JPS63266582A - Film image reader - Google Patents

Film image reader

Info

Publication number
JPS63266582A
JPS63266582A JP62101031A JP10103187A JPS63266582A JP S63266582 A JPS63266582 A JP S63266582A JP 62101031 A JP62101031 A JP 62101031A JP 10103187 A JP10103187 A JP 10103187A JP S63266582 A JPS63266582 A JP S63266582A
Authority
JP
Japan
Prior art keywords
film
light
laser beam
emitting
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62101031A
Other languages
Japanese (ja)
Other versions
JP2585263B2 (en
Inventor
Yoshiro Oyama
大山 吉郎
Koichi Kita
喜多 紘一
Toshio Abe
俊雄 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABE SEKKEI KK
Toshiba Corp
Original Assignee
ABE SEKKEI KK
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABE SEKKEI KK, Toshiba Corp filed Critical ABE SEKKEI KK
Priority to JP62101031A priority Critical patent/JP2585263B2/en
Publication of JPS63266582A publication Critical patent/JPS63266582A/en
Application granted granted Critical
Publication of JP2585263B2 publication Critical patent/JP2585263B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Image Input (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Radiography Using Non-Light Waves (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

PURPOSE:To prevent an interference pattern from being formed and to improve diagnosing performance by forming a scanning optical system so that a laser beam for film scanning slants at a specific angle to a film. CONSTITUTION:A part of the laser beam 11 which travels in the film becomes primary emitting light 14, which emits the light and an angle theta1 from the light- emitting surface 13 of the film B, but the remaining light is reflected by the light-emitting surface 13 and reaches the incidence surface 12 as internal reflected light 15. This internal reflected light 15 is reflected by the incidence surface 12 except part of it emitted upward from the incidence surface 12 and reaches the light-emitting surface 13 again, where a part of the light is emitted downward similarly as secondary emitting light 16 and the remaining light is reflected by the light-emitting surface 13 to travel toward the incidence sur face 12. Thus the light is propagated in the film F. When l1<l1 holds for the gap l1 between the primary emitting light 14 and secondary emitting light 16 and the major axis l2 of the ellipse of the irradiating beam, there is no interference between the primary emitting light 14 and secondary emitting light 16.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、医療診断の分野において用いられるフィルム
画像読取装置、特に、レーザ光を利用して画像の記録さ
れたフィルム上を走査し、その時のフィルム透過光の光
量を測定して、走査部分の画像濃度を測定する形式のフ
ィルム画像読取装置の改良に関するものである。
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to a film image reading device used in the field of medical diagnosis, and particularly to a film image reading device on which an image is recorded using a laser beam. The present invention relates to an improvement of a film image reading device that scans a film, measures the amount of light transmitted through the film at that time, and measures the image density of the scanned portion.

(従来の技術) フィルム上に記録された画像特にX線フィルムによる画
像を観察しようとする場合、従来は、シャーカステン等
に撮影済みのフィルムを載せてこれを直接目視すること
により診断を行っていた。
(Prior art) When attempting to observe images recorded on film, especially images from X-ray film, conventionally, diagnosis was made by placing the film on a Scherkasten or the like and observing it directly. .

しかし、近年、光電変換技術の進歩に伴い、この画像を
細く絞ったレーザ光で走査して電気信号に変換し、得ら
れた画像信号に種々の画像処理を施すことによって医療
診断に有用な情報を強調してから再生し、この再生像を
診断に供するというシステムが確立されてきた。このシ
ステムは、第2図に示すように、撮影済みフィルム21
とレーザ光走査式のフィルム画像読取装置22とデータ
処理装置23と適宜の表示装置24とから成る基本構成
を持ち、 ■ フィルム画像読取装置22において、フィルム21
上をレーザ光で走査することにより、これに記録されて
いる画像をディジタル量に変換し、このディジタル化さ
れた画像情報を後段のデータ処理装置23に送る。
However, in recent years, with advances in photoelectric conversion technology, this image is scanned with a narrowly focused laser beam, converted into an electrical signal, and the resulting image signal is subjected to various types of image processing to produce information useful for medical diagnosis. A system has been established in which the image is emphasized and then reproduced, and this reproduced image is used for diagnosis. This system, as shown in FIG.
It has a basic configuration consisting of a laser beam scanning type film image reading device 22, a data processing device 23, and an appropriate display device 24.
By scanning the top with a laser beam, the image recorded thereon is converted into a digital amount, and this digitized image information is sent to the data processing device 23 at the subsequent stage.

■ データ処理装置23では、送られた画像情報に対し
、例えば周波数強調やエツジ強調等のデータ処理を施し
て、診断適性の優れた再生画像が得られるように処理す
る。
(2) The data processing device 23 performs data processing such as frequency emphasis and edge emphasis on the sent image information so as to obtain a reproduced image with excellent diagnostic suitability.

■ 再生処理の施された画像情報を用いて表示装置24
上に再生像として表示する。
■ The display device 24 uses the reproduced image information.
Displayed as a reproduced image above.

という段階を経て、顕像化されたフィルム画像を医師等
の診断に供するという機能を果す。
Through these steps, the visualized film image is provided for diagnosis by a doctor or the like.

そして、この場合において画像の読取りに使用される従
来のフィルム画像読取装置22は、第3図に示すように
、レーザ発振器25と該発振器25から入射するレーザ
光の口径を任意の大きざに拡大して該レーザ光の広がり
角を抑えるビームインクスパンダ26とから成るレーザ
光源部と、入射したレーザ光を一定の角速度をもって主
走査方向へ反射させる例えばガルバノメータやポリゴン
ミラー等の高速角速度変化鏡27と、角速度が一定であ
る光を入射させると線速度を一定にして同一平面上に結
像させるf・θレンズ28とから成る走査部と、撮影済
みのフィルム21と、該フィルムを保持しつつ予め定め
られた速度で副走査方・向へ走行させる一対のフィルム
送りローラ29a、29bとから成るフィルム部と、後
段の電子回路と協同して、フィルム21を透過したレー
ザ光を各画素の位置情報とめ対向付けて時系列的にディ
ジタル量に変換する検出器30と、フィルム21の透過
レーザ光を効率よく検出器30へ導くため、例えば出力
端を加工したバンドル状の光ファイバやレンズ等で作ら
れた集光器31とから成る測定部とを有する装置として
構成される。
In this case, the conventional film image reading device 22 used to read the image enlarges the aperture of the laser oscillator 25 and the laser beam incident from the oscillator 25 to an arbitrary size, as shown in FIG. A laser light source section includes a beam ink expander 26 that suppresses the spread angle of the laser beam, and a high-speed angular velocity changing mirror 27 such as a galvanometer or polygon mirror that reflects the incident laser beam in the main scanning direction with a constant angular velocity. , a scanning section consisting of an f/theta lens 28 that, when light with a constant angular velocity is incident, forms an image on the same plane with a constant linear velocity; a photographed film 21; A film portion consisting of a pair of film feed rollers 29a and 29b that run in the sub-scanning direction at a predetermined speed and a subsequent electronic circuit work together to convert the laser light that has passed through the film 21 into information about the position of each pixel. In order to efficiently guide the laser beam transmitted through the film 21 to the detector 30 and the detector 30, which are placed facing each other and convert into digital quantities in time series, the detector 30 is made of, for example, a bundle-shaped optical fiber or lens with a processed output end. The device is configured as a device having a measuring section consisting of a condenser 31 and a measuring section.

しかして、この読取装@22を用いてのフィルム画像の
読取りは、先ず、レーザ発振器25からのレーザビーム
径をビームイクスパンダ26により例えば5倍に拡大し
、フィルム部上を副走査方向へと移動するフィルム21
を、この拡大レーザ光と走査部27.28とをもって主
走査方向へと走査して、フィルム21の全面を走査する
Therefore, to read a film image using this reading device @ 22, first, the diameter of the laser beam from the laser oscillator 25 is expanded, for example, five times by the beam expander 26, and the laser beam is spread over the film section in the sub-scanning direction. moving film 21
is scanned in the main scanning direction using this expanded laser beam and the scanning sections 27 and 28 to scan the entire surface of the film 21.

そして、この全面走査で得られた光信号は、次のような
原理に基づいて目的とする画像データに変換される。即
ち、この原理では 検出器30へ入射する基準光量を ・・・・=I。
The optical signal obtained by this entire surface scanning is converted into target image data based on the following principle. That is, according to this principle, the reference light amount incident on the detector 30 is...=I.

フィルム部にフィルム21がない時 に検出器30へ入射する光量を  ・・・・・・11そ
の場合の濃度を        ・・・・・・D1フィ
ルム部にフィルム21がめる時 に検出器30へ入射する光量を  ・・・・・・I2そ
の場合の濃度を        ・・・・・・D2とし
た時、フィルム濃度と検出光量との関係が、Dl =−
!OgIt / Io 、 D2 =−Iog■2 /
 I。
The amount of light that enters the detector 30 when there is no film 21 in the film section...11 The density in that case...The amount of light that enters the detector 30 when the film 21 is placed in the D1 film section・・・・・・I2 When the density in that case is ・・・・・・D2, the relationship between the film density and the amount of detected light is Dl = -
! OgIt/Io, D2=-Iog■2/
I.

となり、この時の前記Dt 、D2との差D3が、D3
 =02−Dl =−IogIz / 11として表す
ことができる。
Then, the difference D3 between Dt and D2 at this time is D3
It can be expressed as =02-Dl =-IogIz/11.

従って、「フィルム21がない場合」の濃度D1を予め
測定してこれを適宜の記憶手段に記憶し、診断の度毎に
測定される「フィルム21がある場合」の濃度D2の値
と前)ホの記憶値との差分を計算すれば、測定対象であ
るフィルムの濃度D3を求めることができるというもの
である。
Therefore, the density D1 "when there is no film 21" is measured in advance and stored in an appropriate storage means, and the value of the density D2 "when there is film 21" measured every time the diagnosis is made. By calculating the difference between E and the stored value, the density D3 of the film to be measured can be determined.

第4図に示すのは、このフィルム画像読取装置22に接
続される電子回路を示すブロック図であるが、この電子
回路は、図示なきコントローラにより回路全体の管理を
行い、且つ、該コントローラの発する前記主走査速度に
対応したクロック信号により、連続した画像情報を各画
素に分割し得るように予め構成されている。
What is shown in FIG. 4 is a block diagram showing an electronic circuit connected to this film image reading device 22. This electronic circuit manages the entire circuit by a controller (not shown), and also controls the output of the controller (not shown). It is configured in advance so that continuous image information can be divided into each pixel by a clock signal corresponding to the main scanning speed.

図中、41は前記検出器30で光電変換された信号を対
数変換するログアンプで、対数のディメンジョンを持つ
フィルム濃度の電気的処理を取扱う上での必要な措置で
ある。42はコントローラ、から入るクロック信号に同
期して前段のログアンプ41の出力信号を保持するため
のサンプル/ホールド回路、43は該サンプル/ホール
ド回路42の保持信号をディジタル母に変換するための
A/D変換器、44は前記コントローラの指示に基づき
、該A/D変換器43からの出力を切換えて後述のキャ
リブレーションバッファ45かラインバッファ46へ送
るための切換器で、フィルム部にフィルム21がない場
合の濃度D1情報はキャリブレーションバッファ45へ
、フィルム21がある場合の濃度D2情報はラインバッ
ファ46へと送られる。
In the figure, numeral 41 is a log amplifier for logarithmically converting the signal photoelectrically converted by the detector 30, which is a necessary measure for electrically processing film density having a logarithmic dimension. 42 is a sample/hold circuit for holding the output signal of the log amplifier 41 in the previous stage in synchronization with a clock signal input from the controller; 43 is a sample/hold circuit for converting the held signal of the sample/hold circuit 42 into a digital motherboard; The A/D converter 44 is a switch for switching the output from the A/D converter 43 and sending it to a calibration buffer 45 or a line buffer 46, which will be described later, based on instructions from the controller. Density D1 information when there is no film 21 is sent to the calibration buffer 45, and density D2 information when there is film 21 is sent to the line buffer 46.

これらのギヤリプレージョンバッファ45及びラインバ
ッファ46は、1ライン分の画素数のディジタル信号を
記憶する動きを持つ記″践回路であり、コントローラか
らのクロック信号により記憶する番地を進めて、画像の
位置情報と記憶情報との対応付けを行う。47は前述し
た測定対象であるフィルム濃度D3を算出する差分算出
回路で、コントローラからの信号によって各画素毎に、
前段のラインバッファ46に記憶されているフィルム濃
度D2情報から、キャリブレーションバッファ45に予
め記憶させてあいたフィルム濃度D1情報を差引く作用
を果すもので必る。48は該差分算出回路57の出力信
号を前述のデータ処理装置23へ送るためのインターフ
ェースでおる。
These gear replacement buffers 45 and line buffers 46 are memory circuits that store digital signals of the number of pixels for one line, and advance the storage address using a clock signal from the controller to update the image. 47 is a difference calculation circuit that calculates the film density D3, which is the object to be measured, for each pixel according to a signal from the controller.
This function is necessary to subtract the film density D1 information stored in the calibration buffer 45 in advance from the film density D2 information stored in the line buffer 46 at the previous stage. 48 is an interface for sending the output signal of the difference calculation circuit 57 to the data processing device 23 mentioned above.

以下、この電子回路により制御されるフィルム画像読取
装置22の作動について説明する。
The operation of the film image reading device 22 controlled by this electronic circuit will be described below.

先ず、対象とするフィルム(例えば21)の濃度測定に
先立って、先ずフィルムのない時の1ラインの濃度を測
定しその値をキャリブレーションバッファ45に記憶さ
せる。
First, before measuring the density of a target film (for example, 21), the density of one line without the film is measured and the value is stored in the calibration buffer 45.

次に、フィルム21を高速角速度変化鏡27による主走
査線に位置させるために、フィルム送りローラ29a、
29bを回転させてフィルム21を副走査方向へと移動
させ、フィルム21のある状態で1ラインの濃度を測定
して、その測定値をラインバッファ46に記憶させる。
Next, in order to position the film 21 on the main scanning line by the high-speed angular velocity changing mirror 27, a film feed roller 29a,
29b is rotated to move the film 21 in the sub-scanning direction, the density of one line is measured with the film 21 in a certain state, and the measured value is stored in the line buffer 46.

そして、コントローラの働きにより、キャリブレーショ
ンバッファ45の記憶値とラインバッフ146の記憶値
とを次々に差分算出回路47へと送り、該回路47にお
いて両値の差分即ちフィルム濃度D3を算出した後、こ
の算出結果をデータ処理装置23に転送して1ライン分
の測定を終了する。
Then, by the action of the controller, the values stored in the calibration buffer 45 and the values stored in the line buffer 146 are sent one after another to the difference calculation circuit 47, and after calculating the difference between the two values, that is, the film density D3, in the circuit 47, This calculation result is transferred to the data processing device 23 to complete the measurement for one line.

その後、フィルム送りローラ29a、29bを回転させ
ることにより、フィルム21を予め定められた距離だけ
副走査方向へ移動させて、次のラインに対する測定を行
うというものである。
Thereafter, by rotating the film feed rollers 29a and 29b, the film 21 is moved by a predetermined distance in the sub-scanning direction, and the next line is measured.

(発明が解決しようとする問題点) しかしながら、この従来のフィルム画像の読取技術は、
フィルム画像情報を精度良く濃度情報に変換し得る点に
おいては、極めて優れた技術と言い得るか、その一方に
おいて、光干渉に起因する測定精度の低下という問題点
を抱えているので、この形式の装置をより有効に使用す
るにはこの問題を解決する必要がある。発明者は、この
従来の装置が抱えている問題を研究した結果、この問題
点がファプリー・ペロー(Fabry−Perot )
の干渉計の原理で説明し1qるということを突止めた。
(Problems to be Solved by the Invention) However, this conventional film image reading technology
Although it can be said to be an extremely superior technology in that it can convert film image information into density information with high precision, it does have the problem of reduced measurement accuracy due to optical interference. This problem needs to be solved in order to use the device more effectively. As a result of research into the problems faced by this conventional device, the inventor discovered that the problems were identified by Fabry-Perot.
I explained it using the principle of the interferometer and found out that the difference is 1q.

即ち、従来の装置では、レーザ発振器25から発振され
たレーザ光がフィルム21面に垂直に入射する構成とな
っていたため、該フィルム21を透過して集光器31に
向うレーザ光がフィルムの表裏面において光干渉を起し
、この時に生じた干渉模様(一般にモアレ槁と呼ばれる
)が表示装置24での表示の際に画像情報に付加される
結果、正確な画像の形成が妨げられて測定精度を低下さ
せているというこを突止めた。
That is, in the conventional device, the laser beam oscillated from the laser oscillator 25 is incident perpendicularly on the surface of the film 21, so that the laser beam that passes through the film 21 and heads toward the condenser 31 is incident on the surface of the film. Light interference occurs on the back surface, and the resulting interference pattern (generally called moire pattern) is added to the image information when displayed on the display device 24, preventing accurate image formation and reducing measurement accuracy. It was discovered that this was causing a decrease in

以下、本発明により一層の理解を助長するために、第5
図に基づいてファプリー・ペロー干渉計の原理を説明す
る。
Hereinafter, in order to facilitate further understanding of the present invention, the fifth section will be explained.
The principle of Fapley-Perot interferometer will be explained based on the figure.

図中、1a及び1bはいずれも高反射性の透過可能な反
射面を有する半透過鏡でそれぞの反射面が平行に且つ対
向するように配置される。
In the figure, both 1a and 1b are semi-transmissive mirrors having highly reflective reflective surfaces capable of transmitting light, and are arranged so that the reflective surfaces are parallel to each other and face each other.

今、この2枚の半透過鏡1a、1bの上方(図上)から
レーザ光のようなコヒーレント光2が入射したとすると
、この先2は、その一部分が上側の半透過鏡la面で反
射されて上方へと向い、大部分の光は両方の半透過&’
t18.1b面の間で反射を繰返しつつ伝播し、他の一
部分の光が下側の半透過鏡1bを透過することになる。
Now, if coherent light 2 such as a laser beam is incident from above these two semi-transmissive mirrors 1a and 1b (as shown in the top of the diagram), a portion of the beam 2 will be reflected by the upper half-transmissive mirror la surface. Most of the light is transmitted through both semi-transparent &'
The light propagates while being repeatedly reflected between the t18.1b planes, and the other part of the light passes through the lower half-transmitting mirror 1b.

この透過光の中には、入射したコヒーレント光2がその
まま透過して行く1次透過光3と、上下の半透過鏡1a
、lb面において偶数回(例えば2回)の反射を繰返し
て透過していく多次(例えば2次)の透過光4a、4b
とがめるが、それぞの通過光路長の違いから、両者の波
面間には当然のことながら位相差が生じる。その結果、
両者の波の山が重なった時には透過光の振幅が大きくな
って光は強くなり、山と谷とが重なった時は振幅が打消
し合って暗くなる。
This transmitted light includes primary transmitted light 3, which is the incident coherent light 2 that passes through as it is, and upper and lower semi-transparent mirrors 1a.
, multi-order (e.g., second-order) transmitted light 4a, 4b that repeats reflection an even number of times (e.g., two times) and passes through the lb plane.
Unfortunately, due to the difference in the length of each optical path, a phase difference naturally occurs between the two wavefronts. the result,
When the crests of both waves overlap, the amplitude of the transmitted light increases and the light becomes stronger, and when the crests and troughs overlap, the amplitudes cancel each other out and the light becomes darker.

従って、入射光2の波長をλとし、両生透過鏡1a、1
bの反射面の間隔をdとした場合、2nd=mλ   
     ・・・ (1)但し、n:反射面間の媒質の
屈折率 m:整数 の式を満足する時には、λ/2毎の周期で下側の半透過
鏡1b面の合成光強度には鋭い干渉効果が現れる。
Therefore, if the wavelength of the incident light 2 is λ, the amphoteric transmitting mirrors 1a, 1
When the interval between the reflective surfaces of b is d, 2nd=mλ
... (1) However, when n: the refractive index of the medium between the reflecting surfaces m: satisfies the formula of an integer, the combined light intensity on the lower semi-transmissive mirror 1b surface is sharp with a period of every λ/2 Interference effects appear.

ここで、両方の半透過鏡1a、1bをフィルムの表裏面
2反射面の間隔dをフィルム厚と考えると、フィルムの
場合でもこの干渉効果が現われることになる。特にX線
フィルムの場合は厚さが一般に175μmであり、外観
は均一のように見えてもHe−Neレーザの発振光の波
長632.8nmからみると、フィルムの厚ざdは微妙
に変化している。従って、フィルムに入射するレーザ光
がある太さのビームである場合、フィルムを照射する位
置により、合成された透過光の強度は微妙に変化するこ
とになる。本発明は、この点に着眼してなされたもので
、従来のような干渉模様の発生を防止して診断性を向上
せしめた新規なフィルム画像読取装置を提供することを
目的とする。
Here, if we consider that the distance d between the front and back surfaces 2 of the film and the reflective surface of both semi-transmissive mirrors 1a and 1b is the film thickness, this interference effect will appear even in the case of film. In particular, in the case of X-ray film, the thickness is generally 175 μm, and although it appears uniform in appearance, the thickness d of the film changes slightly when viewed from the wavelength of 632.8 nm of the oscillation light of the He-Ne laser. ing. Therefore, if the laser beam incident on the film is a beam of a certain thickness, the intensity of the combined transmitted light will vary slightly depending on the position on the film. The present invention has been made in view of this point, and it is an object of the present invention to provide a novel film image reading device that prevents the occurrence of interference patterns as in the prior art and improves diagnostic performance.

[発明の構成] (問題点を解決するための手段) この目的を達成するための本発明の構成は、レーザ光を
利用してフィルム上の画像を走査し、その時のフィルム
透過光の光量を測定することにより、走査部分における
画像濃度を各画素の位置に対応付けたディジタル量とし
て処理し得るフィルム画像読取装置において、フィルム
走査用のレーザビームをフィルムに対して所定角度傾け
た走査光学系を構成したことにある。
[Structure of the Invention] (Means for Solving the Problems) The structure of the present invention for achieving this object scans an image on a film using a laser beam, and calculates the amount of light transmitted through the film at that time. In a film image reading device that can measure and process the image density in a scanning area as a digital quantity that corresponds to the position of each pixel, a scanning optical system in which a laser beam for film scanning is tilted at a predetermined angle with respect to the film is used. It's because it's configured.

(作 用) この構成に基づく本発明の作用は、フィルム画像読取装
置における走査光学系を構成する際に、その干渉模様の
発生防止条件をフィルムに入射するレーザ光を傾斜させ
ることをもって明示したことにある。
(Function) The effect of the present invention based on this configuration is that when configuring the scanning optical system in a film image reading device, conditions for preventing the occurrence of interference patterns are made clear by tilting the laser light incident on the film. It is in.

(実施例) 以下、図示の一実施例に基づいて本発明の詳細な説明す
る。第1図は本発明に係るフィルム画像読取装置の原理
説明図で、図中、Eは測定対象であるX線フィルムを示
す。
(Example) Hereinafter, the present invention will be described in detail based on an example shown in the drawings. FIG. 1 is a diagram illustrating the principle of a film image reading apparatus according to the present invention, and in the figure, E indicates an X-ray film to be measured.

今、該フィルムFの入射面12に対してレーザ光11を
角度θ1で入射させると、この光11の大部分は、該入
射面12で屈折されθ2なる屈折角をもってフィルム内
部に進入する。そして、フィルム内部を進行するこのレ
ーザ光11は、その一部が1次出射光14となってフィ
ルムFの出射面13から角度θ1をもって出射するが、
残りの光は該出射面13で反射され内部反射光15とな
って入射面12に達する。この内部反射光15は、該入
射面12から上方へ出射する一部の光を除いて入射面1
2で反射されて再び出射面13に至り、ここでも前述の
場合と同様に、一部の光が2次の出射光16となって下
方へ出射し、残りの光が該出射面13で反射されて再び
入射面12へ向うという作用を繰返し、これを順次に行
ってフィルムF内を伝播していく。
Now, when laser light 11 is incident on the incident surface 12 of the film F at an angle θ1, most of this light 11 is refracted at the incident surface 12 and enters the inside of the film at a refraction angle θ2. A portion of this laser light 11 traveling inside the film becomes primary emitted light 14 and is emitted from the exit surface 13 of the film F at an angle θ1.
The remaining light is reflected by the exit surface 13 and reaches the entrance surface 12 as internally reflected light 15 . This internally reflected light 15 is transmitted to the incident surface 12 except for a part of the light that is emitted upward from the incident surface 12.
2 and reaches the output surface 13 again, and here, as in the case described above, a part of the light becomes secondary output light 16 and is emitted downward, and the remaining light is reflected at the output surface 13. The light then travels toward the incident surface 12 again, repeating this process one after another and propagating within the film F.

ここで、1次出射光14と2次出射光16との間隔11
.フィルムFの最大厚さをdlとすると、A1=2dx
 tanθ2     −  (2)の式が成立し、こ
の場合における入射レーザ光11のビーム径をd2とす
ると、フィルム入射面12における照射ビームの楕円長
径12は、1! 2 =d2 /cosθ1     
・・・ (3)となる。従って、ここで !22<I!1            ・・・ (4
)なる関係を満足させるようにすれば、前記1次出射光
14と2次出射光16との間に光の干渉が生じないこと
になる。
Here, the interval 11 between the primary emitted light 14 and the secondary emitted light 16 is
.. If the maximum thickness of film F is dl, then A1=2dx
If the equation tanθ2 − (2) holds true and the beam diameter of the incident laser beam 11 in this case is d2, then the major axis 12 of the ellipse of the irradiation beam at the film incidence surface 12 is 1! 2 = d2 /cosθ1
... (3). Therefore, here! 22<I! 1... (4
), optical interference will not occur between the primary emitted light 14 and the secondary emitted light 16.

しかして、空気とフィルムとの屈折率をそれぞれnl、
nlとすると、スネルの法則によってnl sinθt
=n2sinθ2  −  (5)の式が成立するから
、これらの式(2)乃至(5)を用いて前記ビーム径d
2と入射角θ1との関係を計算すると、 先ず、式(2)乃至(4)から d2/CO3θ1 <2dl  tanθ2d2./2
d1< CO2O3x tanθ2 ・・・(6)とな
り、更に、 tanθ2 = sinθ2 / CO3θ2= si
nθ2/FT:薯笛V]潤− となる。従って、この式に前記式(5)を代入したとす
ると、 tanθ2= nl /√(n22x sinθ1/  −n1/√(
n22xsinθ1)2・・・(7) となる。この場合、空気の屈折率はn1=1でおるから
、前記式(6)に式(7)を代入すると、−5in2θ
1/2  nl−s+n2 1となり、これから、 d2/d1< 5in2θ1 /  nl −5in2
8〒・・・ (8) のようになる。この式(8)の場合、フィルムの厚ざd
lと屈折率n2とは常数であるため、式(8)はビーム
径d2とレーザ光の入射角θ1との関係式となり、この
式(8)を満足しざえすれば干渉模様の発生を防止し得
ることになる。尚、この式(8)は直接に解くことので
きない式ではおるが、近似計算によって解くことのでき
る式である。
Therefore, the refractive indexes of air and film are nl, respectively,
If nl, then according to Snell's law, nl sinθt
= n2sinθ2 - Since the formula (5) holds true, the beam diameter d can be calculated using these formulas (2) to (5).
2 and the incident angle θ1. First, from equations (2) to (4), d2/CO3θ1 <2dl tanθ2d2. /2
d1< CO2O3x tanθ2 (6), and further, tanθ2 = sinθ2 / CO3θ2 = si
nθ2/FT: Pigeon V]Jun-. Therefore, if we substitute the above equation (5) into this equation, tanθ2= nl /√(n22x sinθ1/ −n1/√(
n22xsinθ1)2...(7) In this case, the refractive index of air is n1 = 1, so substituting equation (7) into equation (6) gives -5in2θ
1/2 nl-s+n2 1, and from this, d2/d1< 5in2θ1 / nl -5in2
8〒... (8) It becomes like this. In the case of this formula (8), the film thickness d
Since l and the refractive index n2 are constants, equation (8) is a relational expression between the beam diameter d2 and the incident angle θ1 of the laser beam, and if equation (8) is satisfied, the generation of interference patterns can be prevented. It will be possible. Although this equation (8) cannot be solved directly, it is an equation that can be solved by approximate calculation.

さて、一般のX線フィルムのベース材は、ポリエチレン
テレフタレート製でその厚さdlが0.175m、屈折
率n2が1.64であるから、前記ビーム径d2を0.
1.に設定した場合の入射角θ1はほぼ30度となる。
Now, since the base material of a general X-ray film is made of polyethylene terephthalate and has a thickness dl of 0.175 m and a refractive index n2 of 1.64, the beam diameter d2 is set to 0.
1. When set to , the incident angle θ1 is approximately 30 degrees.

また、前記式(8)の右辺が最大になる時の入射角は約
50度であるので、その時のビーム径はほぼ0.12m
となる。
Also, since the incident angle when the right side of equation (8) is maximum is approximately 50 degrees, the beam diameter at that time is approximately 0.12 m.
becomes.

もちろん、これらの値は、フィルムベースの材料によっ
て大幅に変化するものである。例えばフィルムベース材
が三酢酸セルロースの場合には、その厚ざdlが0.2
1乃至0.24 、屈折率n2が1.48となるが、い
ずれの場合であっても、前記ビーム径d2と入射角θ1
との関係が前記式(8)を満足しさえすれば干渉模様の
発生を防止できる。
Of course, these values vary widely depending on the film base material. For example, if the film base material is cellulose triacetate, its thickness dl is 0.2
1 to 0.24, the refractive index n2 is 1.48, but in any case, the beam diameter d2 and the incident angle θ1
Interference patterns can be prevented from occurring as long as the relationship satisfies equation (8).

尚、レーザビームをフィルム面に対して傾斜させるだけ
でも本発明の目的は達成できる。
Note that the object of the present invention can be achieved simply by tilting the laser beam with respect to the film surface.

以上述べたように、本発明では、干渉模様の発生防止条
件を、フィルムに入射するレーザ光を傾斜させ、又は好
ましくは、レーザ光のビーム径とその入射角との関係式
をもって明示し得たので、光学系をこの条件に合致する
ように構成することにより、干渉模様の発生しない画像
読取装置を得ることが可能となった。
As described above, in the present invention, the conditions for preventing the occurrence of interference patterns can be clearly expressed by tilting the laser beam incident on the film, or preferably by using the relational expression between the beam diameter of the laser beam and its angle of incidence. Therefore, by configuring the optical system to meet this condition, it has become possible to obtain an image reading device that does not generate interference patterns.

以上一実施例について説明したが、本発明はこれに限定
されるものではなく、その要旨を変更せざる範囲内で、
種々に変形実施することが可能である。例えば、図示実
施例でX線画像の処理について述べたが、X線画像以外
の画像の処理にも適用することができることを付記する
Although one embodiment has been described above, the present invention is not limited to this, and within the scope of not changing the gist thereof,
It is possible to implement various modifications. For example, although the illustrated embodiment describes processing of X-ray images, it should be noted that the present invention can also be applied to processing of images other than X-ray images.

[発明の効果] 以上述べたとおり本発明を用いる時は、従来のような干
渉模様の発生を防止して診断性を向上せしめたフィルム
画像読取装置を実現することが可能となる。
[Effects of the Invention] As described above, when the present invention is used, it is possible to realize a film image reading device that prevents the generation of interference patterns as in the prior art and improves diagnostic performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るフィルム画像読取装置の原理説明
図、第2図は従来の画像処理システムの基本構成を説明
するためのブロック図、第3図は該画像処理システムに
使用される従来のフィルム画像読取装置の概略構成図、
第4図はこの従来のフィルム画像読取装置に接続される
電子回路のブロック図、第5図はファプリー・ペロー干
渉計の原理説明図でおる。 1a、1b・・・半透過鏡、2・・・コヒーレント光、
3・・・1次透過光、4a、4b・・・多次透過光、F
・・・フィルム、θ1・・・入射角、θ2・・・屈折角
、11・・・レーザ光、12・・・入射面、13・・・
出射面、14・・・1次出射光、15・・・内部反射光
、16・・・2次出射光 I 第1図
FIG. 1 is a diagram illustrating the principle of a film image reading device according to the present invention, FIG. 2 is a block diagram illustrating the basic configuration of a conventional image processing system, and FIG. 3 is a conventional diagram used in the image processing system. A schematic configuration diagram of a film image reading device of
FIG. 4 is a block diagram of an electronic circuit connected to this conventional film image reading device, and FIG. 5 is a diagram illustrating the principle of a Fapley-Perot interferometer. 1a, 1b... Semi-transparent mirror, 2... Coherent light,
3... Primary transmitted light, 4a, 4b... Multi-order transmitted light, F
... film, θ1... angle of incidence, θ2... angle of refraction, 11... laser beam, 12... plane of incidence, 13...
Output surface, 14...Primary output light, 15...Internally reflected light, 16...Secondary output light I Fig. 1

Claims (3)

【特許請求の範囲】[Claims] (1)レーザ光を利用してフィルム上の画像を走査し、
その時のフィルム透過光の光量を測定することにより、
走査部分における画像濃度を各画素の位置に対応づけた
ディジタル量として処理し得るフィルム画像読取装置に
おいて、前記フィルム走査用のレーザビームをフィルム
に対して所定角度傾けて走査光学系としたことを特徴と
するフィルム画像読取装置。
(1) Scan the image on the film using laser light,
By measuring the amount of light transmitted through the film at that time,
A film image reading device capable of processing image density in a scanning part as a digital quantity corresponding to the position of each pixel, characterized in that the laser beam for film scanning is tilted at a predetermined angle with respect to the film to form a scanning optical system. A film image reading device.
(2)前記フィルム走査用のレーザビームの直径d_2
と該ビームのフィルムへの入射角θ_1とが、d_2/
d_1<sin2θ_1/√(n^2_2−sin^2
θ_1)但し、d_1:フィルム厚さの最大値 n_2:フィルムの屈折率 なる関係式を満すようにその走査光学系を構成した特許
請求の範囲第1項記載のフィルム画像読取装置。
(2) Diameter d_2 of the laser beam for scanning the film
and the incident angle θ_1 of the beam on the film are d_2/
d_1<sin2θ_1/√(n^2_2−sin^2
θ_1) The film image reading device according to claim 1, wherein the scanning optical system is configured to satisfy the following relational expression: d_1: maximum value of film thickness n_2: refractive index of the film.
(3)前記フィルムがX線フィルムである特許請求の範
囲第1項に記載のフィルム画像読取装置。
(3) The film image reading device according to claim 1, wherein the film is an X-ray film.
JP62101031A 1987-04-23 1987-04-23 Film image reading device Expired - Lifetime JP2585263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62101031A JP2585263B2 (en) 1987-04-23 1987-04-23 Film image reading device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62101031A JP2585263B2 (en) 1987-04-23 1987-04-23 Film image reading device

Publications (2)

Publication Number Publication Date
JPS63266582A true JPS63266582A (en) 1988-11-02
JP2585263B2 JP2585263B2 (en) 1997-02-26

Family

ID=14289804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62101031A Expired - Lifetime JP2585263B2 (en) 1987-04-23 1987-04-23 Film image reading device

Country Status (1)

Country Link
JP (1) JP2585263B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63290456A (en) * 1987-05-22 1988-11-28 Konica Corp Image reader
EP0566999A1 (en) * 1992-04-21 1993-10-27 Eastman Kodak Company Optical scanner
CN105193418A (en) * 2015-08-27 2015-12-30 李迎新 Body silhouette and extremity inspection system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60195568A (en) * 1984-03-17 1985-10-04 Canon Inc Laser beam printer
JPS6184151A (en) * 1984-10-01 1986-04-28 Hitachi Medical Corp Image reader
JPS63136873A (en) * 1986-11-28 1988-06-09 Konica Corp Image reader

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60195568A (en) * 1984-03-17 1985-10-04 Canon Inc Laser beam printer
JPS6184151A (en) * 1984-10-01 1986-04-28 Hitachi Medical Corp Image reader
JPS63136873A (en) * 1986-11-28 1988-06-09 Konica Corp Image reader

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63290456A (en) * 1987-05-22 1988-11-28 Konica Corp Image reader
EP0566999A1 (en) * 1992-04-21 1993-10-27 Eastman Kodak Company Optical scanner
CN105193418A (en) * 2015-08-27 2015-12-30 李迎新 Body silhouette and extremity inspection system

Also Published As

Publication number Publication date
JP2585263B2 (en) 1997-02-26

Similar Documents

Publication Publication Date Title
US5768461A (en) Scanned remote imaging method and system and method of determining optimum design characteristics of a filter for use therein
US4046477A (en) Interferometric method and apparatus for sensing surface deformation of a workpiece subjected to acoustic energy
US5321501A (en) Method and apparatus for optical imaging with means for controlling the longitudinal range of the sample
US4254337A (en) Infrared interference type film thickness measuring method and instrument therefor
US20120044464A1 (en) Speckle removal for a laser scanning projector
CN107036534B (en) Method and system for measuring displacement of vibration target based on laser speckle
US4813782A (en) Method and apparatus for measuring the floating amount of the magnetic head
US20140007688A1 (en) Acousto-optic imaging system, and acousto-optic imaging apparatus
CN106092901B (en) A kind of acoustical signal detector and reflecting light sonomicroscope based on surface wave
CN106556576A (en) A kind of method of the reflectance and transmitance for measuring high reflection/highly transmissive optical element based on optical cavity ring-down technology simultaneously
US5557408A (en) Method of and system for measurement of direction of surface and refractive index variations using interference fringes
JPH11125592A (en) Method and arrangement for horizontal type optical coherence tomography
JPH09119814A (en) Method and device for measuring film thickness
CN108562241A (en) The apparatus and method of digital hologram flexible measuring based on fiber optic bundle
JPH0972723A (en) Method and equipment for measuring thickness and refractive index of film
CN102252828A (en) Method for monitoring real-time changes in reflectivity of highly reflective optical element under laser irradiation
US4130339A (en) Scanning optical system including optical system for detecting an information beam
US4079421A (en) Image scanning system
JPS63266582A (en) Film image reader
JP2609953B2 (en) Surface plasmon microscope
JP2001235317A (en) Apparatus for measuring radius of curvature of optical spherical surface
Trillo et al. Detection of transient surface acoustic waves of nanometric amplitude with double-pulsed TV holography
CN205826515U (en) Acoustical signal detector based on surface wave and reflecting light sonomicroscope
JPS60253945A (en) Shape measuring instrument
JPH07230895A (en) Electron density measuring device

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 11