JPS63274792A - Production of stamper for optical disk - Google Patents

Production of stamper for optical disk

Info

Publication number
JPS63274792A
JPS63274792A JP11010287A JP11010287A JPS63274792A JP S63274792 A JPS63274792 A JP S63274792A JP 11010287 A JP11010287 A JP 11010287A JP 11010287 A JP11010287 A JP 11010287A JP S63274792 A JPS63274792 A JP S63274792A
Authority
JP
Japan
Prior art keywords
film
conductive film
stamper
glass substrate
plated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11010287A
Other languages
Japanese (ja)
Inventor
Shotaro Takei
武井 庄太郎
Shigeo Saito
斉藤 重夫
Satoshi Kimura
里至 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP11010287A priority Critical patent/JPS63274792A/en
Publication of JPS63274792A publication Critical patent/JPS63274792A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Optical Record Carriers (AREA)

Abstract

PURPOSE:To obtain a stamper having superior transfer accuracy by forming a pregrouped pattern on a glass substrate and a conductive film of Ni on the pattern, cleaning the film by irradiation with UV and carrying out Ni plating so as to increase the adhesive strength of the resulting plated Ni layer to the conductive film. CONSTITUTION:A resist film of about 1,100Angstrom thickness is formed on the surface of a glass substrate flattened by polishing. After the film is soft-backed at 80 deg.C in a drying furnace, information is recorded with a laser beam cutting machine and the film is developed, well washed, spin-dried and post-baked at 90 deg.C in the drying furnace. Ni is then deposited by sputtering with a sputtering device to form a conductive film of about 700Angstrom thickness. The formed film is irradiated with UV, generated ozone is removed and the film is washed and set in an electroforming device to form a plated Ni layer on the surface of the film. The adhesive strength of the plated Ni layer to the conductive film is increased and a stamper having low defect density and high transfer accuracy is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光ディスク用スタンバの製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing an optical disc standber.

〔発明の概要〕[Summary of the invention]

本発明は、光ディスク用スタンパの製造方法に勿いて、
導体化膜を形成したプリグループパターンつきガラス基
板をDEEP−UVi置にてUV照射を行ない導体化膜
の汚れ、および酸化膜を取り去り表面改質を行ない、ニ
ッケルめっきを施こすに当たり、導体化膜の漏れ性を向
上させる前処理を行なった後、ニッケルめっきを行なう
ことにより導体化膜とニッケルめっきとのms性を向上
しかつ転写精度の向上をはかったものである。
The present invention provides not only a method for manufacturing a stamper for optical discs, but also
The glass substrate with the pre-group pattern on which the conductive film has been formed is subjected to UV irradiation in a DEEP-UVi equipment to remove dirt and oxide film from the conductive film and modify the surface, and when performing nickel plating, the conductive film is After performing pretreatment to improve the leakage properties, nickel plating is performed to improve the MS properties between the conductive film and the nickel plating, and to improve the transfer accuracy.

〔従来の技術〕[Conventional technology]

従来のスタンパの製造方法は公知のごとく種々の方法が
知られている。その代表的な方法は、平滑なガラス基板
に7オトレジスト(例えばAZ−1350)fiを塗布
形成し、カッティングマシンを使用しレーザー光により
情報記録を行ない、現像の後かかるレジスト塗布ガラス
基板に、スパッタリング法もしくは真空蒸着法により導
体化膜を形成し、この導体化膜を陰極としてニッケルめ
っきを行ないニッケルめっき層を得るものである。
Various conventional methods for manufacturing stampers are known. A typical method is to apply and form a 7-photoresist (e.g. AZ-1350) fi on a smooth glass substrate, record information with a laser beam using a cutting machine, and after development, sputtering is applied to the resist-coated glass substrate. A conductive film is formed by a method or a vacuum evaporation method, and nickel plating is performed using this conductive film as a cathode to obtain a nickel plating layer.

かかるニッケルめっき層をスタンパとして供するもので
ある。
This nickel plating layer is used as a stamper.

第2図〜第5図は、従来技術の工程を示すもので詳細に
は次のようになる。
2 to 5 show the steps of the prior art, and the details are as follows.

表面を研磨して平坦とした厚さ約8mmのガラス基板1
の上に、スピンコード法により厚さ約1000人のレジ
スト膜2を形成する(v52図)次にかかるレジスト膜
2に、レーザーカッティングマシンを用いて情報!2録
を行ないさらに、現像を行なってプリグループパターン
3を形成する(第3図)次にかかる基板にニッケルを約
700人の厚さにスパッタして導体化膜4を形成する(
第4図)次に導体化膜4を陰極としてニッケルめっき液
に浸漬し電解を行なって、厚さ約300μmのめっき!
5を形成する(第5図)さらにめっき表面研磨を行ない
均一な厚さとした0次にガラス基板1から♀り離して洗
浄を行ないレジスト膜2を除去してスタンバ6が作られ
る。このようにして作られたスタンバ6は鋳型として使
われ、多数の光ディスク基板がつくられるが、スタンバ
には、■長寿命であること。0m型性が良いこと。■転
写精度が高いこと。等の要求がされるものである。
Glass substrate 1 with a thickness of approximately 8 mm whose surface has been polished and flattened.
A resist film 2 with a thickness of about 1,000 layers is formed on the film using a spin code method (Figure v52).Next, a laser cutting machine is used to cut the information on the resist film 2. 2 is recorded and further developed to form a pre-group pattern 3 (FIG. 3).Next, nickel is sputtered onto the substrate to a thickness of approximately 700 mm to form a conductive film 4 (
(Fig. 4) Next, the conductive film 4 is immersed in a nickel plating solution as a cathode, electrolyzed, and plated to a thickness of approximately 300 μm!
(FIG. 5) Further, the plating surface is polished to have a uniform thickness. The resist film 2 is removed from the 0th order glass substrate 1 and cleaned to form a stand bar 6. The standby 6 made in this way is used as a mold to make a large number of optical disk substrates, and the standby must have a long lifespan. Good 0m type property. ■High transfer accuracy. etc. are required.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし前述の従来技術では、導体化膜4にニッケルめっ
きを行ない、めっき膜を作り、次にこれを!11離して
スタンバ6を作る段階で欠陥密度が増加する事実があり
、これは導体化膜4をスパッタしこの導体化膜4を陰極
としてめっきする際の密着性が悪いことが原因であり、
スタンバの品質を低下させているという問題点ををする
However, in the above-mentioned conventional technology, the conductive film 4 is plated with nickel to form a plating film, and then this! There is a fact that the defect density increases at the stage of making the standby 6 separated by 11 seconds, and this is due to poor adhesion when sputtering the conductive film 4 and plating with the conductive film 4 as a cathode.
This solves the problem of degrading standby quality.

そこで本発明は、このような問題点を解決するものでそ
の目的とするところは、導体化膜とニッケルめっき層と
の密着力を向上させることにより転写精度の高い、かつ
欠陥密度の少ないスタンバを提供するところにある。
The present invention is intended to solve these problems, and its purpose is to improve the adhesion between the conductive film and the nickel plating layer, thereby creating a standby with high transfer accuracy and low defect density. It's there to provide.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の光ディスク用スタンバの製造方法は、ガラス基
板に形成したるプリグループパターン上に導体化膜を形
成した後、該導体化膜を陰極としてニッケルめっきを行
ないスタンバを形成する工程において、めっき処理前に
DEEP−UV処理装置に装着し、紫外線照射を行ない
導体化膜のクリーニング処理を行なうことを特徴とする
The method for manufacturing an optical disk standby according to the present invention includes forming a conductive film on a pregroup pattern formed on a glass substrate, and then performing nickel plating using the conductive film as a cathode to form a standby. It is characterized in that it is first installed in a DEEP-UV processing device and irradiated with ultraviolet rays to perform a cleaning process on the conductive film.

〔作用〕[Effect]

本発明の上記構成によれば、スタンバ6の形成段階で欠
陥密度が増大していることは、めっき層5をガラス基板
1から剥離する際に導体化膜の一部が、ガラス基板1も
しくはレジストl!!2に付着していることでありこの
ことは導体化膜4とめっき層5との密着性が不充分なこ
とを示している。
According to the above structure of the present invention, the increase in defect density at the stage of forming the standby bar 6 means that when the plating layer 5 is peeled off from the glass substrate 1, a part of the conductive film is removed from the glass substrate 1 or the resist. l! ! This indicates that the adhesion between the conductive film 4 and the plating layer 5 is insufficient.

この原因は、スパッタ過程での導体化膜の油汚れまたは
、スパッタ後の取扱いによる酸化膜の形成及び汚れが原
因と推定できる。そこでニッケルめっきに際して、めっ
き前に、ガラス基板にDEEP−UVを照射し、導体化
膜の表面に形成されている数人〜数十人の酸化膜および
汚れを取り去るものである。このことにより導体化膜は
活性化されかつ、表面に耐着している汚れも、除去出来
、しかも漏れ性が向上し、密着力の高いスタンバを得る
ことが出来るものである。
The cause of this can be presumed to be oil stains on the conductive film during the sputtering process or the formation and staining of an oxide film due to handling after sputtering. Therefore, in nickel plating, DEEP-UV is irradiated onto the glass substrate before plating to remove several to several dozen oxide films and stains formed on the surface of the conductive film. As a result, the conductive film is activated, dirt adhering to the surface can be removed, leakage is improved, and a stand bar with high adhesion can be obtained.

〔実施例〕〔Example〕

第1図は本発明の実施例におけるスタンバの断面図であ
って、第2図〜第5図に示すように、表面を研磨して平
坦とし、さらに清浄に保たれた厚さ6mmのガラス基板
1にフォトレジストAZI350を用いてスピンコード
法によりl100Aのレジスト膜2を形成した。さらに
乾燥炉を用いてソフトベークを80′″Cで15分間行
なった。
FIG. 1 is a sectional view of a stand bar in an embodiment of the present invention, and as shown in FIGS. 2 to 5, a 6 mm thick glass substrate whose surface has been polished to make it flat and kept clean. 1, a resist film 2 of 1100A was formed using photoresist AZI350 by a spin code method. Furthermore, soft baking was performed at 80'''C for 15 minutes using a drying oven.

次に、レーザーカッティングマシンにかけて情報記録を
行ない、AZデベロッパーにて現像を行なった。現像条
件は20°Cにおいて60秒間行ない、充分水洗した後
、スピンドライを行なった。
Next, information was recorded using a laser cutting machine, and development was performed using an AZ developer. Development was carried out at 20°C for 60 seconds, and after thorough washing with water, spin drying was carried out.

次に乾燥炉を用いて90@Cで30分間、ポストベーキ
ングを行なった。さらにスパッタ装置に装着した基板面
にニッケルを700人の厚さにスパッタし導体化膜4と
した。次に、かかる導体化膜つきのガラス基板を、DE
EP−UV装置、(商品8二ケミトロン)に装着し、紫
外線照射を3分間行なった。さらに発生するオゾン除去
を2分間かけて行なった後にケミトロンから取り出した
Next, post-baking was performed at 90@C for 30 minutes using a drying oven. Furthermore, nickel was sputtered to a thickness of 700 mm on the surface of the substrate mounted on a sputtering device to form a conductive film 4. Next, the glass substrate with such a conductive film was
It was attached to an EP-UV device (product 82 Chemitron) and irradiated with ultraviolet rays for 3 minutes. Further ozone generated was removed over a period of 2 minutes, and then removed from the Chemitron.

DEEP−UV照射に際しては、ニッケル導体化膜面を
、装置のランプ側とし、左右に振動させながら照射を行
なった。DEEP−UV処理の終ったガラス基板を、水
洗した後電鋳装置に装置し、漏れ性を確認し、めっき液
に投入直後に電解を開始した。所定の厚さとなったとこ
ろで、電鋳装置から取り出し水洗、乾燥の後、めっき面
研磨を行ない290μmのスタンバ6を得た。さらに該
スタンバにて射出成型を行ない、多数枚の光ディスクメ
ディアを得た。
During the DEEP-UV irradiation, the surface of the nickel conductive film was placed on the lamp side of the device, and the irradiation was performed while vibrating from side to side. The glass substrate that had been subjected to the DEEP-UV treatment was washed with water, then placed in an electroforming device, leakage was confirmed, and electrolysis was started immediately after being placed in the plating solution. When it reached a predetermined thickness, it was taken out from the electroforming apparatus, washed with water, dried, and the plated surface was polished to obtain a stand bar 6 of 290 μm. Furthermore, injection molding was performed in the standber to obtain a large number of optical disk media.

〔発明の効果〕〔Effect of the invention〕

以上述べたように発明によれば導体化膜を形成したガラ
ス基板をDEEP−UV装看に装置し紫外線照射を行な
い、導体化膜のクリーニングを行なった後に導体化膜を
陰極として電解しニッケルめっき層を形成することによ
り、導体化膜とニッケルめっき層との密着力を向上せし
め、欠陥密度の少ない、かつ転写精度の高いスタンバを
得ることができるという効果を有する。
As described above, according to the invention, a glass substrate on which a conductive film has been formed is placed in a DEEP-UV system, irradiated with ultraviolet rays, and after cleaning the conductive film, electrolysis is performed using the conductive film as a cathode for nickel plating. By forming the layer, the adhesion between the conductive film and the nickel plating layer can be improved, and a standby with low defect density and high transfer accuracy can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光ディスク用スタンバの実施例を示す
主要断面図。 第2図は乃至第5図は従来の光ディスク用スタ/パの製
造工程を示す断面図。 1・・・ガラス基板 2・・・レジスト膜3・・・プリ
グループ 4・・・導体化膜5・・・めっ!A!i  
6・・・スタンバ第6図は従粟のスタンバを示す断面図
。 以  上 1[人 セイコーエプソン株式会社 第10 箋2 +1 専3+% 名4鴎 埠61刀
FIG. 1 is a main sectional view showing an embodiment of an optical disk standber according to the present invention. FIGS. 2 to 5 are cross-sectional views showing the manufacturing process of a conventional optical disc stapler/per. 1...Glass substrate 2...Resist film 3...Pre-group 4...Conductor film 5...Meh! A! i
6...Standbar Figure 6 is a sectional view showing a standbar for millet millet. Above 1 [Person Seiko Epson Co., Ltd. No. 10 Note 2 +1 Specialized 3+% Name 4 Omori 61 sword

Claims (1)

【特許請求の範囲】[Claims] ガラス基板に形成したるプリグループパターン上に導体
化膜を形成した後、該導体化膜を陰極としてニッケルめ
っきを行ないスタンパを形成する工程において、めっき
処理前に、DEEP−UV処理装置に装着し、紫外線照
射を行ない、導体化膜のクリーニング処理を行なうこと
を特徴とする光ディスク用スタンパの製造方法。
After forming a conductive film on a pre-group pattern formed on a glass substrate, in the step of forming a stamper by performing nickel plating using the conductive film as a cathode, the stamper is attached to a DEEP-UV processing equipment before plating processing. 1. A method for manufacturing an optical disk stamper, which comprises performing a cleaning process on a conductive film by irradiating ultraviolet rays.
JP11010287A 1987-05-06 1987-05-06 Production of stamper for optical disk Pending JPS63274792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11010287A JPS63274792A (en) 1987-05-06 1987-05-06 Production of stamper for optical disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11010287A JPS63274792A (en) 1987-05-06 1987-05-06 Production of stamper for optical disk

Publications (1)

Publication Number Publication Date
JPS63274792A true JPS63274792A (en) 1988-11-11

Family

ID=14527087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11010287A Pending JPS63274792A (en) 1987-05-06 1987-05-06 Production of stamper for optical disk

Country Status (1)

Country Link
JP (1) JPS63274792A (en)

Similar Documents

Publication Publication Date Title
JPS63274792A (en) Production of stamper for optical disk
JPH02149691A (en) Making of metallic matrix
JP3428064B2 (en) Manufacturing method of optical disk substrate
JP3221627B2 (en) Manufacturing method of stamper for optical disk
JPH05114175A (en) Method for electrocasting stamper for production of information recording medium
JPS63105986A (en) Production of stamper for optical disk
JP2989144B2 (en) Glass master disk processing equipment
JPS6028048A (en) Production of master stamper
JPH10134425A (en) Surface treatment of stamper and device
JPH02298289A (en) Manufacture of nickel stamper for optical disk
JP3184079B2 (en) Method of manufacturing stamper for optical disk and method of manufacturing optical disk
JPH02290991A (en) Production of stamper
JPH0273987A (en) Method for duplicating stamper
JPS59173288A (en) Manufacture of electroformed mold
JP2901989B2 (en) Manufacturing method of duplication stamper
JPS6342049A (en) Manufacture of stamper
JPS62270037A (en) Master disk for optical disk
KR980011399A (en) Cleaning method of stamper for optical disk
JPH02277791A (en) Production of stamper for optical disk
JPH03194742A (en) Production of stamper
JPH02303819A (en) Preparation of stamper for optical recording medium
JPS63266058A (en) Manufacture of stamper for optical disk
JPS60182031A (en) Information recording mother disk and its production
JPH09274744A (en) Production of metal master disk
JPH02277790A (en) Production of stamper for optical disk