JPS63271990A - Manufacture of semiconductor diffraction grating - Google Patents

Manufacture of semiconductor diffraction grating

Info

Publication number
JPS63271990A
JPS63271990A JP62105142A JP10514287A JPS63271990A JP S63271990 A JPS63271990 A JP S63271990A JP 62105142 A JP62105142 A JP 62105142A JP 10514287 A JP10514287 A JP 10514287A JP S63271990 A JPS63271990 A JP S63271990A
Authority
JP
Japan
Prior art keywords
laser
semiconductor
diffraction grating
substrate
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62105142A
Other languages
Japanese (ja)
Inventor
Yuzaburo Ban
雄三郎 伴
Hiraaki Tsujii
辻井 平明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62105142A priority Critical patent/JPS63271990A/en
Priority to US07/168,256 priority patent/US4843031A/en
Publication of JPS63271990A publication Critical patent/JPS63271990A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2059Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To improve the diffraction efficiency by forming a semiconductor layer on a substrate by epitaxial growth while irradiating a laser two-beam interference light on the surface of the substrate. CONSTITUTION:While irradiating two interference beams of laser light on the surface of a substrate, a normal epitaxial growth is performed, for example, a crystal growth by an organic metal vapor technique. When the two interference beams of laser is irradiated, the laser beams are irradiated alternately in cycles on the substrate and the laser beams permit the epitaxial layer where regions having different compositions, conductivity types, and carrier concentrations are formed alternately in cycles to grow. In this way, as the regions having the different compositions, conductivity types, and carrier concentrations are formed under the action of the light, an interface between laser irradiation and irradiationless parts is so steep that its diffraction efficiency becomes higher than conventional ones.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光通信分野、光ディスク関連分野に有用で、
特に波長安定化光源や光IC用光源である分布帰還型半
導体レーザおよびブラック反射帰還型半導体レーザ用の
回折格子として利用できる半導体回折格子の製造方法に
関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention is useful in the optical communication field, optical disk related field,
In particular, the present invention relates to a method of manufacturing a semiconductor diffraction grating that can be used as a diffraction grating for a distributed feedback semiconductor laser and a black reflection feedback semiconductor laser, which are wavelength stabilized light sources and light sources for optical ICs.

従来の技術 近年、半導体し〒ザの発振波長安定化のため、半導体レ
ーザ単体と半導体回折格子をモノリシックに一体化した
素子すなわち分布帰還型半導体レーザあるいはブラック
反射帰還型半導体レーザの研究開発が各所で活発に行わ
れている。
Conventional technology In recent years, in order to stabilize the oscillation wavelength of semiconductor lasers, research and development has been conducted in various places on devices that monolithically integrate a semiconductor laser and a semiconductor diffraction grating, that is, distributed feedback semiconductor lasers or black reflective feedback semiconductor lasers. It is being actively carried out.

従来この半導体回折格子は例えば第3図に示されている
ようなプロセスで製造されていた。
Conventionally, this semiconductor diffraction grating has been manufactured by a process as shown in FIG. 3, for example.

まず、半導体基板上にレジスト膜を塗布し、次に第3図
に示すような光学系配置によるレーザ光の二光束干渉露
光法により、レジスト膜に周期的なストライプ状のパタ
ーンを形成する。なお第3図で、1はGaAs 、 1
 nP等の半導体結晶基板、2はレジスト膜、3はレー
ザ光発生装置、4はビームエキスパンダー、6はハーフ
ミラ−16はミラー、7はレーザ光である。その後、ス
トライプ状パターンが形成されたレジスト膜2をマスク
にして、半導体結晶基板を化学的にエツチングし、半導
体基板表面に周期的な凹凸を形成して、半導体回折格子
を製造していた。
First, a resist film is applied onto a semiconductor substrate, and then a periodic striped pattern is formed on the resist film by a two-beam interference exposure method using a laser beam using an optical system arrangement as shown in FIG. In Fig. 3, 1 is GaAs, 1
A semiconductor crystal substrate such as nP, 2 a resist film, 3 a laser beam generator, 4 a beam expander, 6 a half mirror, 16 a mirror, and 7 a laser beam. Thereafter, the semiconductor crystal substrate was chemically etched using the resist film 2 on which the striped pattern was formed as a mask to form periodic irregularities on the surface of the semiconductor substrate, thereby manufacturing a semiconductor diffraction grating.

発明が解決しようとする問題点 しかしながら上記の様な方法で半導体回折格子を製造す
る場合、半導体基板表面上の凹凸を化学的エツチングで
形成するため、凹凸の変化が大きくとれなく、回折効率
が低減するという問題点を有していた。また分布帰還型
半導体レーザ、ブラッグ反射帰還型半導体レーザおよび
光IC等にその半導体回折格子を用いる場合は、回折格
子上に半導体結晶をエピタキシャル成長させる必要があ
る。その場合、半導体基板表面に凹凸を形成した後のレ
ジスト除去が不完全となる場合が多々あり、その結果回
折格子上へのエピタキシャル成長が困難となり、また回
折格子表面がレジスト除去時にダメージを受けたり、あ
るいは空気中にさらされるためその表面に酸化膜が形成
されたりして、回折格子上のエピタキシャル層の結晶性
が低下するという問題点を有していた。また特に液相エ
ピタキシャル成長法により、回折格子上にエピタキシャ
ル成長する場合はメルトバックにより回折格子が一部溶
解し、この結果凹凸の変化が減少して回折効率が低減す
るという問題点を有していた。
Problems to be Solved by the Invention However, when semiconductor diffraction gratings are manufactured using the method described above, the unevenness on the surface of the semiconductor substrate is formed by chemical etching, which makes it difficult to make large changes in the unevenness, resulting in a decrease in diffraction efficiency. There was a problem with this. Further, when the semiconductor diffraction grating is used in a distributed feedback semiconductor laser, a Bragg reflective feedback semiconductor laser, an optical IC, etc., it is necessary to epitaxially grow a semiconductor crystal on the diffraction grating. In that case, the removal of the resist after forming irregularities on the surface of the semiconductor substrate is often incomplete, and as a result, epitaxial growth on the diffraction grating becomes difficult, and the surface of the diffraction grating is damaged during the removal of the resist. Alternatively, since it is exposed to air, an oxide film may be formed on its surface, resulting in a problem in that the crystallinity of the epitaxial layer on the diffraction grating is reduced. Furthermore, when epitaxial growth is performed on a diffraction grating using a liquid phase epitaxial growth method in particular, there is a problem in that the diffraction grating is partially dissolved due to meltback, and as a result, changes in unevenness are reduced and diffraction efficiency is reduced.

問題点を解決するための手段 本発明は、上記した従来の問題点を解消するため、基板
表面に二光束レーザ干渉光を照射しながら通常のエピタ
キシャル成長例えば有機金属気相法による結晶成長を行
うことにより、半導体回折格子を製造する方法である。
Means for Solving the Problems The present invention solves the above-mentioned conventional problems by performing normal epitaxial growth, for example, crystal growth using an organometallic vapor phase method, while irradiating the substrate surface with two-beam laser interference light. This is a method of manufacturing a semiconductor diffraction grating.

作  用 この技術的手段による作用は次のようになる。For production The effect of this technical means is as follows.

有機金属気相法によるエピタキシャル成長中にレーザ光
を基板表面に照射することにより、レーザ光の照射部の
み組成、キャリア濃度、伝導型を変化させることが可能
であり、その変化の大きさは照射するレーザのパワーに
ほぼ比例する。
By irradiating the substrate surface with laser light during epitaxial growth using the organometallic vapor phase method, it is possible to change the composition, carrier concentration, and conductivity type only in the area irradiated with the laser light, and the magnitude of the change depends on the irradiation. Almost proportional to laser power.

レーザニ光束干渉光を照射した場合は、レーザ光が交互
に周期的に基板上に照射されるため、組成。
When irradiating with laser beam interference light, the laser beams are alternately and periodically irradiated onto the substrate, which changes the composition.

伝導型、キャリア濃度の異なる領域が交互に周期的に形
成されたエピタキシャル層が成長される。
An epitaxial layer is grown in which regions having different conductivity types and carrier concentrations are alternately and periodically formed.

なお、レーザニ光束干渉光の光強度分布は正弦波の2乗
分布になるため、組成、伝導型、キャリア濃度分布も正
弦波分布となる。すなわち、これらのエピタキシャル層
の構造が半導体回折格子としての機能を有する。
Note that since the light intensity distribution of the laser beam interference light is a square distribution of a sine wave, the composition, conduction type, and carrier concentration distribution also become a sine wave distribution. That is, the structure of these epitaxial layers has a function as a semiconductor diffraction grating.

この場合光の作用によって、組成、伝導型、キャリア濃
度の異なる領域が形成されるためレーザ照射部と非照射
部との界面は急峻であり、回折効率は従来よりも高くな
る。
In this case, regions with different compositions, conductivity types, and carrier concentrations are formed by the action of light, so the interface between the laser irradiated part and the non-irradiated part is steep, and the diffraction efficiency is higher than in the conventional case.

実施例 本発明による半導体回折格子の製造方法は以下に述べる
実施例によって実現される。
Embodiments The method for manufacturing a semiconductor diffraction grating according to the present invention is realized by the embodiments described below.

第1図に、半導体回折格子の作製に用いる装置、すなわ
ち有機金属気相成長法の結晶成長室にレーザ干渉光を導
入した場合の模式図を示す。8は結晶成長室、9は結晶
成長室のレーザ光入射窓、10.11は原料ガスの導入
口、12は排気口、13は高周波コイル、14はカーボ
ン製サセプターである。なおレーザ干渉光を形成するた
めの光学系は従来と同じものである。
FIG. 1 shows a schematic diagram of a case where laser interference light is introduced into an apparatus used for manufacturing a semiconductor diffraction grating, that is, a crystal growth chamber for metal organic vapor phase epitaxy. 8 is a crystal growth chamber, 9 is a laser beam entrance window of the crystal growth chamber, 10.11 is a source gas inlet, 12 is an exhaust port, 13 is a high frequency coil, and 14 is a carbon susceptor. Note that the optical system for forming laser interference light is the same as the conventional one.

この装置を用いて第2図に示すよりなG a A ts
基板上に回折格子を作成する場合について以下に説明す
る。
Using this device, more Ga Ats shown in Figure 2 can be obtained.
The case of creating a diffraction grating on a substrate will be described below.

この場合、G a 、 Al 、 A sの原料ガスど
してそれぞれGa (CH3) 3.Al (CH3)
 3. AsH3を、n型およびp型不純物原料として
それぞれS i (CH3) 4゜zn(CH3)2を
、キャリアガスとしてH2を用いた。またレーザ光とし
てArFエキシマレーザ光(波長1ssnm)を用いた
In this case, the raw material gases for Ga, Al, and As are Ga (CH3) 3. Al (CH3)
3. AsH3 was used as the n-type and p-type impurity raw materials, and S i (CH3) 4°zn(CH3)2 was used as the carrier gas. Furthermore, ArF excimer laser light (wavelength: 1 ssnm) was used as the laser light.

またこの場合、レーザ照射部と非照射部とで、それぞれ
組成、キャリア濃度、伝導型が異なる回折格子が考えら
れる。それぞれの場合の作成条件を次表にまとめる。
Further, in this case, a diffraction grating can be considered in which the laser irradiated part and the non-irradiated part have different compositions, carrier concentrations, and conductivity types, respectively. The creation conditions for each case are summarized in the table below.

基  板              G a A s
成長温度    700℃70011m    700
℃成長圧力    100Torr   100Tor
r  100TorrGa(CH3)3供給量 0.2
8sccm  0.4sccm   0.4sccmA
l(CH3)3供給量 0.12sccm−−AsH3
供給量   101005c   20s+ccm  
 20sccmZ n (CH,I)2供給量    
           6.25X10″mcamSi
(CH3)4供給量        0.012s+c
cm  0.012gc(In全H2流量     5
sdm     5sJm     5sJmレーザ波
長     193nm    193nm    1
93nm作製工程としては最初G a A s基板1を
結晶成長室内8のカーボン製サセプター14上に設置す
る。
Substrate GaAs
Growth temperature 700℃ 70011m 700
℃ growth pressure 100Torr 100Torr
r 100TorrGa(CH3)3 supply amount 0.2
8sccm 0.4sccm 0.4sccmA
l(CH3)3 supply amount 0.12sccm--AsH3
Supply amount 101005c 20s+ccm
20sccmZ n (CH,I)2 supply amount
6.25X10″mcamSi
(CH3)4 supply amount 0.012s+c
cm 0.012gc (In total H2 flow rate 5
sdm 5sJm 5sJm Laser wavelength 193nm 193nm 1
In the 93 nm manufacturing process, a GaAs substrate 1 is first placed on a carbon susceptor 14 in a crystal growth chamber 8.

次にA m Haを供給しながら成長温度まで基板を加
熱し、成長温度に達した後、組成の変化を周期的に形成
する場合はG a (CHa ) 3とAJ(CH3)
3とを、キャリア濃度の変化を周期的に形成する場合は
Ga(CH3)3とn型不純物原料であるSi(CH3
)4とを、伝導型の変化を周期的に形成する場合はGa
(CH3)3と5l(CH3)4とp型不純物原料であ
るZn(CH3)3とを供給し、それと同時KArFエ
キシマレーザニ光束干渉光(波長193nm)を基板1
に照射する。この状態で分間エピタキシャル成長し、組
成変化の場合はレーザ照射部でAI G a A s層
、非照射部でGaAs層が、キャリア濃度変化の場合は
レーザ照射部でキャリア濃度〜1018cm−’のGa
A1層、非照射部ではキャリア濃度〜103  のG 
a A s層が、また伝導型変化の場合はレーザ照射部
でn型のG a A s層が、非照射部でp型のG a
 A・層を形成した。以上はArFエキシマレーザ照射
によってAl(CH3)3゜Si(CH3)4の分解効
率が増加すること、およびzn(CH3)2はほとんど
レーザ照射の影響を受けないことを利用したものである
Next, the substrate is heated to the growth temperature while supplying A m Ha, and after reaching the growth temperature, if the composition changes periodically, G a (CHa) 3 and AJ (CH3)
3, and when the carrier concentration changes periodically, Ga(CH3)3 and Si(CH3
) 4, and when the conduction type changes periodically, Ga
(CH3)3, 5l(CH3)4, and Zn(CH3)3, which is a p-type impurity raw material, are supplied, and at the same time, KArF excimer laser beam interference light (wavelength 193 nm) is applied to the substrate 1.
irradiate. In this state, epitaxial growth is performed for minutes, and in the case of a composition change, an AI Ga As layer is grown in the laser irradiated part, the GaAs layer is grown in the non-irradiated part, and in the case of a carrier concentration change, a Ga with a carrier concentration of ~1018 cm-' is grown in the laser irradiated part.
A1 layer, non-irradiated part has a carrier concentration of ~103G
In the case of a conductivity change, the aAs layer is an n-type GaAs layer in the laser irradiated area, and the p-type GaAs layer is in the non-irradiated area.
A layer was formed. The above method takes advantage of the fact that ArF excimer laser irradiation increases the decomposition efficiency of Al(CH3)3°Si(CH3)4 and that zn(CH3)2 is hardly affected by laser irradiation.

このようにして作成された半導体回折格子は、それぞれ
組成、キャリア濃度、伝導型がレーザ照射部と非照射部
との界面で急峻に変化していてまた凹凸の変化も従来の
化学エツチングの方法に比べて約60%程度向上し高い
回折効率を有している。
The semiconductor diffraction gratings created in this way have a steep change in composition, carrier concentration, and conductivity type at the interface between the laser irradiated and non-irradiated areas, and changes in the unevenness cannot be achieved using conventional chemical etching methods. It has a high diffraction efficiency, which is improved by about 60%.

以上述べた実施例においては、GaAt5−AlGaA
s系の半導体回折格子の製造方法について説明したが、
本発明よる半導体回折格子InP−InGaAsP系、
AIGaInP−GaAs系、InGaAsP−GaA
s系。
In the embodiments described above, GaAt5-AlGaA
The method for manufacturing an s-based semiconductor diffraction grating has been explained, but
Semiconductor diffraction grating InP-InGaAsP system according to the invention,
AIGaInP-GaAs system, InGaAsP-GaA
S-type.

他の■−v族半導体結晶に用いることができるばかりで
なく、更にZn5e+Zn5se等のn−■族化合物半
導体結晶や混晶に用いることが可能である。さらに以上
述べた実施例ではエピタキシャル成長技術として有機金
属気相法を用いた場合であったが、ハイドライド気相エ
ピタキシ、ヤル成長法やクロライド気相エピタキシャル
成長法等の他の化合物半導体の気相エピタキシャル成長
法を用いた場合でも可能であるばかりでなく、分子線エ
ピタキシー法や有機金属分子線エピタキシー法を用いた
場合でも可能である。また以上述べた実施例 ・におい
ては、レーザとしてArFキシマレーザを用いた場合に
ついて説明したが、KrFやXeF等の他のガスを用い
たエキシマレーザやCo2レーザ。
It can be used not only for other (1)-v group semiconductor crystals, but also for n-2 group compound semiconductor crystals and mixed crystals such as Zn5e+Zn5se. Furthermore, in the embodiments described above, metal organic vapor phase method was used as the epitaxial growth technique, but other compound semiconductor vapor phase epitaxial growth methods such as hydride vapor phase epitaxy, jar growth method, and chloride vapor phase epitaxial growth method may also be used. It is possible not only when using a molecular beam epitaxy method or an organometallic molecular beam epitaxy method. Furthermore, in the above-described embodiments, the case where an ArF excimer laser was used as the laser was described, but an excimer laser or a Co2 laser using other gases such as KrF or XeF may also be used.

He−Cdレーザ、 A rレーザ等を用いた場合でも
、本発明は実現可能である。
The present invention can be realized even when using a He-Cd laser, an Ar laser, or the like.

発明の効果 本発明にかかる半導体回折格子の製造方法は、通常のエ
ピタキシャル成長中にレーザニ光束干渉光を基板表面に
照射するだけという方法である。
Effects of the Invention The method for manufacturing a semiconductor diffraction grating according to the present invention is a method in which the surface of a substrate is simply irradiated with laser beam interference light during normal epitaxial growth.

この半導体回折格子の回折効率は高く、また回折格子作
製時にその表面が空気中にさらされたり、従来のように
レジストが残留することがないので、回折格子上へのエ
ピタキシャル成長が何ら問題なく行うことができる。さ
らに、基板上での回折格子を作製する位置が、レーザ干
渉光を照射する位置および、そのレーザ干渉光の基板上
での大きさによって決めることができ、光IC等の作製
にはその利用価値は高い。このように本発明による製造
方法は、非常に実用的効果が大きい。
The diffraction efficiency of this semiconductor diffraction grating is high, and since the surface of the diffraction grating is not exposed to the air during fabrication and no resist remains as in conventional methods, epitaxial growth on the diffraction grating can be performed without any problems. Can be done. Furthermore, the position at which the diffraction grating is fabricated on the substrate can be determined by the position at which the laser interference light is irradiated and the size of the laser interference light on the substrate. is expensive. As described above, the manufacturing method according to the present invention has a very large practical effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における半導体回折格子の製
造方法を説明するための模式図、第2図は本実施例の製
造方法を用いて作製した半導体回折格子の模式的断面図
、第3図は従来の代表的な半導体回折格子の製造方法を
説明するための模式図である。 1・・・・・・半導体結晶基板、2・・・・・・レジス
ト膜、3・・・・・・レーザ光発生装置、7・・・・・
・レーザ光、8・・・・・・結晶成長室、9・・・・・
・レーザ光導入窓。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図 イー−F4()#晶基不に 2−−−レレ疋ド績
FIG. 1 is a schematic diagram for explaining a method for manufacturing a semiconductor diffraction grating according to an embodiment of the present invention, FIG. FIG. 3 is a schematic diagram for explaining a typical conventional method of manufacturing a semiconductor diffraction grating. 1...Semiconductor crystal substrate, 2...Resist film, 3...Laser light generator, 7...
・Laser light, 8...Crystal growth chamber, 9...
・Laser light introduction window. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure E-F4 ()

Claims (4)

【特許請求の範囲】[Claims] (1)基板表面に二光束レーザ干渉光を照射しながら、
前記基板上に半導体層をエピタキシャル成長させてなる
半導体回折格子の製造方法。
(1) While irradiating the substrate surface with two-beam laser interference light,
A method of manufacturing a semiconductor diffraction grating, which comprises epitaxially growing a semiconductor layer on the substrate.
(2)用いるレーザがArレーザ又はエキシマレーザで
ある特許請求の範囲第1項に記載の半導体回折格子の製
造方法。
(2) The method for manufacturing a semiconductor diffraction grating according to claim 1, wherein the laser used is an Ar laser or an excimer laser.
(3)エピタキシャル成長が有機金属気相成長法である
特許請求の範囲第1項に記載の半導体回折格子の製造方
法。
(3) The method for manufacturing a semiconductor diffraction grating according to claim 1, wherein the epitaxial growth is a metal organic vapor phase epitaxy method.
(4)半導体がIII−V族化合物半導体である特許請求
の範囲第1項に記載の半導体回折格子の製造方法。
(4) The method for manufacturing a semiconductor diffraction grating according to claim 1, wherein the semiconductor is a III-V compound semiconductor.
JP62105142A 1987-03-17 1987-04-28 Manufacture of semiconductor diffraction grating Pending JPS63271990A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62105142A JPS63271990A (en) 1987-04-28 1987-04-28 Manufacture of semiconductor diffraction grating
US07/168,256 US4843031A (en) 1987-03-17 1988-03-15 Method of fabricating compound semiconductor laser using selective irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62105142A JPS63271990A (en) 1987-04-28 1987-04-28 Manufacture of semiconductor diffraction grating

Publications (1)

Publication Number Publication Date
JPS63271990A true JPS63271990A (en) 1988-11-09

Family

ID=14399496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62105142A Pending JPS63271990A (en) 1987-03-17 1987-04-28 Manufacture of semiconductor diffraction grating

Country Status (1)

Country Link
JP (1) JPS63271990A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6218709A (en) * 1985-07-18 1987-01-27 Fujitsu Ltd Photovolatically growing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6218709A (en) * 1985-07-18 1987-01-27 Fujitsu Ltd Photovolatically growing method

Similar Documents

Publication Publication Date Title
US6596377B1 (en) Thin film product and method of forming
JPS63240012A (en) Iii-v compound semiconductor and formation thereof
JPS63271990A (en) Manufacture of semiconductor diffraction grating
EP0573269B1 (en) Method of preparing compound semiconductor
JPH0267721A (en) Manufacture of compound semiconductor thin film
JPH01215014A (en) Growth of semiconductor crystal
JPH01181413A (en) Optically excited epitaxy apparatus
JPH02188912A (en) Selective growth method of iii-v compound semiconductor
JPH0388324A (en) Method for forming compound semiconductor thin film
JPS62232919A (en) Crystal growth
JPH0212814A (en) Crystal growth method of compound semiconductor
JP2603121B2 (en) Method of forming compound semiconductor thin film
JPS62183110A (en) Manufacture of iii-v compound semiconductor thin film
JPH04105313A (en) Manufacture of quantum box
JP2687862B2 (en) Method of forming compound semiconductor thin film
JP3112285B2 (en) Method for manufacturing compound semiconductor thin film
JPS62139319A (en) Compound semiconductor crystal growth method
JPH04170397A (en) Production of gallium nitride thin film
JPS63273313A (en) Organic metal vapor growth method for compound semiconductor
JPH05198518A (en) Compound semiconductor film formation method
JPS63253619A (en) Manufacture of semiconductor superlattice
JPH0258215A (en) Manufacture of compound semiconductor thin-film
JPH01120085A (en) Manufacture of semiconductor laser
JPS6223107A (en) Photo-vapor phase epitaxy method
JPH04343219A (en) Manufacture of semiconductor device