JPS63271941A - Prevention of occurrence of crystal defect - Google Patents

Prevention of occurrence of crystal defect

Info

Publication number
JPS63271941A
JPS63271941A JP10739787A JP10739787A JPS63271941A JP S63271941 A JPS63271941 A JP S63271941A JP 10739787 A JP10739787 A JP 10739787A JP 10739787 A JP10739787 A JP 10739787A JP S63271941 A JPS63271941 A JP S63271941A
Authority
JP
Japan
Prior art keywords
polysi
active region
grown
crystal defect
insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10739787A
Other languages
Japanese (ja)
Inventor
Toshiyuki Kotani
俊幸 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10739787A priority Critical patent/JPS63271941A/en
Publication of JPS63271941A publication Critical patent/JPS63271941A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE:To prevent the generation of crystal defect by a method wherein polySi is buried in element isolation regions to getter heavy metal contaminants and so on the active region of a device. CONSTITUTION:An N-type buried and diffused region 4 is formed in a substrate 1 and thereafter, an N-type epitaxial layer 5 is grown in a prescribed film thickness, a thermal oxide film 2 is grown and after insulating regions are patterned, grooves 3 for insulation are formed. Then, polySi is grown to fill the insulating grooves 3, then the unnecessary polySi on the film 2 is removed and the polySi 6 is left only in the grooves 3. Then, if an impurity for insulation, boron, is diffused using the film 2 as a mask to manufacture a transistor, heavy metal contaminants mixed during those processes are gettered to the grain boundary of the polycrystalline polySi 6 for insulation and the contaminants are eliminated from the active region of a device. Thereby, the generation of crystal defect in the device active region can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は重金属等の汚染物をデバイス活性領域からゲッ
ターすることにより、結晶欠陥発生を防止する方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for preventing crystal defects from occurring by gettering contaminants such as heavy metals from a device active region.

〔従来の技術〕[Conventional technology]

従来、この種のゲッタリング方法としては、単結晶基板
裏面に歪を導入したりして、デバイス活性領域の重金属
等をゲッタリングしていた。又、Si単結晶基板におい
ては、Si単結晶基板中の酸素を析出させて、その析出
物とバルクとの歪により、デバイス活性領域の重金属汚
染物等をゲッターしようという、いわゆるイントリンシ
ックゲッター(以後IG効果と記す)を使っていた。
Conventionally, this type of gettering method involves introducing strain to the back surface of a single crystal substrate to getter away heavy metals and the like in the device active region. In addition, in the case of a Si single crystal substrate, a so-called intrinsic getter (hereinafter referred to as "intrinsic getter") is used to precipitate oxygen in the Si single crystal substrate and use strain between the precipitate and the bulk to get heavy metal contaminants in the device active region. (referred to as IG effect) was used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のゲッタリング方法では、単結晶基板の裏
面歪ではデバイス製造途中の熱処理によシ、導入した歪
が消滅し、ゲッタリング効果がデバイス製造工程の最終
工程まで保持できないという欠点がある。又、工G効果
ではデバイス製造工程の熱処理と単結晶基板中の酸素濃
度によっては、却って結晶欠陥がデバイス活性領域に発
生してしまいデバイスの歩留低下を招いてしまう。従っ
て単結晶基板の酸素濃度を厳しく管理する必要があシ、
種々の熱処理の組み合せで製造される種々のデバイスに
おいては実用的でない。
The above-described conventional gettering method has the drawback that if the back surface of the single crystal substrate is strained, the introduced strain disappears during heat treatment during device manufacturing, and the gettering effect cannot be maintained until the final step of the device manufacturing process. Furthermore, depending on the heat treatment in the device manufacturing process and the oxygen concentration in the single crystal substrate, crystal defects may occur in the device active region, leading to a decrease in device yield. Therefore, it is necessary to strictly control the oxygen concentration of the single crystal substrate.
It is impractical in various devices manufactured with various combinations of heat treatments.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の結晶欠陥防止方法は、素子分離領域に多結晶シ
リコンを埋め込むことにより、デバイス活性領域の重金
属汚染物等をゲッターすることにより、デバイス活性領
域の結晶欠陥発生を防止する。
The crystal defect prevention method of the present invention prevents the occurrence of crystal defects in the device active region by gettering heavy metal contaminants and the like in the device active region by embedding polycrystalline silicon in the element isolation region.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の縦断面図である。FIG. 1 is a longitudinal sectional view of an embodiment of the present invention.

P型Si単結晶基板1に酸化、フォトリソグラフィーに
て、N型埋込み拡散領域4を形成した後、N型エピタキ
シャル層5を所定の膜厚成長し、熱酸化膜2を5000
〜6000A成長し、フォトリソグラフィーにて絶縁領
域をパターニングした後、異方性エツチングを用いて絶
縁用溝3を形成する(第1図(a))。次に通常の減圧
CVD法にて多結晶シリコンを成長し、絶縁溝3を埋め
、次に異方性エツチングにて酸化膜上の不要な多結晶シ
リコンを取シ除き、絶縁溝3内にのみ多結晶シリコン6
を残す。仄4C2化膜2をマスクに絶縁用不純物ポロン
を拡散し、以後通常のNPNTr製造工程に基づいてト
ランジスターを製造すれば、それら工程にて混入してく
る重金属汚染物は、絶縁用多結晶ポリシリコンロの粒界
にゲッタリングされ、デバイス活性領域は汚染物がなく
なシ、デバイス歩留が向上する。
After forming an N-type buried diffusion region 4 on a P-type Si single crystal substrate 1 by oxidation and photolithography, an N-type epitaxial layer 5 is grown to a predetermined thickness, and a thermal oxide film 2 is formed to a thickness of 5000 nm.
After growing to a thickness of ~6000 A and patterning an insulating region by photolithography, an insulating groove 3 is formed using anisotropic etching (FIG. 1(a)). Next, polycrystalline silicon is grown using the normal low pressure CVD method to fill the insulating groove 3, and then unnecessary polycrystalline silicon on the oxide film is removed by anisotropic etching, leaving only the inside of the insulating groove 3. polycrystalline silicon 6
leave. If the insulating impurity poron is diffused using the 4C2 film 2 as a mask and the transistor is then manufactured based on the normal NPNTr manufacturing process, the heavy metal contaminants mixed in during those processes will be removed from the insulating polycrystalline silicon. The contaminants are gettered to the grain boundaries of the device, and the device active region is free of contaminants, improving device yield.

〔実施例2〕 第2図は本発明の実施例2の縦断面図である。[Example 2] FIG. 2 is a longitudinal sectional view of Example 2 of the present invention.

P型8i単結晶基板1に酸化膜7を形成しフォトリング
ラフィによpN型埋込み拡散層4を選択的に形成する(
第2図(a))。次にフォトリングラフィによシ絶縁領
域8を選択的に酸化膜7を残す(第2図(b))。前記
基板にエピタキシャル成長を行い絶縁領域の酸化膜8の
領域ではエピタキシャルが多結晶化し、多結晶シリコン
9になシ、他のデバイス活性領域はエピタキシャル成長
し単結晶する(第2図(C))。以後、酸化、フォトリ
ソグラフィによシ絶縁多結晶シリコン9にボロン拡散し
素子分離を行う。この多結晶化シリコン9にてデバイス
製造プロセス中の重金属汚染物をゲッタリングし、デバ
イス活性領域の汚染物がなくなシ、デバイス歩留が向上
する。
An oxide film 7 is formed on a P-type 8i single crystal substrate 1, and a pN-type buried diffusion layer 4 is selectively formed by photolithography (
Figure 2(a)). Next, an oxide film 7 is selectively left in the insulating region 8 by photolithography (FIG. 2(b)). Epitaxial growth is performed on the substrate, and the epitaxial layer becomes polycrystalline in the region of the oxide film 8 in the insulating region, and the polycrystalline silicon 9 and other device active regions grow epitaxially and become single crystals (FIG. 2(C)). Thereafter, boron is diffused into the insulating polycrystalline silicon 9 by oxidation and photolithography to perform element isolation. This polycrystalline silicon 9 getteres heavy metal contaminants during the device manufacturing process, eliminates contaminants from the device active region, and improves device yield.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は素子分離領域に多結晶シリ
コンを埋込みその粒界にデバイス活性領域の重金属汚染
をゲッター効果が、Sシ、かつ製造工程途中の熱処理に
よシ消滅せず、IG効果の様にSi単結晶基板を厳しく
管理する必要がない。
As explained above, the present invention embeds polycrystalline silicon in the element isolation region, and the getter effect of heavy metal contamination in the device active region at its grain boundaries is suppressed, and the IG effect is not eliminated by heat treatment during the manufacturing process. There is no need to strictly control the Si single crystal substrate as in the case of the above method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図18191b) l第2図fat 〜(Cld本
発明の素子分離領域へ多結晶シリコンを埋め込むための
実施例2例の工程断面図である。 1・・・・・・Si単結晶基板、2・・曲エピタキシャ
ル上の酸化膜、3・・・・・・絶縁溝、4・・・・・・
N型埋込み拡散層、5・・・・・・N型エピタキシャル
層、6・・・・・・絶縁溝内の多結晶シリコン、7・・
・・・・8i単結晶基板上の酸化膜、8・・・・・・絶
縁領埴の酸化膜、9・・・・・・エピタキシャル成長中
に多結晶化した絶縁領域多結晶シリコン。 /””Wl’7ン 代理人 弁理士  内 原   晋1 、 ” −、、
−;:第1図
Fig. 18191b) Fig. 2 is a process cross-sectional view of a second embodiment for embedding polycrystalline silicon into the element isolation region of the present invention. 1...Si single crystal substrate, 2...Oxide film on curved epitaxial layer, 3...Insulating groove, 4...
N-type buried diffusion layer, 5...N-type epitaxial layer, 6...polycrystalline silicon in insulating groove, 7...
...8i Oxide film on single crystal substrate, 8... Oxide film in insulating region, 9... Polycrystalline silicon in insulating region polycrystallized during epitaxial growth. /””Wl'7n Agent Patent Attorney Susumu Uchihara 1, ” -,,
−;:Figure 1

Claims (1)

【特許請求の範囲】[Claims]  素子分離領域に多結晶シリコンを埋め込むことにより
、デバイス活性領域の重金属汚染物等をゲッターするこ
とを特徴とする結晶欠陥防止方法。
A crystal defect prevention method characterized by gettering heavy metal contaminants, etc. in a device active region by embedding polycrystalline silicon in an element isolation region.
JP10739787A 1987-04-28 1987-04-28 Prevention of occurrence of crystal defect Pending JPS63271941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10739787A JPS63271941A (en) 1987-04-28 1987-04-28 Prevention of occurrence of crystal defect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10739787A JPS63271941A (en) 1987-04-28 1987-04-28 Prevention of occurrence of crystal defect

Publications (1)

Publication Number Publication Date
JPS63271941A true JPS63271941A (en) 1988-11-09

Family

ID=14458108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10739787A Pending JPS63271941A (en) 1987-04-28 1987-04-28 Prevention of occurrence of crystal defect

Country Status (1)

Country Link
JP (1) JPS63271941A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02156540A (en) * 1988-12-08 1990-06-15 Nec Corp Manufacture of semiconductor device
US5443661A (en) * 1993-07-27 1995-08-22 Nec Corporation SOI (silicon on insulator) substrate with enhanced gettering effects
US6958264B1 (en) 2001-04-03 2005-10-25 Advanced Micro Devices, Inc. Scribe lane for gettering of contaminants on SOI wafers and gettering method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02156540A (en) * 1988-12-08 1990-06-15 Nec Corp Manufacture of semiconductor device
US5443661A (en) * 1993-07-27 1995-08-22 Nec Corporation SOI (silicon on insulator) substrate with enhanced gettering effects
US6958264B1 (en) 2001-04-03 2005-10-25 Advanced Micro Devices, Inc. Scribe lane for gettering of contaminants on SOI wafers and gettering method

Similar Documents

Publication Publication Date Title
US4629520A (en) Method of forming shallow n-type region with arsenic or antimony and phosphorus
JPH10223640A (en) Semiconductor substrate and its manufacture
JP2874618B2 (en) Silicon semiconductor substrate and method of manufacturing the same
JPS63271941A (en) Prevention of occurrence of crystal defect
JP3090201B2 (en) Polycrystalline silicon film and semiconductor device
JPH02126678A (en) Semiconductor device and manufacture thereof
JPH07183506A (en) Semiconductor device
JPH07193227A (en) Manufacture of semiconductor
JPH01298726A (en) Manufacture of semiconductor wafer and semiconductor device using the semiconductor wafer
JP2943006B2 (en) Semiconductor substrate manufacturing method
JP2978318B2 (en) Method of forming epitaxial layer
JPH0233935A (en) Manufacture of thin film transistor
JPS63120430A (en) Method for preventing occurrence of crystal defect
JP2743452B2 (en) Method for manufacturing semiconductor device
JP3282265B2 (en) Method for manufacturing semiconductor device
JPH01223765A (en) Manufacture of semiconductor device
JPS63148620A (en) Manufacture of semiconductor device
JPH06163556A (en) Semiconductor device
JPS60152024A (en) Vapor phase epitaxial growth
JPS6129537B2 (en)
JPH08306682A (en) Prevention of impurity auto-doping
JPH06188256A (en) Manufacture of semiconductor device
JPS63107165A (en) Semiconductor device and manufacture thereof
JPH0855973A (en) Manufacture of solid-state image pickup element
JPH0334326A (en) Semiconductor wafer