JPS6218709A - Photovolatically growing method - Google Patents

Photovolatically growing method

Info

Publication number
JPS6218709A
JPS6218709A JP15909185A JP15909185A JPS6218709A JP S6218709 A JPS6218709 A JP S6218709A JP 15909185 A JP15909185 A JP 15909185A JP 15909185 A JP15909185 A JP 15909185A JP S6218709 A JPS6218709 A JP S6218709A
Authority
JP
Japan
Prior art keywords
substrate
gas
vacuum chamber
growth
interference pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15909185A
Other languages
Japanese (ja)
Inventor
Akio Yamaguchi
昭夫 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15909185A priority Critical patent/JPS6218709A/en
Publication of JPS6218709A publication Critical patent/JPS6218709A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To enable selectively the production of a fine structure by disposing a substrate in a vacuum chamber, and selectively producing a substance to be produced from a raw gas by the heat of the substrate and the emission of an optical interference pattern to the substrate on the substrate. CONSTITUTION:A substrate 11 is disposed in a vacuum chamber 12, and regulated at the prescribed position. Then, the chamber 12 is exhausted, the substrate 11 is heated to remove surface absorption gas, and the entire surface is cleaned by sputtering with Ar ion gas. Then, raw gas 13 is fed to the chamber 12, and the substrate 11 is emitted by an entire surface emitting system. An InP buffer layer 11a produced from the gas 13 without surface contamination is formed on the entire substrate 11 by this operation. Then, the layer 11a is emitted by an interference pattern system. In this case, the pitch of an interference moire 14 is set to the prescribed value. This operation is repeated to form by epitaxially growing the desired corrugated lattice 5a made of InP on the layer 11a. The thus formed lattice 5a has a lattice pitch of the interference moire 14 and a sectional shape of sinusoidal wave shape.

Description

【発明の詳細な説明】 〔概要〕 真空中で基板を加熱し原料ガスを導入し光を照射して、
該原料ガスから生成される物質を該基板上に成長させる
光励起成長において、 照射する光を光学干渉パターンにすることにより・ 該成長を該パターンに対応した微細構造の選択成長にし
、例えばコルゲーション回折格子の形成を可能にしたも
のである。
[Detailed description of the invention] [Summary] A substrate is heated in a vacuum, a raw material gas is introduced, and light is irradiated.
In photo-excited growth in which a substance generated from the raw material gas is grown on the substrate, the irradiated light is made into an optical interference pattern, and the growth is selectively grown in a fine structure corresponding to the pattern, such as a corrugated diffraction grating. This enabled the formation of

〔産業上の利用分野〕[Industrial application field]

本発明は、光励起成長方法の改良に関す。 The present invention relates to improvements in photostimulated growth methods.

光励起成長は、真空中で基板を加熱しながら原料ガスの
導入と光の照射とを行うことにより、該原料ガスから生
成される物質例えばガリウム砒素(GaAs) + イ
ンジウム燐(InP)などの半導体や二酸化シリコン(
SiO2)などの絶縁物などを基板上に成長させる新し
い技術である。
In photo-excited growth, a material gas is introduced and irradiated with light while heating the substrate in a vacuum, thereby producing materials such as semiconductors such as gallium arsenide (GaAs) + indium phosphide (InP), etc. silicon dioxide (
This is a new technology that grows insulators such as SiO2 on a substrate.

この技術は、 ■ 成長物質の生成に光励起を利用しているため、比較
的に低い基板温度で成長が可能である。
This technique: (1) Since optical excitation is used to generate the growth material, growth can be performed at a relatively low substrate temperature.

■ 原料ガスの切り替えにより多層構成の成長を連続的
に行うことが可能である。
■ It is possible to continuously grow a multilayer structure by switching the raw material gas.

■ 成長層の厚さの微細制御が容易である。■ Easy to finely control the thickness of the grown layer.

などの特徴を有しており、その活用が期待されている。It has the following characteristics, and its utilization is expected.

そして微細構造の選択成長が可能になれば、更にその使
用範囲が拡大される。
If selective growth of fine structures becomes possible, the range of use will be further expanded.

〔従来の技術〕[Conventional technology]

第4図は従来方法による微細構造形成例を示す工程順側
断面図(a)〜(dlである。
FIG. 4 is a process-sequential side sectional view (a) to (dl) showing an example of forming a fine structure by a conventional method.

この微細構造は、例えばDFBレーザ(Distri−
buted Feedback La5er)などに組
み込まれるコルゲーション回折格子で、格子ピンチは約
4000人、格子が形成される半導体はInPである。
This fine structure is created by, for example, a DFB laser (Distri-
This is a corrugation diffraction grating that is incorporated into a butted feedback (La5er), etc., and the grating pinch is approximately 4,000 people, and the semiconductor on which the grating is formed is InP.

そしてこの微細構造の形成には、所謂ホトリソグラフィ
技術が使用される。
A so-called photolithography technique is used to form this fine structure.

即ち先ず図(a)に示す如く、エピタキシャル成長した
InP層1上にホトレジスト層2を形成し、レーザ光3
.4の干渉縞で露光し現像して、図(blに示す如く、
ホトレジスト層2を線条にパターン化する。
That is, first, as shown in Figure (a), a photoresist layer 2 is formed on an epitaxially grown InP layer 1, and a laser beam 3 is
.. After exposure and development with the interference fringes of No. 4, as shown in the figure (bl),
The photoresist layer 2 is patterned into lines.

次いで図(C)に示す如く、パターン化されたホトレジ
スト層2をマスクにしてInP層1をウェットエツチン
グし、コルゲーション回折格子5を形成した後、図示(
dlに示す如く、ホトレジスト層2を除去して回折格子
5の形成を完了する。
Next, as shown in Figure (C), the InP layer 1 is wet-etched using the patterned photoresist layer 2 as a mask to form a corrugated diffraction grating 5.
As shown in dl, the photoresist layer 2 is removed to complete the formation of the diffraction grating 5.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この回折格子5の上には更に半導体がエピタキシャル成
長されるが、その際次のような問題がある。
A semiconductor is further epitaxially grown on the diffraction grating 5, but the following problems arise in this case.

■ 回折格子5の形成が大気中で行われるので、回折格
子5の表面に汚染が残る。
(2) Since the formation of the diffraction grating 5 is performed in the atmosphere, contamination remains on the surface of the diffraction grating 5.

■ 上記エピタキシャル成長は通常600℃程度で行わ
れるので、成長前の昇温過程で回折格子5がダメージを
受け、甚だしくは変形する。
(2) Since the above-mentioned epitaxial growth is normally carried out at about 600° C., the diffraction grating 5 is damaged and even deformed during the temperature raising process before growth.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明方法の要旨説明図である。 FIG. 1 is an explanatory diagram of the outline of the method of the present invention.

上記問題点は、第1図に示す如く、基板11を真空室1
2内に配置し、真空室12内の排気と、基板11の加熱
と、真空室12への原料ガス13の導入と、基板11へ
の光学干渉パターン14の照射とを行うことを含んで、
該加熱と該照射とにより原料ガス13から生成される物
質を基板11上に選択成長させる本発明の光励起成長方
法を採用することによって解決される。
The above problem is solved by moving the substrate 11 into the vacuum chamber 1 as shown in FIG.
2, evacuating the vacuum chamber 12, heating the substrate 11, introducing a raw material gas 13 into the vacuum chamber 12, and irradiating the substrate 11 with an optical interference pattern 14,
This problem can be solved by employing the photoexcitation growth method of the present invention in which a substance generated from the source gas 13 is selectively grown on the substrate 11 by the heating and the irradiation.

〔作用〕[Effect]

光励起成長は、成長物質の生成に光励起を利用している
ので、光の当たった所では成長が速く、光の当たらない
所では成長しにくい特徴を有する。
Photo-excited growth utilizes light excitation to generate a growth substance, so it has the characteristic that growth is rapid in areas exposed to light and difficult to grow in areas not exposed to light.

本発明の方法は、この特徴を利用したもので、照射する
光を光学干渉パターン14(例えばレーザ光の干渉縞)
にして、そのパターン14の光強度の強弱により選択成
長させており、従来例で述べたコルゲーション回折格子
の形成にレーザ光の干渉縞露光を用いていることから、
そのような微細構造の形成に通している。
The method of the present invention utilizes this feature, and the method of the present invention uses the irradiation light to form an optical interference pattern 14 (for example, interference fringes of laser light).
The pattern 14 is then selectively grown depending on the intensity of the light intensity, and since the corrugated diffraction grating described in the conventional example is formed using laser light interference fringe exposure,
through the formation of such microstructures.

この方法によれば、上記選択成長により微細構造が直接
形成されるので、引続き通常の光励起成長に切り替える
ことにより、従来例で問題になった汚染とダメージの発
生を回避して微細構造上に次の成長を行うことが出来る
According to this method, the fine structure is directly formed by the selective growth described above, so by subsequently switching to normal photoexcitation growth, the next step can be performed on the fine structure while avoiding the contamination and damage that were problems in the conventional method. growth can be achieved.

〔実施例〕〔Example〕

以下、本発明の方法を実施する装置例を示す第2図の平
面図+6)と側面図世)、およびその装置による成長実
施例を示す第3図の側断面図を用い、実施例について説
明する。
Examples will be described below using the top view +6) and side view of Figure 2 showing an example of an apparatus for carrying out the method of the present invention, and the side sectional view of Figure 3 showing an example of growth using the apparatus. do.

第1図に示す装置は、基板11上にコルゲーション回折
格子を形成することの出来る成長装置である。
The apparatus shown in FIG. 1 is a growth apparatus capable of forming a corrugated diffraction grating on a substrate 11. The apparatus shown in FIG.

第2図において、12は照射光を導入する石英の窓12
aや基板11の出し入れが出来る構造などを具えるステ
ンレス製の真空室、15は真空室12内にあり基板11
を保持し加熱するモリブデン製のヒートブロック、16
はヒートブロック15を支持しX、 Y、 Zおよび回
転方向の微調整が可能なホールダ、17は真空室12に
原料ガスやその他の所要ガスを導入するガス導入口、1
8は真空室12内の排気を行う真空排気系、19は波長
4416人のHe−Cdレーザ19a、ミラー19b、
ビームエクスパンダ19c、ハーフミラ−19d。
In FIG. 2, 12 is a quartz window 12 that introduces the irradiation light.
15 is a stainless steel vacuum chamber equipped with a structure that allows the substrate 11 to be taken in and taken out;
Molybdenum heat block that holds and heats 16
1 is a holder that supports the heat block 15 and allows fine adjustment of X, Y, Z and rotational directions; 17 is a gas inlet for introducing raw material gas and other necessary gases into the vacuum chamber 12;
8 is a vacuum evacuation system that evacuates the inside of the vacuum chamber 12; 19 is a He-Cd laser 19a with a wavelength of 4416; a mirror 19b;
Beam expander 19c, half mirror 19d.

ミラー19e、 19fなどからなり基板11に干渉パ
ターン(干渉縞)14を照射する干渉パターン照射系で
ある。
This is an interference pattern irradiation system that includes mirrors 19e, 19f, etc. and irradiates an interference pattern (interference fringes) 14 onto the substrate 11.

また、20は水銀ランプ20a、可動ミラー20bなど
からなり基板11の全面を均一に照射する全面照射系、
21はHe−Neレーザ21a、ミラー21bなどから
なり基板11の側面を照射しその反射光方向の検知によ
り基板11回転方向の調整位置を示す基板角度モニター
系である。
Further, 20 is a full-surface irradiation system that uniformly irradiates the entire surface of the substrate 11, which includes a mercury lamp 20a, a movable mirror 20b, etc.;
Reference numeral 21 denotes a substrate angle monitoring system that includes a He-Ne laser 21a, a mirror 21b, etc., and irradiates the side surface of the substrate 11, and detects the direction of the reflected light to indicate the adjustment position in the rotational direction of the substrate 11.

そしてこれらのものは、一つの定盤22に取付けられ、
防振のため独立基礎23上に空気ばね24を介して設置
されている。
And these things are attached to one surface plate 22,
It is installed on an independent foundation 23 via an air spring 24 for vibration isolation.

この装置を使用して実施例であるコルゲーション回折格
子を形成した際の操作手順は次の如くである。
The operating procedure for forming a corrugated diffraction grating according to an example using this apparatus is as follows.

■ 基板11には大きさ約20m角、厚さ約500μm
1面方位(100)のInP基板を用い、これをヒート
ブロック15にインジウム半田で貼着し、ホールダ16
や基板角度モニター系21などを用い所定の位置に調整
する。
■ The substrate 11 has a size of approximately 20 m square and a thickness of approximately 500 μm.
An InP substrate with a one-plane orientation (100) is used, and it is attached to the heat block 15 with indium solder, and then attached to the holder 16.
or the substrate angle monitor system 21, etc., to adjust to a predetermined position.

■ 真空室12内を1O−9Torr以下まで減圧し基
板11温度を約450℃に上げ約10分間維持して表面
吸着ガスの除去を行い、その後アルゴン(Ar)イオン
ガン(加速電圧約250 V )で全面をスパッタして
清浄化を行う。
■ The pressure inside the vacuum chamber 12 is reduced to 10-9 Torr or less, the temperature of the substrate 11 is raised to about 450°C, and maintained for about 10 minutes to remove the surface adsorbed gas, and then heated with an argon (Ar) ion gun (acceleration voltage of about 250 V). Clean the entire surface by sputtering.

■ 基板11の温度を350℃に設定する。■ Set the temperature of the substrate 11 to 350°C.

■ 真空室12に圧力が10−5〜10″″’ Tor
rになるまで第一の原料ガス13aであるトリメチル・
インジウム(TMIn : In (CH3) 3 )
を導入し、その後IO−’Torrまで排気する。
■ The pressure in the vacuum chamber 12 is 10-5 to 10''' Tor.
The first raw material gas 13a, trimethyl
Indium (TMIn: In (CH3) 3 )
is introduced and then evacuated to IO-'Torr.

■ 真空室12に圧力が10”−5〜10−’Torr
になるまで第二の原料ガス13bであるフォスフイン(
PFf3)を導入し、その後10′″’Torrまで排
気する。
■ The pressure in the vacuum chamber 12 is 10”-5 to 10-’Torr.
The second raw material gas 13b, phosphine (
PFf3) is introduced and then exhausted to 10'''' Torr.

■ 全面照射系20で基板11を照射する。(2) Irradiate the substrate 11 with the entire surface irradiation system 20.

■ ■〜■の操作を約100回繰り返す。この操作によ
り基板11上の全面に表面汚染のないInPのバッファ
層11a(第3図参照)がエピタキシャル成長して形成
される。
■ Repeat operations from ■ to ■ approximately 100 times. By this operation, an InP buffer layer 11a (see FIG. 3) with no surface contamination is epitaxially grown over the entire surface of the substrate 11.

■ ■と同じ操作を行う。■ Perform the same operation as ■.

■ ■と同じ操作を行う。■ Perform the same operation as ■.

[相] 干渉パターン照射系19でバッファ層11aを
照射する。この際干渉縞14のピッチを4000人に設
定しておく。
[Phase] The buffer layer 11a is irradiated with the interference pattern irradiation system 19. At this time, the pitch of the interference fringes 14 is set to 4000 people.

0 ■〜[相]の操作を約400回繰り返す。この操作
によりバッファ層上にInPからなる所望のコルゲーシ
ョン回折格子5a (第3図参照)がエピタキシャル成
長して形成される。
0 Repeat operations from ■ to [phase] approximately 400 times. By this operation, a desired corrugated diffraction grating 5a (see FIG. 3) made of InP is epitaxially grown on the buffer layer.

回折格子5a上に更に半導体をエピタキシャル成長する
場合には、上記操作に引続き所定の原料ガスの導入と全
面照射系20による照射とを行えば、回折格子5aの汚
染もダメージも発生することなくエピタキシャル成長を
行うことが出来る。
When further epitaxially growing a semiconductor on the diffraction grating 5a, if the above operation is followed by the introduction of a predetermined raw material gas and irradiation by the entire surface irradiation system 20, epitaxial growth can be achieved without contaminating or damaging the diffraction grating 5a. It can be done.

形成された回折格子5aは、格子ピッチが4000人、
高さが約1000人であり、その断面形状はsin波状
である。上記0の繰り返し回数を変えることにより高さ
を変えることが出来るが、上記sin波状は維持される
The formed diffraction grating 5a has a grating pitch of 4000 people,
The height is approximately 1,000 people, and its cross-sectional shape is sinusoidal. Although the height can be changed by changing the number of repetitions of 0, the sinusoidal waveform is maintained.

ちなみに、従来例で述べたエツチングによる場合はエツ
チング深さを変えると断面形状が変化するので、この点
においても本方法は優れた特徴を有する。
Incidentally, in the case of etching as described in the conventional example, the cross-sectional shape changes when the etching depth is changed, so the present method has an excellent feature in this respect as well.

なお上記実施例では縞状の干渉パターンの場合について
説明したが、干渉パターン照射系19を別の干渉パター
ン照射系例えば複数の干渉系を組み合わせたり光路に適
当なスリットを介在させるなどした照射系にすることに
より、対称性の異なったパターンの選択成長が得られる
こと、また成長対称物質が先に述べた如き他の半導体や
絶縁物などであっても通用可能であることは本発明の原
理から容易に類推出来る。
In the above embodiment, the case of a striped interference pattern has been explained, but the interference pattern irradiation system 19 may be replaced by another interference pattern irradiation system, for example, an irradiation system in which a plurality of interference systems are combined or an appropriate slit is interposed in the optical path. Based on the principles of the present invention, it is possible to selectively grow patterns with different symmetries by doing this, and that it is also possible to use other semiconductors or insulators as mentioned above for the symmetrical growth material. It can be easily inferred.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の構成によれば、真空中で
基板を加熱し原料ガスを導入し光を照射して、該原料ガ
スから生成される物質を該基板上に成長させる光励起成
長において、光学干渉パターンに対応した微細構造の選
択成長が出来て、例えばコルゲーション回折格子の形成
を可能にさせ、然もその上に更に成長を行う場合の該回
折格子に関するトラブルを低減させる効果がある。
As explained above, according to the configuration of the present invention, in photoexcitation growth in which a substrate is heated in a vacuum, a source gas is introduced, and light is irradiated, a substance generated from the source gas is grown on the substrate. , it is possible to selectively grow a fine structure corresponding to an optical interference pattern, making it possible to form, for example, a corrugation diffraction grating, and also having the effect of reducing troubles related to the diffraction grating when further growth is performed on it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の要旨説明図、 第2図は本発明方法を実施する装置例の平面図(a)と
側面図(b)、 第3図はその装置による成長実施例の側断面図、第4図
は従来方法による微細構造形成例を示す工程順側断面図
(a)〜(d)、である。 図において、 5.5aはコルゲーション回折格子、 11は基板、 11aはバッファ層、 12は真空室、 13.13a 、13bは原料ガス、 14は干渉パターン(干渉縞)、 15はヒートブロック、 16はホールダ、 17は真空排気系、 18は干渉パターン照射系、 19は全面照射系、 20は基板角度モニター系、 12は定盤、である。
Figure 1 is an explanatory diagram of the outline of the method of the present invention, Figure 2 is a plan view (a) and side view (b) of an example of an apparatus for carrying out the method of the present invention, and Figure 3 is a side cross-section of an example of growth using the apparatus. 4 are side sectional views (a) to (d) in the order of steps showing an example of forming a fine structure by a conventional method. In the figure, 5.5a is a corrugation diffraction grating, 11 is a substrate, 11a is a buffer layer, 12 is a vacuum chamber, 13.13a and 13b are source gases, 14 is an interference pattern (interference fringes), 15 is a heat block, 16 is a holder, 17 is a vacuum evacuation system, 18 is an interference pattern irradiation system, 19 is an entire surface irradiation system, 20 is a substrate angle monitor system, and 12 is a surface plate.

Claims (1)

【特許請求の範囲】[Claims]  基板(11)を真空室(12)内に配置し、該真空室
(12)内の排気と、該基板(11)の加熱と、該真空
室(12)への原料ガス(13)の導入と、該基板(1
1)への光学干渉パターン(14)の照射とを行うこと
を含んで、該加熱と該照射とにより該原料ガス(13)
から生成される物質を該基板(11)上に選択成長させ
ることを特徴とする光励起成長方法。
A substrate (11) is placed in a vacuum chamber (12), the vacuum chamber (12) is evacuated, the substrate (11) is heated, and a source gas (13) is introduced into the vacuum chamber (12). and the substrate (1
1) by irradiating the source gas (13) with an optical interference pattern (14).
A photoexcitation growth method characterized by selectively growing a substance produced from a substance on the substrate (11).
JP15909185A 1985-07-18 1985-07-18 Photovolatically growing method Pending JPS6218709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15909185A JPS6218709A (en) 1985-07-18 1985-07-18 Photovolatically growing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15909185A JPS6218709A (en) 1985-07-18 1985-07-18 Photovolatically growing method

Publications (1)

Publication Number Publication Date
JPS6218709A true JPS6218709A (en) 1987-01-27

Family

ID=15686037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15909185A Pending JPS6218709A (en) 1985-07-18 1985-07-18 Photovolatically growing method

Country Status (1)

Country Link
JP (1) JPS6218709A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63271990A (en) * 1987-04-28 1988-11-09 Matsushita Electric Ind Co Ltd Manufacture of semiconductor diffraction grating
JP2009010426A (en) * 2008-10-10 2009-01-15 Panasonic Electric Works Co Ltd Method of manufacturing light emitting element
JP2009010427A (en) * 2008-10-10 2009-01-15 Panasonic Electric Works Co Ltd Method of manufacturing light emitting element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63271990A (en) * 1987-04-28 1988-11-09 Matsushita Electric Ind Co Ltd Manufacture of semiconductor diffraction grating
JP2009010426A (en) * 2008-10-10 2009-01-15 Panasonic Electric Works Co Ltd Method of manufacturing light emitting element
JP2009010427A (en) * 2008-10-10 2009-01-15 Panasonic Electric Works Co Ltd Method of manufacturing light emitting element

Similar Documents

Publication Publication Date Title
JP5580803B2 (en) Method for forming an independent (Al, Ga, In) N article
US5223080A (en) Method for controlling thickness of single crystal thin-film layer in soi substrate
US5139606A (en) Laser bilayer etching of GaAs surfaces
JPS6218709A (en) Photovolatically growing method
JP2009527439A (en) Characteristic modification method for thin film growth
JPS623089A (en) Production apparatus for semiconductor
JP3184988B2 (en) Crystal plane anisotropic dry etching method
GB2288272A (en) X-ray windows
US5495822A (en) Method of selectively growing Si epitaxial film
JP2998244B2 (en) Region-selective crystal growth method
JPS6130028A (en) Vapor growth method
JPS5961122A (en) Manufacture of semiconductor device
JP2814998B2 (en) Method and apparatus for forming semiconductor element film
JPH0574708A (en) Crystal growth method
JPH0250963A (en) Method and apparatus for forming thin patterned film
JPH0292891A (en) Molecular beam epitaxial growth process and apparatus therefor
JP2717165B2 (en) Method for forming structure of compound semiconductor
JP2683612B2 (en) Method for forming structure of compound semiconductor
JPH11345773A (en) Manufacture of hyperfine periodic structure
JP2998336B2 (en) Method for etching compound semiconductor and method for forming semiconductor structure
JPH0322410A (en) Formation of semiconductor thin film
JP2603121B2 (en) Method of forming compound semiconductor thin film
JPH0536654A (en) Method for forming pattern of compound semiconductor
JPH05347319A (en) Method of forming semiconductor thin film
JPH0153577B2 (en)