JPH0258215A - Manufacture of compound semiconductor thin-film - Google Patents

Manufacture of compound semiconductor thin-film

Info

Publication number
JPH0258215A
JPH0258215A JP20902888A JP20902888A JPH0258215A JP H0258215 A JPH0258215 A JP H0258215A JP 20902888 A JP20902888 A JP 20902888A JP 20902888 A JP20902888 A JP 20902888A JP H0258215 A JPH0258215 A JP H0258215A
Authority
JP
Japan
Prior art keywords
substrate
gaas
compound semiconductor
semiconductor thin
onto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20902888A
Other languages
Japanese (ja)
Inventor
Hideaki Iwano
岩野 英明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP20902888A priority Critical patent/JPH0258215A/en
Publication of JPH0258215A publication Critical patent/JPH0258215A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a method, in which III-V and II-VI compound semiconductor thin-films are epitaxial grown under the conditions of a low substrate tempera ture at a free composition ratio, by epitaxially growing the compound semicon ductor thin-films onto a semiconductor substrate, to which a mask is formed, and irradiating light during the epitaxial growth. CONSTITUTION:As a method in which compound semiconductor thin-films 105 are manufactured selectively onto a semiconductor substrate 101, a mask 103 is shaped to one part on the semiconductor substrate 101, and the compound semiconductor thin-films 105 are epitaxially grown onto the semiconductor substrate 101, to which the mask 103 is shaped, while light 104 is applied during the epitaxial growth. A dielectric film 102 is formed onto the GaAs single crys tal substrate 101, and the dielectric film 102 is removed through etching while being left to an arbitrary shape. The GaAs layers 105 are epitaxially grown onto the substrate 101, and the whole area of the substrate is irradiated with light 104 at the same time. When light 104 is not applied, polycrystalline GaAs or granular GaAs is grown, and the method is difficult to be applied to a device.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は化合物半導体薄膜の選択的成長方法に関する。[Detailed description of the invention] [Industrial application field 1 The present invention relates to a method for selectively growing compound semiconductor thin films.

[従来の技術1 従来のGaAs、A氾GaAs等のIll −V族化合
物半導体薄膜の選択的成長方法は、ジャーナル・才ブ・
クリスタル・グロウス(Jour口al ofCrys
tal  Growth  )  Vo  1. 73
.   (1985)P73〜P76に見られるように
、有機金属を原料とする化学気相成長法(以下MOCV
D法と記す)による場合には、GaAS単結晶基板上に
5fNx等の誘電体膜をパターン状に形成し、反応圧力
が低(、基板温度の高い条件で得られるものであった。
[Prior art 1 A conventional method for selectively growing Ill-V group compound semiconductor thin films such as GaAs and A-flooded GaAs is described in the Journal
Crystal Growth (Journal of Crys)
tal Growth) Vo 1. 73
.. (1985) P73-P76, chemical vapor deposition method (hereinafter referred to as MOCV) using organic metals as raw materials
In the case of method D), a dielectric film such as 5fNx was formed in a pattern on a GaAS single crystal substrate, and the reaction pressure was low (denoted as method D), and the substrate temperature was high.

また、InP等のIll −V族化合物半導体薄膜の選
択的成長方法は、アプライド・フィジックス・レタース
(Applied Physics Letters 
) V o l 。
In addition, methods for selectively growing Ill-V group compound semiconductor thin films such as InP are described in Applied Physics Letters.
) V o l.

47 (1985)PI 127〜P1129に見られ
るようにクロライド気相成長法c以下りロライドVPE
法と記す)を用い、InP単結晶基板上に5iO=等の
誘電体膜をパターン状に形成し、得られるものであった
47 (1985) As seen in PI 127 to P1129, chloride vapor phase epitaxy c or less loride VPE
It was obtained by forming a dielectric film of 5iO= or the like in a pattern on an InP single crystal substrate using a method (hereinafter referred to as "method").

またZn5e等のII −Vl族化合物半導体薄膜の選
択的成長法は、応用物理学会講演予稿集(昭和62年秋
季、18a−x−9)に見られるようにMOCVD法を
用いGaAs単結晶基板上にSiO□等の誘電体膜をパ
ターン状に形成し、反応圧力が低く、基板温度の高い条
件で得られるものであった。
In addition, the selective growth method of II-Vl group compound semiconductor thin films such as Zn5e is described in the Proceedings of the Japan Society of Applied Physics (Autumn 1988, 18a-x-9). A dielectric film such as SiO□ was formed in a pattern, and the reaction pressure was low and the substrate temperature was high.

[発明が解決しようとする課題1 しかし、前述の従来技術ではGaAsの選択成長の場合
、650℃以上の高い基板温度を必要とし、半導体レー
ザや光電気集積回路(以下0EICと記す)に応用する
場合、他の機能素子や活性層の特性を劣化させるという
問題点を有していた。またAffGaAsの選択成長の
場合には700℃以上の高い基板温度を必要とし更に、
AI2オG a + −x A sのAfi組成Xが0
.35以上の選択成長は得られないという問題点を有し
ていた。
[Problem to be Solved by the Invention 1] However, in the case of selective growth of GaAs in the above-mentioned conventional technology, a high substrate temperature of 650°C or higher is required, making it difficult to apply it to semiconductor lasers and optoelectronic integrated circuits (hereinafter referred to as 0EIC). In this case, there was a problem in that the characteristics of other functional elements and the active layer were deteriorated. In addition, in the case of selective growth of AffGaAs, a high substrate temperature of 700°C or more is required.
Afi composition X of AI2oG a + -x A s is 0
.. There was a problem in that selective growth of 35 or more could not be obtained.

AR組成の大きい薄膜が選択成長できないために、任意
にエネルギーギャップ(以下Egと記す)の異なる薄膜
を得られないため、応用範囲が制限されるという問題点
を有している。
Since a thin film with a large AR composition cannot be selectively grown, thin films with arbitrarily different energy gaps (hereinafter referred to as Eg) cannot be obtained, and therefore the range of application is limited.

また、InP等の選択成長においては、クロライドVP
Eを用いるためy A I I n P等のAffを含
む化合物半導体薄膜が成長できず、大きなEgを有し且
つ発光特性のある薄膜成長が不可能であるという問題点
を有していた。
In addition, in selective growth of InP etc., chloride VP
Since E is used, a compound semiconductor thin film containing Aff such as y A I I n P cannot be grown, and there is a problem in that it is impossible to grow a thin film having a large Eg and luminescent properties.

またZn5e等のII−Vl族化合物半導体の選択成長
においても、600℃以上の高い基板温度を必要とし、
GaAs基板とZn5e薄膜の界面にはZnの拡散等の
不安定性が生じ、基板上に形成した他の機能素子の特性
を劣化させるという問題点を有していた。
Also, selective growth of II-Vl group compound semiconductors such as Zn5e requires a high substrate temperature of 600°C or more.
There was a problem in that instability such as Zn diffusion occurred at the interface between the GaAs substrate and the Zn5e thin film, which deteriorated the characteristics of other functional elements formed on the substrate.

そこで本発明はこのような問題点を解決するもので、そ
の目的とするところは、+11−V族及びII−Vl族
化合物半導体薄膜を、自由な組成比において、低い基板
温度の条件のもとてエピタキシャル成長させ得る製造方
法を提供するところにある。
The present invention is intended to solve these problems, and its purpose is to form +11-V group and II-Vl group compound semiconductor thin films in free composition ratios under conditions of low substrate temperature. An object of the present invention is to provide a manufacturing method that allows epitaxial growth.

〔課題を解決するための手段1 本発明の化合物半導体薄膜の製造方法は、半導体基板上
に選択的に化合物半導体薄膜を製造する方法において前
記半導体基板上の一部にマスクを形成する手段と前記マ
スクの形成された半導体基板上に化合物半導体薄膜をエ
ピタキシャル成長する手段と前記エピタキシャル成長中
に光照射する手段を含むことを特徴としている。
[Means for Solving the Problems 1] The method for manufacturing a compound semiconductor thin film of the present invention includes means for forming a mask on a part of the semiconductor substrate in a method for selectively manufacturing a compound semiconductor thin film on a semiconductor substrate; The present invention is characterized in that it includes means for epitaxially growing a compound semiconductor thin film on a semiconductor substrate on which a mask is formed, and means for irradiating light during the epitaxial growth.

〔作 用1 本発明の上記の構成によれば、エピタキシャル成長中に
光照射を行なうことにより、マスク上では堆積物が形成
される前に、光エネルギーを吸着分子が吸収し、ガス雰
囲気中に再度蒸発してしまいマスク上にには堆積が起こ
らない、マスクに覆われていない半導体基板表面におい
ては、光照射によって、低温においても、良好な特性を
有する結晶層が成長する。従って低い基板温度において
選択的成長が可能となる。また照射する光の波長を適当
に選べば、AffGaAs、Aj2InP等の混晶薄膜
の形成の際にも、マスク上の吸着分子を再蒸発させるこ
とができ、任意の組成を持つ混晶薄膜の選択的成長が可
能となる。
[Function 1] According to the above configuration of the present invention, by performing light irradiation during epitaxial growth, the adsorbed molecules absorb the light energy before a deposit is formed on the mask, and are re-introduced into the gas atmosphere. On the surface of the semiconductor substrate not covered by the mask, where the evaporation occurs and no deposition occurs on the mask, a crystal layer having good properties even at low temperatures is grown by light irradiation. Therefore, selective growth is possible at low substrate temperatures. Furthermore, if the wavelength of the irradiated light is appropriately selected, the adsorbed molecules on the mask can be re-evaporated when forming mixed crystal thin films such as AffGaAs and Aj2InP, making it possible to select mixed crystal thin films with arbitrary compositions. growth becomes possible.

[実 施 例] 本発明を実施例に基づきさらに詳述する。[Example] The present invention will be further explained in detail based on Examples.

第1図は本発明の実施例におけるGaAs薄膜の選択成
長法を示した製造工程図である。101のGaAs単結
晶基板上に102の誘電体膜を形成する(第1図(a)
、(b))、次に102を任意の形状に残して、エツチ
ング除去する(第1図(c))、次に、この基板上に1
05のGaAs層をエピタキシャル成長させるが、この
時、同時に104の光照射を基鈑全面に行なう(第1図
(d))、これによって、マスクの誘電体膜を除去した
GaAs基板表面上1こはエピタキシャル成長が起こり
、103のパターニングした誘電体膜上では、いかなる
堆積物も得られなかった6もしも104の光照射を行な
わない場合には、103の上には多結晶のGaAsある
いは粒状のGaAsが成長してしまい、デバイスへの応
用が困難となる。同様の現象は、ARGaAs、InP
FIG. 1 is a manufacturing process diagram showing a selective growth method for a GaAs thin film in an embodiment of the present invention. A dielectric film 102 is formed on a GaAs single crystal substrate 101 (Fig. 1(a)).
, (b)), then etching is removed leaving 102 in an arbitrary shape (FIG. 1(c)). Next, 102 is etched on this substrate.
A GaAs layer of No. 05 is epitaxially grown, and at this time, the entire surface of the substrate is irradiated with light of No. 104 at the same time (Fig. 1 (d)). Epitaxial growth occurred, and no deposit was obtained on the patterned dielectric film 103.6 If the light irradiation 104 was not performed, polycrystalline GaAs or granular GaAs would grow on 103. This makes it difficult to apply to devices. A similar phenomenon occurs in ARGaAs, InP
.

Zn5e、ZnS等の種々の化合物半導体の成長時にも
起こり、良好な選択成長が可能であった。
This also occurred during the growth of various compound semiconductors such as Zn5e and ZnS, and good selective growth was possible.

第2図は本発明の実施例におけるAεGaAS薄膜の選
択成長の場合のMOCVD法による成長装置の基本構成
図を示す。206の反応管には208の石英窓が設置さ
れており、203の光照射が可能なようになっている。
FIG. 2 shows a basic configuration diagram of a growth apparatus using the MOCVD method in the case of selective growth of an AεGaAS thin film in an embodiment of the present invention. A quartz window 208 is installed in the reaction tube 206 so that light 203 can be irradiated.

205のサセプター上に204のGaAs単結晶基板を
設置し、207の高周波発振器により基板温度を保持す
る。Ga及びA9.の原料は、トリメチルガリウム(以
下TMGと記す)及びトリメチルアルミニウム(以下T
MAと記す)を用い、216.217のシリンダー中の
各原料が水素ガスをキャリアとして反応管中に導入され
る。209のボンベからアルシン(以下A s Hsと
記す)ガスを反応管中に導入し、204の基板上にエピ
タキシャル成長させる。その時、同時に201のエキシ
マ−レーザからの紫外光が202の光学系を通して平行
ビームとなり基板全面に一様に照射する。GaAS基板
の表面には、SiO□膜がパターン状に形成されており
、第1図(d)に示したように、GaASの面が露出し
た部分にだけAβGaAs結晶薄膜の成長が可能であっ
た。基板温度は300℃〜600℃の低温で選択成長し
、低温成長においても、バンド端発光の強い結晶性の良
好な結晶を得ることができた。第3図は本発明の実施例
におけるGaAs薄膜の選択成長の場合の有機金属を原
料とする分子線エピタキシー法(以下MOMBE法と記
す)による成長装置の基本構成図を示す。
A GaAs single crystal substrate 204 is placed on a susceptor 205, and the substrate temperature is maintained by a high frequency oscillator 207. Ga and A9. The raw materials are trimethyl gallium (hereinafter referred to as TMG) and trimethyl aluminum (hereinafter referred to as TMG).
Each raw material in cylinders 216 and 217 is introduced into the reaction tube using hydrogen gas as a carrier. Arsine (hereinafter referred to as A s Hs) gas is introduced into the reaction tube from the cylinder 209 and epitaxially grown on the substrate 204 . At the same time, ultraviolet light from an excimer laser 201 passes through an optical system 202 to become a parallel beam and uniformly irradiates the entire surface of the substrate. A SiO□ film was formed in a pattern on the surface of the GaAS substrate, and as shown in Figure 1(d), it was possible to grow an AβGaAs crystal thin film only on the exposed GaAS surface. . Selective growth was performed at a low substrate temperature of 300° C. to 600° C., and a crystal with good crystallinity and strong band edge emission could be obtained even at low temperature growth. FIG. 3 shows a basic configuration diagram of a growth apparatus using a molecular beam epitaxy method (hereinafter referred to as MOMBE method) using an organic metal as a raw material in the case of selective growth of a GaAs thin film in an embodiment of the present invention.

超高真空容器305には石英窓303が設置され、内部
に307の基板加熱用ヒーターが設置されている。31
3,314のガス供給源からTMG、ASH3を305
内に導入し306のGaAs基板上にGaASのエピタ
キシャル成長を行なうものであるが、その時301のエ
キシマ−レーザから発する紫外光を302の光学系を通
して306の基板表面上に照射する。306の基板には
、第1図(c)のように、S i 02膜がパターン状
に形成されている。第1図(d)に示したように、Ga
Asの面が露出した部分にだけGaAs結晶薄膜の成長
が可能であった。基板温度は300℃〜600℃の低温
で選択成長し、低温成長においても、バンド端発光の強
い結晶性の良好な結晶を得ることができた。前述と同様
の方法によって、GaAs系、InP系のIII −V
族化合物半導体のエピタキシャル成長可能なあらゆる組
み合せの混晶においても、低い基板温度において選択成
長が可能であり、またZn5e、ZnS等の!I −V
l族化合物半導体のエピタキシャル成長可能なあらゆる
組み合せの混晶においても、低い基板温度において選択
成長が可能であった。
A quartz window 303 is installed in the ultra-high vacuum container 305, and a heater 307 for heating the substrate is installed inside. 31
305 TMG, ASH3 from 3,314 gas sources
At this time, ultraviolet light emitted from an excimer laser 301 is irradiated onto the surface of the substrate 306 through an optical system 302. On the substrate 306, an Si02 film is formed in a pattern as shown in FIG. 1(c). As shown in Figure 1(d), Ga
It was possible to grow a GaAs crystal thin film only in areas where the As surface was exposed. Selective growth was performed at a low substrate temperature of 300° C. to 600° C., and a crystal with good crystallinity and strong band edge emission could be obtained even at low temperature growth. By the same method as described above, GaAs-based and InP-based III-V
All combinations of mixed crystals that can be epitaxially grown in group compound semiconductors can be selectively grown at low substrate temperatures, and Zn5e, ZnS, etc. I-V
Selective growth was possible at low substrate temperatures for all combinations of mixed crystals that can be epitaxially grown in group I compound semiconductors.

[発明の効果] 以上述べたように本発明によれば、次のような効果を有
する。
[Effects of the Invention] As described above, the present invention has the following effects.

(1)化合物半導体薄膜の選択成長が低い基板温度で可
能なために、光デバイスあるいは0EIC等に用いれば
、他の機能素子や活性層の特性を劣化させることなくデ
バイスの平坦化等の重要なプロセスを実行できる。
(1) Compound semiconductor thin films can be selectively grown at low substrate temperatures, so if used in optical devices or OEICs, they can be used for important purposes such as device planarization without deteriorating the characteristics of other functional elements or active layers. Can run processes.

(2)光照射により、はとんど任意の組み合せの混晶薄
膜の選択成長が可能であるため、Egを制御して、任意
の形状に成長できる。そのため、短波長発光材料を埋め
込み成長に用い、低損失先導波路の形成や、短波長半導
体レーザを用いた0EIC等の実現が可能となる。
(2) Since it is possible to selectively grow mixed crystal thin films in almost any combination by light irradiation, it is possible to grow into any shape by controlling Eg. Therefore, it becomes possible to form a low-loss leading waveguide by using a short-wavelength emitting material for buried growth, and to realize 0EIC using a short-wavelength semiconductor laser.

(3)光照射により、エピタキシャル成長した薄膜の結
晶性は、従来の低温成長した薄膜より向上し、そのまま
、機能素子を形成することが可能である。従って光デバ
イスや0EICのプロセスを簡略化し、信頼性も向上さ
せるという効果を有する。
(3) By light irradiation, the crystallinity of the epitaxially grown thin film is improved compared to the conventional thin film grown at low temperature, and it is possible to form a functional element as it is. Therefore, it has the effect of simplifying the process of optical devices and 0EICs and improving reliability.

(4)MOCVD法やMOMBE法を用いることができ
、大面積に均一な膜厚で選択成長が可能である。
(4) MOCVD method or MOMBE method can be used, and selective growth can be performed with a uniform film thickness over a large area.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)は本発明の化合物半導体薄膜の製
造方法の一実施例を示す製造工程図。 第2図は本発明の化合物半導体薄膜の製造方法の一実施
例を示す製造装置の基本構成図。 第3図は本発明の化合物半導体薄膜の製造方法の一実施
例を示す製造装置の基本構成図。 101・・・・・・・・・・単結晶半導体基板102・
・・・・・・・・・誘電体膜 103・・・・・・・・・・パターン状に残った誘電体
膜 104・・・・・・・・・・照射光 105・・・・・・・・・・化合物半導体薄膜201.
301・・・・・・紫外光光源202.302・・・・
・・光学系 203.304・・・・・・紫外光 204.306・・・・・・基板 205・・・・・・・・・・サセプター206・・・・
・・・・・・反応管 207・・・・・ ・・・・高周波電源208.303
・・・・・・石英窓 209.210.314.313 ・・・・原料源 211〜215,311〜312 ・・・・マスフローコント ローラ 216.217・・・・・・有接金属 218〜223,228,229 ・・・・バルブ 224.309・・・・・・ターボ分子ポンプ225.
226.310・・ロークリポンプ227・・・・・・
・・・・除害装置 305・・・・・・・・・・反応炉 307・・・・・・・・・・基板加熱ピーク以上 出願人 セイコーエプソン株式会社
FIGS. 1(a) to 1(d) are manufacturing process diagrams showing one embodiment of the method for manufacturing a compound semiconductor thin film of the present invention. FIG. 2 is a basic configuration diagram of a manufacturing apparatus showing an embodiment of the compound semiconductor thin film manufacturing method of the present invention. FIG. 3 is a basic configuration diagram of a manufacturing apparatus showing an embodiment of the compound semiconductor thin film manufacturing method of the present invention. 101... Single crystal semiconductor substrate 102.
......Dielectric film 103...Dielectric film 104 left in a pattern shape...Irradiation light 105... ...Compound semiconductor thin film 201.
301... Ultraviolet light source 202.302...
...Optical system 203.304...Ultraviolet light 204.306...Substrate 205...Susceptor 206...
...Reaction tube 207... ...High frequency power supply 208.303
...Quartz window 209.210.314.313 ...Raw material source 211-215, 311-312 ...Mass flow controller 216.217 ...Bented metal 218-223, 228,229...Valve 224.309...Turbo molecular pump 225.
226.310・・Lokuri pump 227・・・・
・・・・Abatement device 305・・・・・・・・・・Reactor 307・・・・・・・・・・・・・・・ Above the substrate heating peak Applicant: Seiko Epson Corporation

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に選択的に化合物半導体薄膜を製造する方
法において前記半導体基板上の一部にマスクを形成する
手段と前記マスクの形成された半導体基板上に化合物半
導体薄膜をエピタキシャル成長する手段と前記エピタキ
シャル成長中に、光照射する手段を含むことを特徴とす
る化合物半導体薄膜の製造方法。
A method for selectively manufacturing a compound semiconductor thin film on a semiconductor substrate, comprising means for forming a mask on a part of the semiconductor substrate, means for epitaxially growing a compound semiconductor thin film on the semiconductor substrate on which the mask is formed, and during the epitaxial growth. A method for producing a compound semiconductor thin film, comprising: a means for irradiating light.
JP20902888A 1988-08-23 1988-08-23 Manufacture of compound semiconductor thin-film Pending JPH0258215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20902888A JPH0258215A (en) 1988-08-23 1988-08-23 Manufacture of compound semiconductor thin-film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20902888A JPH0258215A (en) 1988-08-23 1988-08-23 Manufacture of compound semiconductor thin-film

Publications (1)

Publication Number Publication Date
JPH0258215A true JPH0258215A (en) 1990-02-27

Family

ID=16566067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20902888A Pending JPH0258215A (en) 1988-08-23 1988-08-23 Manufacture of compound semiconductor thin-film

Country Status (1)

Country Link
JP (1) JPH0258215A (en)

Similar Documents

Publication Publication Date Title
US3751310A (en) Germanium doped epitaxial films by the molecular beam method
WO1986003231A1 (en) Chemical beam deposition method
EP1038056B1 (en) A method of growing a buffer layer using molecular beam epitaxy
GB2162862A (en) Process for forming monocrystalline thin film of compound semiconductor
US4948751A (en) Moelcular beam epitaxy for selective epitaxial growth of III - V compound semiconductor
JP3399642B2 (en) Method for forming semiconductor light emitting element layer
JPH08172055A (en) Method and equipment for growing nitride semiconductor crystal
JPH0794494A (en) Manufacture of compound semiconductor device
US6419742B1 (en) method of forming lattice matched layer over a surface of a silicon substrate
JPH0258215A (en) Manufacture of compound semiconductor thin-film
JPH0267721A (en) Manufacture of compound semiconductor thin film
JPH03196643A (en) Vapor phase epitaxy
JP3577880B2 (en) Method for manufacturing group 3-5 compound semiconductor
JPH0212814A (en) Crystal growth method of compound semiconductor
JPH0267723A (en) Manufacture of compound semiconductor thin film
JPS63182299A (en) Vapor growth method for iii-v compound semiconductor
JP3047523B2 (en) Selective epitaxial growth method
JPH01103982A (en) Production of single crystal of group iii-v compound semiconductor
JP2687862B2 (en) Method of forming compound semiconductor thin film
JPH0243720A (en) Molecular beam epitaxial growth method
JP2729866B2 (en) Compound semiconductor epitaxial growth method
JPS62172714A (en) Manufacture of compound semiconductor thin film
JPS6134926A (en) Growing device of semiconductor single crystal
JPH06112124A (en) Organometallic molecular-beam epitaxial growth method
JPH01102919A (en) Manufacture of iii-v compound semiconductor single crystal