. However, the gas supply pipe 4 may be configured to include at least one of them.

図5に示すように、本例の水素処理装置は、水素放出配管7とつながる循環配管6に、ミストフィルタ16、ヨウ素フィルタ17及びバルブ付き不活性ガスボンベ20を備えたことを特徴とする。コントローラ15は、水素放出配管7への水素ガスの放出時に、不活性ガスボンベ20に備えられたバルブを開いて、循環配管6に不活性ガスを放出する。その他については、実施例1に係る水素処理装置と同じであるので、対応する部分に同一の符号を付して説明を省略する。   As shown in FIG. 5, the hydrogen treatment apparatus of this example is characterized in that the circulation pipe 6 connected to the hydrogen release pipe 7 is provided with a mist filter 16, an iodine filter 17, and an inert gas cylinder 20 with a valve. The controller 15 opens a valve provided in the inert gas cylinder 20 to release the inert gas to the circulation pipe 6 when releasing the hydrogen gas to the hydrogen release pipe 7. The other parts are the same as those of the hydrogen treatment apparatus according to the first embodiment, and therefore the corresponding parts are denoted by the same reference numerals and description thereof is omitted.

本例の水素処理装置によると、水素放出配管7とつながる循環配管6に不活性ガスボンベ20を備え、水素放出配管7への水素ガスの放出時に循環配管6にボンベ20内の不活性ガスを放出するので、水素放出配管7を通る水素ガスの濃度を不活性ガスにて希釈することができる。よって、高濃度の水素ガスが直接外部に放出されることを防止できて、その燃焼を防止できる。   According to the hydrogen treatment apparatus of this example, the inert gas cylinder 20 is provided in the circulation pipe 6 connected to the hydrogen release pipe 7, and the inert gas in the cylinder 20 is released to the circulation pipe 6 when the hydrogen gas is discharged to the hydrogen release pipe 7. Therefore, the concentration of hydrogen gas passing through the hydrogen release pipe 7 can be diluted with an inert gas. Therefore, high concentration hydrogen gas can be prevented from being directly discharged to the outside, and combustion thereof can be prevented.

図6に示すように、本例の水素処理装置は、水素放出配管7を原子炉格納容器1に接続し、この水素放出配管7に再結合反応装置21を備えると共に、この再結合反応装置21に空気供給装置又は酸素供給装置22を接続したことを特徴とする。コントローラ15は、水素放出配管7への水素ガスの放出時に、空気供給装置又は酸素供給装置22に備えられたバルブを開いて、再結合反応装置21に空気又は酸素を供給する。再結合反応装置21としては、熱反応式のものや、酸化触媒を適用することができる。その他については、実施例1に係る水素処理装置と同じであるので、対応する部分に同一の符号を付して説明を省略する。   As shown in FIG. 6, the hydrogen treatment apparatus of this example connects the hydrogen release pipe 7 to the reactor containment vessel 1, and the hydrogen release pipe 7 includes a recombination reaction apparatus 21, and the recombination reaction apparatus 21. An air supply device or an oxygen supply device 22 is connected to this. The controller 15 opens a valve provided in the air supply device or oxygen supply device 22 to supply air or oxygen to the recombination reaction device 21 when hydrogen gas is released into the hydrogen release pipe 7. As the recombination reaction apparatus 21, a thermal reaction type or an oxidation catalyst can be applied. The other parts are the same as those of the hydrogen treatment apparatus according to the first embodiment, and therefore the corresponding parts are denoted by the same reference numerals and description thereof is omitted.

本例の水素処理装置によると、原子炉格納容器1に接続された水素放出配管7に再結合反応装置21を備えるので、水素ガス吸蔵装置2から放出された水素ガスを再結合反応装置21にて水蒸気に変換して原子炉格納容器1に戻すことができる。よって、非凝縮性ガスである水素ガスの大量発生によって高まった原子炉格納容器1内の圧力を早期に減圧することができる。   According to the hydrogen treatment apparatus of this example, since the recombination reaction device 21 is provided in the hydrogen release pipe 7 connected to the reactor containment vessel 1, the hydrogen gas released from the hydrogen gas storage device 2 is supplied to the recombination reaction device 21. Can be converted into water vapor and returned to the reactor containment vessel 1. Therefore, the pressure in the reactor containment vessel 1 that has increased due to the generation of a large amount of hydrogen gas, which is a non-condensable gas, can be reduced quickly.

本発明は、原子炉格納容器内に放出された水素の除去に適用することができる。   The present invention can be applied to the removal of hydrogen released into a reactor containment vessel.

1 原子炉格納容器
2 水素ガス吸蔵装置
3 加温装置
4 ガス供給配管
5 戻し配管
6 循環配管
7 水素放出配管
8 第1の水素濃度検出センサ
9 第2の水素濃度検出手段
10 第3の水素濃度検出手段
11 ブロア
12 第1の流路切替バルブ
13 第2の流路切替バルブ
14 第3の流路切替バルブ
15 コントローラ
16 ミストフィルタ
17 ヨウ素フィルタ
18 水素透過膜
19 迂回配管19
20 不活性ガスボンベ
21 再結合反応装置
22 空気供給装置又は酸素供給装置
DESCRIPTION OF SYMBOLS 1 Reactor containment vessel 2 Hydrogen gas storage device 3 Heating device 4 Gas supply piping 5 Return piping 6 Circulation piping 7 Hydrogen discharge piping 8 1st hydrogen concentration detection sensor 9 2nd hydrogen concentration detection means 10 3rd hydrogen concentration Detection means 11 Blower 12 First flow path switching valve 13 Second flow path switching valve 14 Third flow path switching valve 15 Controller 16 Mist filter 17 Iodine filter 18 Hydrogen permeable membrane 19 Detour piping 19
20 Inert gas cylinder 21 Recombination reactor 22 Air supply device or oxygen supply device

Claims (4)

原子炉格納容器外に備えられた水素ガス吸蔵装置と、吸蔵された水素ガスを放出させるために前記水素ガス吸蔵装置を加温する加温装置と、前記原子炉格納容器内の未処理ガスを前記水素ガス吸蔵装置のガス導入口に導くガス供給配管と、前記水素ガス吸蔵装置のガス排出口から排出される処理済みガスを前記原子炉格納容器内に導く戻し配管と、前記水素ガス吸蔵装置から放出される水素ガスを導く水素放出配管と、前記原子炉格納容器内の水素濃度を検出する第1の水素濃度検出センサと、前記戻し配管内を流れる処理済みガスの水素濃度を検出する第2の水素濃度検出手段と、前記水素放出配管内を流れる放出ガスの水素濃度を検出する第3の水素濃度検出手段と、前記各配管の適宜の位置に設けられた流路切替バルブと、前記加温装置及び前記流路切替バルブの駆動を制御するコントローラとを備え、
前記コントローラは、前記第1の水素濃度検出センサの検出値が予め定められた所定値以上で、前記第2及び第3の水素濃度検出センサの検出値が予め定められた所定値以下であるときには、前記加温装置を停止状態に切り替えた状態で、前記原子炉格納容器内の未処理ガスが前記ガス供給配管を通って前記水素ガス吸蔵装置のガス導入口に導かれ、かつ前記処理済みガスが前記戻し配管を通って前記原子炉格納容器内に導かれるように前記流路切替バルブを切り替えて、前記水素ガス吸蔵装置に水素ガスを吸蔵させ、
この状態から、前記第2の水素濃度検出センサの検出値が予め定められた所定値以上になったときには、前記ガス供給配管及び前記戻し配管が遮断され、かつ前記水素放出配管が開放されるように前記流路切替バルブを切り替えると共に、前記加温装置を駆動状態に切り替えて、前記水素ガス吸蔵装置に吸蔵された水素ガスを放出させ、
さらにこの状態から、前記第3の水素濃度検出センサの検出値が予め定められた所定値以下になったときには、前記加温装置を停止状態に切り替えると共に、前記原子炉格納容器内の未処理ガスが前記ガス供給配管を通って前記水素ガス吸蔵装置のガス導入口に導かれ、かつ前記処理済みガスが前記戻し配管を通って前記原子炉格納容器内に導かれるように前記流路切替バルブを切り替えて、前記水素ガス吸蔵装置に水素ガスを吸蔵させることを特徴とする原子炉格納容器の水素処理装置。
A hydrogen gas storage device provided outside the reactor containment vessel, a heating device that warms the hydrogen gas storage device to release the stored hydrogen gas, and an untreated gas in the reactor containment vessel. A gas supply pipe that leads to a gas inlet of the hydrogen gas storage device, a return pipe that guides a treated gas discharged from a gas discharge port of the hydrogen gas storage device into the reactor containment vessel, and the hydrogen gas storage device A hydrogen discharge pipe for introducing hydrogen gas discharged from the first reactor, a first hydrogen concentration detection sensor for detecting a hydrogen concentration in the reactor containment vessel, and a first hydrogen concentration sensor for detecting the hydrogen concentration of the processed gas flowing in the return pipe. 2 hydrogen concentration detecting means, third hydrogen concentration detecting means for detecting the hydrogen concentration of the released gas flowing in the hydrogen releasing pipe, a flow path switching valve provided at an appropriate position of each pipe, Warming And a controller for controlling driving of the flow path switching valve,
When the detection value of the first hydrogen concentration detection sensor is equal to or greater than a predetermined value and the detection value of the second and third hydrogen concentration detection sensors is equal to or less than a predetermined value, The untreated gas in the reactor containment vessel is led to the gas inlet of the hydrogen gas storage device through the gas supply pipe while the heating device is switched to the stopped state, and the treated gas Switching the flow path switching valve so that the gas is led into the reactor containment vessel through the return pipe, and the hydrogen gas storage device stores hydrogen gas,
From this state, when the detection value of the second hydrogen concentration detection sensor is equal to or higher than a predetermined value, the gas supply pipe and the return pipe are shut off and the hydrogen discharge pipe is opened. The flow path switching valve is switched to, and the heating device is switched to a driving state to release the hydrogen gas stored in the hydrogen gas storage device,
Further, from this state, when the detection value of the third hydrogen concentration detection sensor becomes equal to or lower than a predetermined value, the heating device is switched to a stopped state and the untreated gas in the reactor containment vessel Is passed through the gas supply pipe to the gas inlet of the hydrogen gas storage device and the treated gas is led into the reactor containment vessel through the return pipe. A hydrogen treatment apparatus for a reactor containment vessel, wherein the hydrogen gas storage apparatus is switched to store hydrogen gas.
前記ガス供給配管に、その上流側からミストフィルタ、ヨウ素フィルタ及び水素透過膜をこの順に備えると共に、前記水素透過膜を透過しなかったガスを前記原子炉格納容器に戻す迂回配管を設け、前記水素透過膜を透過した水素ガスを前記ガス供給配管を通して前記水素ガス吸蔵装置に導入すると共に、前記水素透過膜を透過しなかったガスを迂回配管を通して前記原子炉格納容器に戻すことを特徴とする請求項1記載の原子炉格納容器の水素処理装置。   The gas supply pipe is provided with a mist filter, an iodine filter, and a hydrogen permeable membrane in this order from the upstream side, and provided with a bypass pipe for returning the gas that has not permeated the hydrogen permeable membrane to the reactor containment vessel, The hydrogen gas that has permeated the permeable membrane is introduced into the hydrogen gas storage device through the gas supply pipe, and the gas that has not permeated through the hydrogen permeable membrane is returned to the reactor containment vessel through a bypass pipe. Item 1. A hydrogen treatment apparatus for a nuclear reactor containment vessel. 前記水素放出配管に、ミストフィルタ、ヨウ素フィルタ及びバルブ付き不活性ガスボンベを備え、前記コントローラは、前記水素放出配管への水素ガスの放出時に、前記不活性ガスボンベに備えられたバルブを開いて、前記水素放出配管内に不活性ガスを放出することを特徴とする請求項1に記載の原子炉格納容器の水素処理装置。   The hydrogen release pipe is provided with a mist filter, an iodine filter and an inert gas cylinder with a valve, and the controller opens a valve provided in the inert gas cylinder when releasing hydrogen gas into the hydrogen release pipe, and 2. The reactor containment vessel hydrogen treatment apparatus according to claim 1, wherein an inert gas is discharged into the hydrogen discharge pipe. 前記水素放出配管を前記原子炉格納容器に接続し、この水素放出配管に再結合反応装置を備えると共に、この再結合反応装置に空気供給装置又は酸素供給装置を接続し、前記コントローラは、前記水素放出配管への水素ガスの放出時に、前記空気供給装置又は前記酸素供給装置に備えられたバルブを開いて、前記再結合反応装置に空気又は酸素を供給することを特徴とする請求項1に記載の原子炉格納容器の水素処理装置。   The hydrogen release pipe is connected to the reactor containment vessel, the hydrogen release pipe is provided with a recombination reaction device, and an air supply device or an oxygen supply device is connected to the recombination reaction device. 2. The air or oxygen is supplied to the recombination reaction device by opening a valve provided in the air supply device or the oxygen supply device when releasing hydrogen gas into the discharge pipe. Hydrogen treatment equipment for nuclear reactor containment.
JP2009038397A 2009-02-20 2009-02-20 Hydrogen treatment equipment for reactor containment vessel Active JP5189526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009038397A JP5189526B2 (en) 2009-02-20 2009-02-20 Hydrogen treatment equipment for reactor containment vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009038397A JP5189526B2 (en) 2009-02-20 2009-02-20 Hydrogen treatment equipment for reactor containment vessel

Publications (2)

Publication Number Publication Date
JP2010190868A true JP2010190868A (en) 2010-09-02
JP5189526B2 JP5189526B2 (en) 2013-04-24

Family

ID=42817045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009038397A Active JP5189526B2 (en) 2009-02-20 2009-02-20 Hydrogen treatment equipment for reactor containment vessel

Country Status (1)

Country Link
JP (1) JP5189526B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185968A (en) * 2012-03-08 2013-09-19 Mitsubishi Heavy Ind Ltd Hydrogen removal device
JP2014010049A (en) * 2012-06-29 2014-01-20 Hitachi-Ge Nuclear Energy Ltd Hydrogen treatment system for nuclear power plant
EP2704153A2 (en) 2012-08-29 2014-03-05 Hitachi-GE Nuclear Energy, Ltd. Gas treatment equipment of nuclear power plant
JP2017161379A (en) * 2016-03-10 2017-09-14 株式会社東芝 Hydrogen sensor system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS573095A (en) * 1980-06-06 1982-01-08 Tokyo Shibaura Electric Co Atomic power plant
JPS63274900A (en) * 1987-05-01 1988-11-11 Power Reactor & Nuclear Fuel Dev Corp Device for treating exhaust gas of nuclear reactor
JPH05341096A (en) * 1992-05-22 1993-12-24 Hitachi Ltd Method and device for removing and collecting tritium form gas
JPH0711915A (en) * 1993-06-24 1995-01-13 Mitsubishi Heavy Ind Ltd Regenerative steam plant
JPH10288694A (en) * 1997-04-14 1998-10-27 Hitachi Ltd Burnable gas processor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS573095A (en) * 1980-06-06 1982-01-08 Tokyo Shibaura Electric Co Atomic power plant
JPS63274900A (en) * 1987-05-01 1988-11-11 Power Reactor & Nuclear Fuel Dev Corp Device for treating exhaust gas of nuclear reactor
JPH05341096A (en) * 1992-05-22 1993-12-24 Hitachi Ltd Method and device for removing and collecting tritium form gas
JPH0711915A (en) * 1993-06-24 1995-01-13 Mitsubishi Heavy Ind Ltd Regenerative steam plant
JPH10288694A (en) * 1997-04-14 1998-10-27 Hitachi Ltd Burnable gas processor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185968A (en) * 2012-03-08 2013-09-19 Mitsubishi Heavy Ind Ltd Hydrogen removal device
JP2014010049A (en) * 2012-06-29 2014-01-20 Hitachi-Ge Nuclear Energy Ltd Hydrogen treatment system for nuclear power plant
EP2704153A2 (en) 2012-08-29 2014-03-05 Hitachi-GE Nuclear Energy, Ltd. Gas treatment equipment of nuclear power plant
JP2014048043A (en) * 2012-08-29 2014-03-17 Hitachi-Ge Nuclear Energy Ltd Gas treatment facility of nuclear power plant
EP2704153A3 (en) * 2012-08-29 2017-06-07 Hitachi-GE Nuclear Energy, Ltd. Gas treatment equipment of nuclear power plant
JP2017161379A (en) * 2016-03-10 2017-09-14 株式会社東芝 Hydrogen sensor system

Also Published As

Publication number Publication date
JP5189526B2 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
JP5189526B2 (en) Hydrogen treatment equipment for reactor containment vessel
KR102008852B1 (en) System for purifying a gaseous medium of hydrogen and method for the use thereof
JP5875958B2 (en) Gas processing equipment for nuclear power plants
JP6798912B2 (en) Reactor containment vent system
JP4991165B2 (en) Fuel cell system
JP2014013175A (en) Hydrogen processing system for nuclear power plant
US20010032396A1 (en) Substrate processing method and substrate processing apparatus
JP2014226572A (en) Hydrogen processing equipment, hydrogen processing method and hydrogen processing program
JP2000009873A (en) Hydrogen treatment facility in reactor container
JP6180981B2 (en) Hydrogen treatment equipment
JP2011012973A (en) Method and device for hydrogen disposal in reactor containment vessel
JP7178335B2 (en) Gas processing system
JP4356012B2 (en) Nuclear power plant
JP2007033285A (en) Equipment for removing hydrogen of nuclear power plant
JP2006322768A (en) Hydrogen remover and its removing method for reactor containment
US20140308029A1 (en) Process and apparatus for treating a gas stream
JP2013083470A (en) Hydrogen treatment facility for nuclear power plant
KR101694253B1 (en) Filtered Containment Venting System of Reactor Containment Building Having Heating Part
RU2548412C2 (en) Apparatus for extracting hydrogen from oxygenless gas media
JP6057696B2 (en) Vent device
JP2016008839A (en) Nuclear power plant
JP7451329B2 (en) Hydrogen treatment equipment and nuclear power plants
JP2023086267A (en) Hydrogen processing equipment and hydrogen processing method
JP2012247331A (en) Nuclear power plant and method of operating the same
JP2022181928A (en) Device and method for treating oxygen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5189526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150