JPH0250963A - Method and apparatus for forming thin patterned film - Google Patents

Method and apparatus for forming thin patterned film

Info

Publication number
JPH0250963A
JPH0250963A JP20161288A JP20161288A JPH0250963A JP H0250963 A JPH0250963 A JP H0250963A JP 20161288 A JP20161288 A JP 20161288A JP 20161288 A JP20161288 A JP 20161288A JP H0250963 A JPH0250963 A JP H0250963A
Authority
JP
Japan
Prior art keywords
mask
laser light
thin film
substrate
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20161288A
Other languages
Japanese (ja)
Inventor
Yukio Morishige
幸雄 森重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP20161288A priority Critical patent/JPH0250963A/en
Publication of JPH0250963A publication Critical patent/JPH0250963A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

PURPOSE:To improve the use efficiency of laser light and to reduce film-manufacturing costs by regulating the distribution of the intensity of laser light to be transmitted through a mask having repeated patterns so that the intensity of the laser light in the light-transmitting part of the mask is different from that in the light-shielding part. CONSTITUTION:Laser light from a laser light source 1 is transmitted by a mask 4 having repeated patterns via a mirror 3 and patterned. Then, a substrate 11 on a substrate susceptor 12 held in a chamber 6 is irradiated with the above laser light passed via a lens 5 through a window 7. The atmosphere in the above chamber 6 is regulated so that it contains gaseous raw material from a gaseous raw material feed system 10. By the above procedure, a thin patterned film is formed on the substrate 11 or the thin film on the substrate 11 is etched selectively. In the above thin patterned film-forming method, a beam contraction unit 2 in which plural beam contractors 13 are disposed into a matrix state is disposed between the above- mentioned laser light source 1 and mask 4. By this method, the distribution of the intensity of the laser light to be transmitted through the mask 4 can be controlled so that the intensity of the laser beam is high in the vicinity of the light-transmitting part of the mask 4 and low in the light-shielding part.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、レーザ光を利用してパターン化した薄膜を形
成する薄膜形成方法及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a thin film forming method and apparatus for forming a patterned thin film using laser light.

(従来の技術) 出力の大きなエキシマレーザなどからの出射光をパター
ン形成用のマスクを通してパターン化し、原料、ガスを
含む雰囲気を満たしたチェンへ−内の基板に、上記マス
クパターンを転写して、直接パターン化した薄膜を堆積
させる方法が知られでいる。この方法によれば、これま
でによく知られている一括成膜、レジストプロセス・エ
ツチングの各プロセスを通してパターン化した薄膜を形
成する方法に比べ、工程数を大幅に低減することが可能
になると期待されている。例えば、フラットパネルデイ
スプレィとして研究開発が進みつつある液晶表示素子に
おいては、各画素の表示の有無を決めるために、各画素
の大きさの100分の1程度の大きさの薄膜トランジス
タを各画素毎に設け、この画素を単位として、7トワツ
クス状に繰り返し配列して、デイスプレィを構成してい
る。薄膜トランジスタの半導体には、a−8i:Hやポ
リSi等が用いられ、これを厚み1000人程度1幅数
10pm稈度の長方形もしくは矩形のパターンにして、
電極と組み合わせて基板上に形成している。このような
パターン薄膜形成方法及び装置の一例は、特願昭60−
56051に樋浦により報告されている。この発明及び
、従来のパターン薄膜形成方法においては、マスク上で
の光の強度分布は、マスク上でなるべく均一となるよう
光学系が構成されていた。このため、先に述べたような
デイスプレィデバイスのように堆積すべき面積に比べ、
堆積させない面積が相対的に大きな場合、レーザ光源か
らの出射光の大部分は、マスクの遮光部によって吸収も
しくは反射され、薄膜の堆積には役立たないという欠点
があった。このように光の利用効率が低い結果、レーザ
光源に大出力のエキシマレーザを用いても、−回にパタ
ーンを形成できる領域が10cm角程度と小さくとも、
パターンを形成するに要する時間が2時間以上かかるな
ど、実用的な技術とするうえで、大きな問題となってい
た。以上述べた問題点は、基板全面に薄膜が形成されて
いる基板に光照射により、薄膜にエツチング反応を起こ
すガス雰囲気中で、パターン化した光を照射してパター
ン薄膜を形成する場合にも同様に大きな問題となってい
た。
(Prior art) Light emitted from a high-output excimer laser or the like is patterned through a pattern-forming mask, and the mask pattern is transferred to a substrate inside a chain filled with an atmosphere containing raw materials and gas. Methods of directly depositing patterned thin films are known. This method is expected to significantly reduce the number of steps compared to the well-known methods of forming patterned thin films through the processes of batch deposition, resist processing, and etching. has been done. For example, in liquid crystal display devices, which are being researched and developed as flat panel displays, a thin film transistor about 1/100th the size of each pixel is installed for each pixel in order to determine whether each pixel displays or not. The display is constructed by repeatedly arranging these pixels in a 7-tox pattern. A-8i:H, poly-Si, etc. are used for the semiconductor of the thin film transistor, and this is made into a rectangular or rectangular pattern with a thickness of about 1000 mm, a width of several tens of pm, and a culm.
It is formed on a substrate in combination with an electrode. An example of such a method and apparatus for forming a patterned thin film is disclosed in Japanese Patent Application No. 1986-
Reported by Hiura in 56051. In this invention and the conventional patterned thin film forming method, the optical system is configured so that the intensity distribution of light on the mask is as uniform as possible on the mask. For this reason, compared to the area that needs to be deposited like the display device mentioned above,
When the non-depositing area is relatively large, most of the light emitted from the laser light source is absorbed or reflected by the light shielding part of the mask, which has the disadvantage that it is not useful for thin film deposition. As a result of this low light utilization efficiency, even if a high-output excimer laser is used as a laser light source, the area in which a pattern can be formed is as small as about 10 cm square.
It took more than two hours to form a pattern, which was a major problem in making it a practical technology. The above-mentioned problems are the same when forming a patterned thin film by irradiating patterned light on a substrate with a thin film formed on the entire surface of the substrate in a gas atmosphere that causes an etching reaction in the thin film. had become a big problem.

(発明の目的) 本発明の目的は、デイスプレィデバイスのように堆積も
しくはエツチングすべき面積に比べ、これらのプロセス
を起こさぜない領域の面積が大きいプロセスを必要とす
る場合に、従来のレーザ光を用いるパターン薄膜形成方
法及び装置を適用した場合に比べ、光の利用効率が格段
に高い、優れたパターン薄膜形成方法及び装置を提供す
ることにある。
(Object of the Invention) An object of the present invention is to eliminate the need for conventional laser light when a process requiring a large area where these processes do not occur, as compared to the area to be deposited or etched, such as a display device. An object of the present invention is to provide an excellent method and apparatus for forming a patterned thin film, which has a much higher light utilization efficiency than a method and apparatus for forming a patterned thin film using the method and apparatus.

(発明の構成) 本発明は、繰り返しパターンから成るマスクにレーザ光
を透過させて生成されるパターン化したレーザ光を、原
料ガス雰囲気に満たされたチェンバー内に保持された基
板」−に照射して、基板上にパターン化された薄膜を堆
積させるパターン薄膜形成方法において、該マスクに透
過させるレーザ光の強度分布を該マスクの光透過部近傍
に強く、マスクの遮光部で弱くなるようにレーザ光源か
らの出射光の強度分布を形成することを特徴とする。
(Structure of the Invention) The present invention irradiates a substrate held in a chamber filled with a source gas atmosphere with patterned laser light generated by transmitting laser light through a mask consisting of a repeating pattern. In a method for forming a patterned thin film in which a patterned thin film is deposited on a substrate, the intensity distribution of the laser light transmitted through the mask is set such that the intensity distribution of the laser light is strong near the light transmitting part of the mask and weak in the light blocking part of the mask. It is characterized by forming an intensity distribution of light emitted from a light source.

また別の本発明は、繰り返しパターンを有するから成る
マスクにレーザ光を透過させて生成されるパターン化し
たレーザ光を、エツチングガスを含む雰囲気に満たされ
たチェンバー内に保持された基板上に薄膜に照射して、
該薄膜を選択的にエツチングしてパターン化した薄膜を
形成するパターン薄膜形成方法において、該マスクに透
過させるレーザ光の強度分布を該マスクの光透過部近傍
に強く、マスクの遮光部で弱くなるようにレザ光源から
の出射光の強度分布を変形することを特徴とする特 さらに別の本発明は、反応性原料ガスを含む雰囲気に満
たされるべきチェンバー内に設置された基板保持具とレ
ーザ光源と、繰り返しパターンを有するマスクと、該マ
スクを透過したレーザ光を窓を介して該チェンバー内に
導入し、該マスクパターンを該基板上に転写するレンズ
から成る露光光学系と、該レーザ光の照射位置を基板の
所定の位置に導く移動機構と、該反応性原料ガスを供給
する原料ガス供給系と、排気ガスを処理する排気ユニッ
トから成るパターン薄膜形成装置において、該レーザ光
源と該マスクの間に、該マスクの繰り返しパターンの周
期に等しい間隔で複数のビーム縮小器を7トリノクス状
に配置して構成されるビーム縮小ユニットを配置するこ
とを特徴とする。
Another aspect of the present invention is to apply patterned laser light generated by transmitting laser light through a mask having a repeated pattern onto a thin film on a substrate held in a chamber filled with an atmosphere containing an etching gas. irradiate it to
In a method for forming a patterned thin film in which the thin film is selectively etched to form a patterned thin film, the intensity distribution of the laser light transmitted through the mask is strong in the vicinity of the light transmitting part of the mask and weak in the light blocking part of the mask. A further aspect of the present invention is characterized in that the intensity distribution of the light emitted from the laser light source is changed so that the intensity distribution of the light emitted from the laser light source is changed so that an exposure optical system consisting of a mask having a repeated pattern, a lens that introduces the laser light transmitted through the mask into the chamber through a window and transfers the mask pattern onto the substrate; In a patterned thin film forming apparatus comprising a moving mechanism that guides the irradiation position to a predetermined position on the substrate, a source gas supply system that supplies the reactive source gas, and an exhaust unit that processes exhaust gas, the laser light source and the mask are connected to each other. It is characterized in that a beam reduction unit configured by arranging a plurality of beam reduction units in a 7-trinox shape at intervals equal to the period of the repeating pattern of the mask is arranged between them.

(り発明の作用・原理) 本発明では、パターン転写用のマスク部での光透過部と
遮光部での照射強度に差を付けることによりレーザ光源
からの出射光を有効にCVD反応やエツチング反応に作
用させることに特徴がある。
(Operation/Principle of the Invention) In the present invention, by making a difference in the irradiation intensity between the light-transmitting part and the light-blocking part of the mask part for pattern transfer, the light emitted from the laser light source can be effectively used for CVD reactions and etching reactions. It is characterized by its effect on

上記の強度分布を生じさせる手段としては、指向性のあ
るレーザ光のビーム径変換手段の−っであるビーム縮小
器を用いている。デイスプレィデバイスの製造のように
マトリックス状に島状の半導体薄膜の堆積を必要とする
場合には、このビーム縮小器をレーザ光源とマスクの間
にマトリックス状に配置して、マスク部での光照射分布
をマスクの光透過部で強くなるようにできる。原理的に
はビーム縮小器の倍率をNとすると、マスクの光透過部
での光強度は、レーザ光源出射端の強度のNXN倍に増
大する。つまり、デイスプレィデバイスの場合などで画
素の面積に比べ半導体部の面積カニ00分の1程度の大
きさであればビーム縮小器の倍率を5倍にすれば、従来
法に比べ25倍、8倍にすれば64倍の強い光強度で、
基板上にレーザ光を照射することが可能となる。この結
果として、同じ面積の領域に堆積させる場合であれば、
堆積に要する時間を格段に短縮できる。また基板上への
照射強度を同じに保つならば、−回に照射出来る領域の
面積を格段に広くとれることになる。
As a means for producing the above-mentioned intensity distribution, a beam condenser, which is a beam diameter converting means for a directional laser beam, is used. When it is necessary to deposit semiconductor thin films in the form of a matrix, such as in the production of display devices, this beam condenser is arranged in a matrix between the laser light source and the mask, and the beam condenser is arranged in a matrix between the laser light source and the mask. The irradiation distribution can be made stronger in the light transmitting portion of the mask. In principle, if the magnification of the beam condenser is N, the light intensity at the light transmitting portion of the mask increases to NXN times the intensity at the laser light source output end. In other words, in the case of a display device, etc., if the area of the semiconductor part is about 1/00th of the area of the pixel, increasing the magnification of the beam condenser by 5 times, the magnification of the beam condenser will be 25 times that of the conventional method, and 8 If you double it, the light intensity will be 64 times stronger.
It becomes possible to irradiate laser light onto the substrate. As a result, when depositing on an area of the same area,
The time required for deposition can be significantly shortened. Furthermore, if the intensity of irradiation onto the substrate is kept the same, the area of the region that can be irradiated each time can be significantly increased.

言うまでもなく、薄膜をエツチングしてパターン化する
場合にも上記のマスクパターンを透過する光の増大によ
り所定の厚みのエツチングに要する時間を短縮できるし
、また同じ照射強度に保てば、1回にエツチングを行う
領域の面積を格段に広く取れる。
Needless to say, when etching a thin film into a pattern, increasing the amount of light transmitted through the mask pattern described above can shorten the time required to etch a given thickness, and if the irradiation intensity is kept the same, it can be etched in one go. The area for etching can be made much wider.

(実施例) 以下に図面を参照して本発明の詳細な説明する。第1図
は、本願の発明の一実施例であるパターン薄膜形成方法
及び装置の概略的構成図である。
(Example) The present invention will be described in detail below with reference to the drawings. FIG. 1 is a schematic diagram of a method and apparatus for forming a patterned thin film, which is an embodiment of the invention of the present application.

この図は、液晶デイスプレィ用の薄膜トランジスタに用
いられるa−3i:Hの堆積に本発明を適用したもので
ある。図において、ArFエキシマレーザより構成され
るレーザ光源1からの出射レーザ光は、マスク4のマス
クパターンの配列と同じ間隔で並べられた、レーザ光源
1からの出射パターンより小さいビーム縮小器13を複
数個マトリックス上に並べたビーム縮l卦ユニット2を
通して、ミラー3で反射され、マスク4に照射される。
This figure shows the application of the present invention to the deposition of a-3i:H used in thin film transistors for liquid crystal displays. In the figure, the emitted laser light from a laser light source 1 composed of an ArF excimer laser is transmitted through a plurality of beam condensers 13 smaller than the emitted pattern from the laser light source 1, which are arranged at the same intervals as the mask pattern arrangement of the mask 4. The beam passes through the beam reduction unit 2 arranged in a matrix, is reflected by a mirror 3, and is irradiated onto a mask 4.

マスク4を透過したレーザ光は、レンズ5と、チェンバ
ー6に設けられた窓7を通して基板支持台12の上に置
かれている基板11に照射される構成になっている。以
上述べた光学系は、マスク4のパターンを5対1に基板
6に転写する露光光学系となっている。チェンバー6に
CVD原料ガスを供給する原料ガス供給系10は、Si
2H6ガスを5%含むN2ガスを供給する。排気ユニッ
ト8は、CVD前のチェンバー内の空気の排気と、CV
D時の圧力を大気圧以下に保つための真空ポンプと、排
気されるガスの無害化処理を行う吸着トラップから成る
。チェンバー6を支えるX−Yステラ9は基板11上へ
のレーザ光の照射位置の目合わせを行うために用いる。
The laser beam transmitted through the mask 4 is configured to be irradiated onto the substrate 11 placed on the substrate support 12 through the lens 5 and the window 7 provided in the chamber 6. The optical system described above is an exposure optical system that transfers the pattern of the mask 4 onto the substrate 6 in a 5:1 ratio. The raw material gas supply system 10 that supplies CVD raw material gas to the chamber 6 is made of Si
N2 gas containing 5% 2H6 gas is supplied. The exhaust unit 8 exhausts the air in the chamber before CVD and
It consists of a vacuum pump to keep the pressure at D time below atmospheric pressure and an adsorption trap to detoxify the exhausted gas. The XY steller 9 supporting the chamber 6 is used to align the irradiation position of the laser beam onto the substrate 11.

第2図は本発明の特徴であるビーム縮小ユニット2のな
かの基本単位であるビーム縮小器13とマスク4の位置
のレーザ光の強度分布を示す図である。基板上へのa−
3i:Hの堆積の太きさは10 X 10μm、画素の
大きさは100 X 1100pである。マスクパター
ンの転写比率が5対1であるので、マスクのパターンは
光透過部の形は50 X 50pmの矩形で、この部分
が縦横に50011mの繰り返しでマトリックス状に配
置された構成になっている。ビーム縮小ユニット2の基
本単位である各々のビーム縮小器13は2枚の凸レンズ
から構成され、ビームの縮小比は1/8、ビーム縮小器
13の繰り返し間隔はマスクのパターンと同じ500p
mとなるよう設計されている。図2に示すようにレーザ
光源1からの出射レーザ光はビーム縮小ユニット2でマ
スク4の透過部の数に相当する複数の細いレーザビーム
に変換され、このそれぞれの細いビームの中心がマスク
4の透過部の中心となるように配置されている。ビーム
縮小ユニット2により、マスク4上の光透過部の光強度
は、ビーム縮小ユニッI−2を用いない場合の60倍に
強くなった。
FIG. 2 is a diagram showing the intensity distribution of the laser beam at the positions of the beam condenser 13, which is a basic unit in the beam condensation unit 2, which is a feature of the present invention, and the mask 4. a- onto the board
The thickness of the 3i:H deposit is 10×10 μm, and the pixel size is 100×1100p. Since the transfer ratio of the mask pattern is 5:1, the mask pattern has a rectangular shape of the light transmitting part of 50 x 50 pm, and this part is arranged in a matrix with repeats of 50011 m vertically and horizontally. . Each beam reducer 13, which is the basic unit of the beam reduction unit 2, is composed of two convex lenses, the beam reduction ratio is 1/8, and the repetition interval of the beam reducer 13 is 500p, which is the same as the mask pattern.
It is designed to be m. As shown in FIG. 2, the laser beam emitted from the laser light source 1 is converted into a plurality of narrow laser beams corresponding to the number of transparent parts of the mask 4 in the beam reduction unit 2, and the center of each narrow beam is centered on the mask 4. It is placed in the center of the transparent part. By using the beam reduction unit 2, the light intensity of the light transmitting portion on the mask 4 became 60 times stronger than when the beam reduction unit I-2 was not used.

次に本発明の動作を順を追って説明する。まずチェンバ
ー6の基板支持台12の上に基板11をセットし、X−
Yステージ9を動かしてレーザ光の基板11への照射位
置の目合わぜを行う。排気ユニット8を動作させて、チ
ェンバー6内の空気を排気する。次に原料ガス供給系1
0より512H6ガスをチェンバー6に流し、同時に排
気ユニット6でチェンバー6内を10Torrの圧力と
なるように減圧する。この状態でレーザ光源1から19
3nmの紫外光を基板11に照射して光化学反応によす
Si2H6ガスを分解し、基板上に10 X 10pm
の大きさのa−8i:H膜を100 X 1100pの
周期でマトリックス状に堆積させる。1回の堆積が終了
したら、レーザ光源1を停止し、X−Yステージ9を動
かして基板11の次の照射位置に基板11の位置をセッ
トし、2回目の堆積を行う。以上の工程を繰り返して基
板11全体への堆積を終了したら、原料ガス供給ユニッ
ト10からのCVD原料ガスの供給を止め、排気ユニッ
ト8でチェンバー6内の残留ガスを排気し、内部を空気
に置換した後、基板6を取り出して一連のプロセスを終
了する。
Next, the operation of the present invention will be explained step by step. First, set the substrate 11 on the substrate support stand 12 of the chamber 6, and
The Y stage 9 is moved to adjust the irradiation position of the laser beam onto the substrate 11. The exhaust unit 8 is operated to exhaust the air inside the chamber 6. Next, raw material gas supply system 1
0 to 512H6 gas is flowed into the chamber 6, and at the same time, the inside of the chamber 6 is depressurized to a pressure of 10 Torr by the exhaust unit 6. In this state, laser light sources 1 to 19
The substrate 11 is irradiated with 3 nm ultraviolet light to decompose Si2H6 gas caused by a photochemical reaction, and a 10×10 pm film is deposited on the substrate.
An a-8i:H film with a size of is deposited in a matrix with a period of 100 x 1100p. When one deposition is completed, the laser light source 1 is stopped, the XY stage 9 is moved to set the substrate 11 at the next irradiation position, and the second deposition is performed. After repeating the above steps and completing deposition on the entire substrate 11, the supply of CVD raw material gas from the raw material gas supply unit 10 is stopped, and the residual gas in the chamber 6 is exhausted by the exhaust unit 8, replacing the inside with air. After that, the substrate 6 is taken out and the series of processes is completed.

従来の方法のビーム縮小ユニット2を用いない場合には
、基板上でのレーザ光の照射領域を10cm角とした場
合には、所定の膜厚を得るのに2時間を要するのに対し
、本発明を適用した場合にはレーザ光源の出力条件と基
板上での照射領域を同じとした場合に、所定の膜厚を得
るのに要する時間は2分と大幅に堆積時間を短くできた
。また、この結果、−枚の基板を処理する時間を大きく
低減でき、レーザ光源1にかかる基板1枚当りの負荷も
同時に低減され、製造コストの大幅な低減につなげれる
ことかわかった。
When the beam reduction unit 2 of the conventional method is not used, it takes 2 hours to obtain a predetermined film thickness when the laser beam irradiation area on the substrate is 10 cm square; When the invention was applied, the time required to obtain a predetermined film thickness was 2 minutes, significantly shortening the deposition time when the output conditions of the laser light source and the irradiation area on the substrate were the same. Moreover, as a result, it was found that the time for processing -substrates can be greatly reduced, and the load per substrate placed on the laser light source 1 is also reduced at the same time, leading to a significant reduction in manufacturing costs.

以上延べた例ではビーム縮小ユニット2の単位ビーム縮
小器の構成が2枚の凸レンズを用いた場合に付いて述べ
たが、凸レンズと凹レンズを組み合わせたビーム縮小器
を用いることももちろん可能である。また、複数の薄膜
の堆積を連続して行うことももちろん可能で、その場合
には、照射パターンが同じであれば原料ガス供給系10
がらのCVD原料ガスを切り替えればよい。このとき、
照射パターンを異ならせる必要のある場合には、CVD
原料ガスの切り替えと同時にビーム縮小ユニット2とマ
スク4のいずれかもしくは両方を切り替えて堆積させる
こともできる。さらに上記の複数の薄膜を堆積を行うプ
ロセスとほぼ同様にして、パターン化して堆積さぜな薄
膜を形成した後、原料ガス雰囲気をこの薄膜のドーピン
グ用の原料ガスとして、レーザ光源よりも基板上の薄膜
に数100°Cの温度上昇が起こるような強いレーザ光
を照射すれば、パターン化した薄膜の全面もしくは、一
部に不純物をドープすることもできる。
In the example described above, the configuration of the unit beam reducer of the beam reduction unit 2 has been described using two convex lenses, but it is of course possible to use a beam reducer that combines a convex lens and a concave lens. Of course, it is also possible to deposit a plurality of thin films in succession, and in that case, if the irradiation pattern is the same, the raw material gas supply system 10
All you have to do is change the CVD raw material gas. At this time,
If it is necessary to vary the irradiation pattern, CVD
It is also possible to perform deposition by switching either or both of the beam reduction unit 2 and the mask 4 at the same time as switching the source gas. Furthermore, after patterning and forming a thin film to be deposited in substantially the same manner as the process of depositing multiple thin films described above, the raw material gas atmosphere is used as the raw material gas for doping this thin film, and the material is placed on the substrate rather than the laser light source. By irradiating the thin film with an intense laser beam that causes a temperature rise of several hundred degrees Celsius, it is possible to dope the entire or part of the patterned thin film with impurities.

5i02.W及びAIなど各種薄膜の形成が可能であり
、レーザ光もエキシマレーザのみならず可視光や紫外レ
ーザなと種々のレーザを用いられる。
5i02. It is possible to form various thin films such as W and AI, and various lasers such as not only excimer laser but also visible light and ultraviolet laser can be used.

以上説明した実施例では、おもに基板上にパターン化し
た薄膜を直接形成する場合について述べたが、第1図に
示す原料ガス供給系10より供給される原料ガスを光照
射により基板上の薄膜にエツチング反応を生ずるガスを
用いれば、本発明による光利用効率の増大により、所定
の厚みをエツチングする時間の短縮もしくは1回にプロ
セスし得る領域の面積を大幅に向上することができる。
In the embodiments described above, the case was mainly described in which a patterned thin film was directly formed on the substrate, but the raw material gas supplied from the raw material gas supply system 10 shown in FIG. 1 was applied to the thin film on the substrate by light irradiation. By using a gas that causes an etching reaction, the time required for etching a predetermined thickness can be shortened or the area that can be processed at one time can be greatly increased due to the increase in light utilization efficiency according to the present invention.

エツチング作用を利用する本発明の実施例としては、光
源にZeC1エギシマレーザ、原料ガスに塩素ガス、基
板上の薄膜材料として、ポリSiを用いる例が挙げられ
る。
An example of an embodiment of the present invention that utilizes the etching action is an example in which a ZeC1 excimer laser is used as a light source, chlorine gas is used as a raw material gas, and poly-Si is used as a thin film material on a substrate.

エツチング用ガスは塩素ガスに限らず、NF3など各種
ガスを用いても良く、被エツチング材料もSiや510
2は基より、III−V族化合物半導体などにも適用可
能である。
The etching gas is not limited to chlorine gas, but various gases such as NF3 may be used, and the material to be etched may also be Si or 510.
Since 2 is a group, it can also be applied to III-V group compound semiconductors.

(発明の効果) 以上述べたように、本発明によれば、従来のレーザ光を
用いるパターン薄膜形成方法及び装置に比べ、光の利用
効率が格段に向上する結果、プロセス時間を大幅に低減
でき、かつ光源への負担を大きく減らずことが可能で、
全体として、製造コストを大幅に低減できる利点がある
(Effects of the Invention) As described above, according to the present invention, compared to the conventional method and apparatus for forming a patterned thin film using laser light, the efficiency of light utilization is significantly improved, and as a result, the process time can be significantly reduced. , and without significantly reducing the burden on the light source.
Overall, there is an advantage that manufacturing costs can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の概略的構成図で、第2図
は本発明における光学系の特徴を示す概略図である。 1 レーザ光源 2 ビーム縮小ユニット 3・ミラ 4・・・マスク 5・ レンズ 6・・CVDチェンバー 7窓 8 排気ユニット 9・・X−Yステージ 10・・・原料ガス供給ユニット 11・・基板 12・・・基板支持台 13・・ビーム縮小器
FIG. 1 is a schematic diagram of an embodiment of the present invention, and FIG. 2 is a schematic diagram showing the features of the optical system of the present invention. 1 Laser light source 2 Beam reduction unit 3, mirror 4, mask 5, lens 6, CVD chamber 7 window 8, exhaust unit 9, X-Y stage 10, source gas supply unit 11, substrate 12, etc.・Substrate support stand 13...Beam reducer

Claims (3)

【特許請求の範囲】[Claims] (1)繰り返しパターンを有するマスクにレーザ光を透
過させて生成されるパターン化したレーザ光を、原料ガ
スを含む雰囲気に満たされたチェンバー内に保持された
基板上に照射して、基板上にパターン化した薄膜を堆積
させるパターン薄膜形成方法において、該マスクに透過
させるレーザ光の強度分布を該マスクの光透過部近傍に
強く、マスクの遮光部で弱くなるようにレーザ光源から
の出射光の強度分布を変形することを特徴とするパター
ン薄膜形成方法。
(1) Patterned laser light, which is generated by transmitting laser light through a mask with a repeated pattern, is irradiated onto a substrate held in a chamber filled with an atmosphere containing source gas, and In a method for forming a patterned thin film in which a patterned thin film is deposited, the intensity distribution of the laser light transmitted through the mask is adjusted so that the intensity distribution of the laser light transmitted through the mask is strong near the light transmitting part of the mask and weak in the light shielding part of the mask. A patterned thin film forming method characterized by changing the intensity distribution.
(2)繰り返しパターンを有するマスクにレーザ光を透
過させて生成されるパターン化したレーザ光を、エッチ
ングガスを含む雰囲気に満たされたチェンバー内に保持
された基板上の薄膜に照射して、該薄膜を選択的にエッ
チングしてパターン化した薄膜を形成するパターン薄膜
形成方法において、該マスクに透過させるレーザ光の強
度分布を該マスクの光透過部近傍に強くマスクの遮光部
で弱くなるようにレーザ光源からの出射光の強度分布を
変形することを特徴とするパターン薄膜形成方法。
(2) A thin film on a substrate held in a chamber filled with an etching gas is irradiated with patterned laser light, which is generated by transmitting laser light through a mask with a repeated pattern. In a method for forming a patterned thin film in which a thin film is selectively etched to form a patterned thin film, the intensity distribution of a laser beam transmitted through the mask is made such that the intensity distribution of the laser light is strong near the light transmitting part of the mask and weak in the light blocking part of the mask. A patterned thin film forming method characterized by changing the intensity distribution of light emitted from a laser light source.
(3)反応性原料ガスを含む雰囲気が満たされるべきチ
ェンバー内に設置された基板支持具と、レーザ光源と、
繰り返しパターンを有する成るマスクと、該マスクを透
過したレーザ光を窓を介して該チェンバー内に導入し、
該マスクパターンを該基板上に転写するレンズから成る
露光光学系と、該レーザ光の照射位置を基板の所定の位
置に導く移動機構と該反応性原料ガスを供給する原料ガ
ス供給系と、排気ガスを処理する排気ユニットから成る
パターン薄膜形成装置において、該レーザ光源と該マス
クの間に、該マスクの繰り返しパターンの周期に等しい
間隔で複数のビーム縮小器をマトリックス状に配置して
構成されるビーム縮小ユニットを配置することを特徴と
するパターン薄膜形成装置。
(3) a substrate support installed in a chamber to be filled with an atmosphere containing a reactive raw material gas, and a laser light source;
A mask comprising a repeating pattern, and a laser beam transmitted through the mask is introduced into the chamber through a window,
an exposure optical system consisting of a lens that transfers the mask pattern onto the substrate; a movement mechanism that guides the irradiation position of the laser beam to a predetermined position on the substrate; a source gas supply system that supplies the reactive source gas; and an exhaust system. A patterned thin film forming apparatus consisting of an exhaust unit that processes gas, in which a plurality of beam condensers are arranged in a matrix between the laser light source and the mask at intervals equal to the period of the repeating pattern of the mask. A patterned thin film forming apparatus characterized by arranging a beam reduction unit.
JP20161288A 1988-08-11 1988-08-11 Method and apparatus for forming thin patterned film Pending JPH0250963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20161288A JPH0250963A (en) 1988-08-11 1988-08-11 Method and apparatus for forming thin patterned film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20161288A JPH0250963A (en) 1988-08-11 1988-08-11 Method and apparatus for forming thin patterned film

Publications (1)

Publication Number Publication Date
JPH0250963A true JPH0250963A (en) 1990-02-20

Family

ID=16443947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20161288A Pending JPH0250963A (en) 1988-08-11 1988-08-11 Method and apparatus for forming thin patterned film

Country Status (1)

Country Link
JP (1) JPH0250963A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5708252A (en) * 1986-09-26 1998-01-13 Semiconductor Energy Laboratory Co., Ltd. Excimer laser scanning system
US6149988A (en) * 1986-09-26 2000-11-21 Semiconductor Energy Laboratory Co., Ltd. Method and system of laser processing
US6180273B1 (en) * 1995-08-30 2001-01-30 Honda Giken Kogyo Kabushiki Kaisha Fuel cell with cooling medium circulation arrangement and method
US6261856B1 (en) 1987-09-16 2001-07-17 Semiconductor Energy Laboratory Co., Ltd. Method and system of laser processing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5708252A (en) * 1986-09-26 1998-01-13 Semiconductor Energy Laboratory Co., Ltd. Excimer laser scanning system
US6149988A (en) * 1986-09-26 2000-11-21 Semiconductor Energy Laboratory Co., Ltd. Method and system of laser processing
US6261856B1 (en) 1987-09-16 2001-07-17 Semiconductor Energy Laboratory Co., Ltd. Method and system of laser processing
US6180273B1 (en) * 1995-08-30 2001-01-30 Honda Giken Kogyo Kabushiki Kaisha Fuel cell with cooling medium circulation arrangement and method
US6582844B2 (en) 1995-08-30 2003-06-24 Honda Giken Kogyo Kabushiki Kaisha Method of cooling a fuel cell

Similar Documents

Publication Publication Date Title
US5344522A (en) Pattern forming process and process for preparing semiconductor device utilizing said pattern forming process
JP3161450B2 (en) Substrate processing apparatus, gas supply method, and laser light supply method
US4612085A (en) Photochemical patterning
CN1839353A (en) Apparatus and method for providing a confined liquid for immersion lithography
KR20020066199A (en) Laser processing method and apparatus
JPS61187237A (en) Formation of pattern
KR20020042956A (en) Fabrication method of erbium-doped silicon nano-dots
JPH0250963A (en) Method and apparatus for forming thin patterned film
JPS60216549A (en) Manufacture of semiconductor device
JP2729270B2 (en) Laser processing method
JPH08213377A (en) Thin film forming method and equipment
JPS61216449A (en) Method and apparatus for forming pattern thin-film
JPH02203539A (en) Formation of tft array
JP3503111B2 (en) Composite processing method and composite processing apparatus for film substrate
JP2966036B2 (en) Method of forming etching pattern
JPS59163831A (en) Manufacture of semiconductor device and manufacturing apparatus therefor
JP3639840B2 (en) Manufacturing method of ultrafine periodic structure
JPS6218709A (en) Photovolatically growing method
JPH11345773A (en) Manufacture of hyperfine periodic structure
JPH03188621A (en) Method and device for forming film
JPS6063373A (en) Formation of thin film
JPH0519975B2 (en)
JPH0722128B2 (en) Method for manufacturing semiconductor device
JPH0574708A (en) Crystal growth method
JPH01189912A (en) Method and apparatus for photo-assisted cvd