JP2609953B2 - Surface plasmon microscope - Google Patents

Surface plasmon microscope

Info

Publication number
JP2609953B2
JP2609953B2 JP4363991A JP4363991A JP2609953B2 JP 2609953 B2 JP2609953 B2 JP 2609953B2 JP 4363991 A JP4363991 A JP 4363991A JP 4363991 A JP4363991 A JP 4363991A JP 2609953 B2 JP2609953 B2 JP 2609953B2
Authority
JP
Japan
Prior art keywords
sample
light
surface plasmon
refractive index
light wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4363991A
Other languages
Japanese (ja)
Other versions
JPH05240787A (en
Inventor
隆之 岡本
一郎 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP4363991A priority Critical patent/JP2609953B2/en
Publication of JPH05240787A publication Critical patent/JPH05240787A/en
Application granted granted Critical
Publication of JP2609953B2 publication Critical patent/JP2609953B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Microscoopes, Condenser (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用発明】本発明は、平坦な試料表面の屈折
率分布、微小な膜厚分布又は表面形状もしくは輪郭を測
定する技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for measuring the refractive index distribution, minute film thickness distribution, surface shape or contour of a flat sample surface.

【0002】[0002]

【従来技術】光ICなどにおける、光導波路の屈折率分
布の測定はその導波モードを解析するために非常に重要
である。従来この目的には主として干渉顕微鏡が用いら
れてきた。しかし、この方法では試料の透過光の位相分
布を測定するため試料を非常に薄く切断する必要があっ
た。またこの方法では屈折率の絶対値の測定は困難であ
った。又、半導体産業においては半導体表面の薄膜の膜
厚分布の測定は不可欠の技術である。この場合膜厚の絶
対値を測定する装置として偏光解析装置がよく用いられ
る。しかし、この装置はレーザーからの平行光(直径1
ミリ程度)をそのまま利用するため空間分解能が不十分
であり、微小な部分の測定は困難であった。
2. Description of the Related Art The measurement of the refractive index distribution of an optical waveguide in an optical IC or the like is very important for analyzing the waveguide mode. Conventionally, an interference microscope has been mainly used for this purpose. However, in this method, it is necessary to cut the sample very thinly in order to measure the phase distribution of the transmitted light of the sample. Further, it was difficult to measure the absolute value of the refractive index by this method. In the semiconductor industry, measurement of the film thickness distribution of a thin film on a semiconductor surface is an indispensable technique. In this case, an ellipsometer is often used as an apparatus for measuring the absolute value of the film thickness. However, this device uses parallel light from a laser (diameter 1).
(Millimeters) is used as it is, so the spatial resolution is insufficient, and it has been difficult to measure minute parts.

【0003】又、表面プラズモン顕微鏡を使用して試料
の屈折率を測定することも提案されている。すなわち、
試料上の選択した点へ入射角θを固定してP偏光を投射
し、この入射角付近でプラズモンが励起されればそのと
きの反射率を求め、その反射率からその試料の選択点の
屈折率を理論計算により求める。図2に示すように、プ
リズム2の底面に蒸着した金属薄膜3と誘電体試料10
との界面に光源(ヘリウム・ネオン レーザー)1から
P偏光の平行光を照射して表面プラズモン(表面電荷の
電子密度の粗密波)を励起する(4は試料10を金属薄
膜3に密着させるため使用するイマージョン・オイ
ル)。このように試料表面10の一点に平行光を投射
し、そしてその点から反射した光をレンズ6を介してピ
ンホール7に投射し、光電変換器8で反射光を検出し、
その強度を測定する。入射光強度に対する反射光強度の
比として反射率を決定する。この反射率は試料表面の屈
折率に対して非常に敏感に変化する。レンズ6は反射光
を拡大して空間分解能を拡大するのに必要であり、また
X−Yパルス・ステージ9は誘電体試料10とプリズム
2とを一体として間歇的に移動させ、試料表面の異なる
点の反射率を決定するのに使用する。
It has also been proposed to measure the refractive index of a sample using a surface plasmon microscope. That is,
A P-polarized light is projected onto a selected point on the sample with the incident angle θ fixed, and if the plasmon is excited near this incident angle, the reflectance at that time is obtained. From the reflectance, the refraction at the selected point of the sample is obtained. The rate is determined by theoretical calculation. As shown in FIG. 2, a metal thin film 3 deposited on the bottom surface of a prism 2 and a dielectric sample 10
A surface plasmon (compression wave of electron density of surface charge) is excited by irradiating parallel light of P polarization from a light source (helium / neon laser) 1 to the interface with Immersion oil used). Thus, parallel light is projected on one point of the sample surface 10, and light reflected from that point is projected on the pinhole 7 via the lens 6, and the reflected light is detected by the photoelectric converter 8,
Measure its strength. The reflectance is determined as a ratio of the reflected light intensity to the incident light intensity. This reflectivity changes very sensitively to the refractive index of the sample surface. The lens 6 is necessary for expanding the reflected light to increase the spatial resolution, and the XY pulse stage 9 intermittently moves the dielectric sample 10 and the prism 2 as a single unit, so that the sample surface is different. Used to determine point reflectance.

【0004】ある特定の入射角(共鳴角)で試料表面の
測定点にP偏光を投射しなければ表面プラズモンは励起
されることはない。入射角θを固定してP偏光を投射し
ているのであるから、その入射角が共鳴角と離れている
試料では表面プラズモンは励起されない。光源1から試
料表面10へ投射されるP偏光の入射角θを変化しなが
ら反射光の強度を測定し、その反射光の強度が急減した
とき(このとき入射光のエネルギーは表面プラズモン生
成に使用されている)、そのときの入射角(共鳴角)を
測定すれば広い範囲の試料の屈折率を測定できる。しか
し入射角を連続的に変えることは機構的に困難である。
[0004] Surface plasmons are not excited unless P-polarized light is projected onto a measurement point on a sample surface at a specific incident angle (resonance angle). Since the P-polarized light is projected with the incident angle θ fixed, surface plasmons are not excited in a sample whose incident angle is far from the resonance angle. The intensity of the reflected light is measured while changing the incident angle θ of the P-polarized light projected from the light source 1 to the sample surface 10, and when the intensity of the reflected light sharply decreases (at this time, the energy of the incident light is used for generating the surface plasmon. By measuring the incident angle (resonance angle) at that time, the refractive index of the sample in a wide range can be measured. However, it is mechanically difficult to continuously change the incident angle.

【0005】[0005]

【発明が解決しようとする課題】表面プラズモン顕微鏡
を利用しての従来の屈折率測定では入射光強度に対する
反射光強度の比として反射率を決定しなければならない
が、そのための入射光強度の測定は容易ではない。又、
2つの屈折率において同じ反射率を示すため屈折率が一
意的に求まらない。表面プラズモンが励起される入射角
(共鳴角)は試料によって異なるので、異なる試料につ
いて反射率を決定するには入射角をある範囲にわたって
変化することが必要となる。しかしこのような入射角掃
引のための機構の設計は困難である。
In the conventional refractive index measurement using a surface plasmon microscope, the reflectance must be determined as the ratio of the reflected light intensity to the incident light intensity. Is not easy. or,
Since the two refractive indexes show the same reflectance, the refractive index cannot be uniquely determined. Since the incident angle (resonance angle) at which the surface plasmon is excited varies from sample to sample, it is necessary to change the incident angle over a certain range in order to determine the reflectance for different samples. However, it is difficult to design a mechanism for such an incident angle sweep.

【0006】本発明の目的は、反射光強度の測定のみで
試料の屈折率もしくは膜厚の絶対値を一意的に決定でき
る、ダイナミックレンジの広い表面プラズモン顕微鏡を
提供することにある。この目的を達成するため本発明の
表面プラズモン顕微鏡ではP偏光の光束を拡大し、その
拡大光束を収束して、プリズムもしくは回折格子のよう
な光波結合器と金属薄膜を介して接触している試料表面
へ投射する。試料表面からの反射光の強度を検出器で空
間的に検出し、反射光強度の不連続的な減少を示してい
る検出面の座標から共鳴角を決定する。P偏光の光束を
拡大し、その拡大光束を収束して金属薄膜と試料との面
接触域に投射することによってその面接触域の一点に大
きな収斂角で光束を投射することができる。このことは
面接触域の一点に対して前記の収斂角にわたって連続的
に入射角の異なる無数の光線群が投射されることを意味
する。この無数の光線の中にはそれの入射角が共鳴角に
等しい光線があり、その光線によって表面プラズモンが
励起される。入射角と反射角とは等しいことから、そし
て表面プラズモンを生成した入射光の強度は減少してい
るということから、光波結合器の面接触域からの反射光
の強度を空間的に検出することによって共鳴角を決定で
きる。このようにして共鳴角を測定したらその点の試料
の屈折率を例えば次式を用いて求めることができる。
SUMMARY OF THE INVENTION An object of the present invention is to provide a surface plasmon microscope having a wide dynamic range in which the absolute value of the refractive index or the thickness of a sample can be uniquely determined only by measuring the intensity of reflected light. In order to achieve this object, the surface plasmon microscope of the present invention enlarges the P-polarized light beam, converges the expanded light beam, and contacts a light wave coupler such as a prism or a diffraction grating via a metal thin film. Project on the surface. The intensity of the reflected light from the sample surface is spatially detected by a detector, and the resonance angle is determined from the coordinates of the detection surface indicating a discontinuous decrease in the reflected light intensity. By expanding the P-polarized light beam, converging the expanded light beam and projecting it on the surface contact area between the metal thin film and the sample, the light beam can be projected at a large convergence angle at one point of the surface contact area. This means that an infinite number of light rays having different incident angles are projected continuously over the convergent angle with respect to one point of the surface contact area. Among these innumerable rays, there are rays whose incident angle is equal to the resonance angle, and the rays excite surface plasmons. Spatial detection of the intensity of light reflected from the surface contact area of the lightwave coupler, since the angle of incidence is equal to the angle of reflection and the intensity of the incident light that generated the surface plasmon is decreasing. Can determine the resonance angle. When the resonance angle is measured in this manner, the refractive index of the sample at that point can be determined using, for example, the following equation.

【0007】 ここでn0 はプリズムの屈折率、n1 は金属薄膜の屈折
率、n2 は試料の屈折率、そしてθは共鳴角である。
又、屈折率n3 の誘電体の上に屈折率n2 で厚みdの誘
電体の膜があるとすると、この膜厚dを測定するにはこ
の二層の誘電体が等価的な屈折率n2 ’を有する誘電体
試料であるとみなしてその複合誘電体の屈折率n2 ’を
求め、あらかじめ決定しているn2 ’=f( n2 、n
3 、d)の関係から膜厚を決定することができる。
[0007] Here, n 0 is the refractive index of the prism, n 1 is the refractive index of the metal thin film, n 2 is the refractive index of the sample, and θ is the resonance angle.
Assuming that a dielectric film having a refractive index of n 2 and a thickness of d is provided on a dielectric material of a refractive index of n 3 , to measure this thickness d, the two layers of dielectric materials have an equivalent refractive index. Assuming that the sample is a dielectric sample having n 2 ′, the refractive index n 2 ′ of the composite dielectric is obtained, and n 2 ′ = f (n 2 , n
3 ) The film thickness can be determined from the relationship of d).

【0008】試料と光波結合器とを一体として移動させ
る手段、例えばパルスモータステージを設けて、試料を
光束によって走査することができるようにし、試料の屈
折率の1次元もしくは2次元分布を決定することもでき
る。この場合検出器は1次元イメージセンサもしくは2
次元イメージセンサを使用する。
A means for integrally moving the sample and the light wave coupler, for example, a pulse motor stage is provided so that the sample can be scanned by a light beam, and the one-dimensional or two-dimensional distribution of the refractive index of the sample is determined. You can also. In this case, the detector is a one-dimensional image sensor or 2
Use a three-dimensional image sensor.

【0009】[0009]

【実施例】図1を参照して本発明の実施例を説明する。
図2と同じ要素には同じ番号を付してあり、それらの要
素についての説明は省略する。ヘリウム・ネオン レー
ザー1の直前の第1のレンズ5と下流側の第2のレンズ
11とはビーム・エクスパンダーを構成しており、第2
のレンズ11の下流側の第3のレンズ12は顕微鏡の対
物レンズを構成している。8は反射光を検出するホト・
ダイオードアレーである。金属薄膜3を蒸着したプリズ
ム2へ試料10を密着させる。この銀薄膜3は試料10
に蒸着してもよい。レーザー1は表面プラズモン励起の
ためP偏光を投射する。1次元あるいは2次元のイメー
ジセンサ8で試料表面10からの反射光を検出する。誘
電体試料10は金属薄膜3を介してプリズム2へ密着さ
せるのであるが、両者の間にイマージョンオイル4を浸
透させることにより密着が容易となる。この場合イマー
ジョンオイルの屈折率はプリズムの屈折率にできるだけ
近いことが望ましい。レーザー1からの光りはビームエ
クスパンダーで一旦その光束の径を拡大し、次いで試料
10の上に収束させ、それにより試料上のスポットの径
を小さく、また広い入射角範囲が得られる。光入射によ
り試料10と金属薄膜3との界面に表面プラズモンが励
起される。反射光はそのまま、あるいはレンズ系を通し
て入射面上に置かれたイメージセンサー8で受光され
る。光束を構成しているそれぞれの光線は反射の法則に
従って試料表面の一点で反射してイメージセンサー8で
受光され、それ故イメージセンサー8上での空間的な入
射光線の位置が試料表面への入射角を表している。すな
わち、イメージセンサー8からの出力はそのまま反射光
強度の角度分布を表している。イメージセンサー8から
の出力をAD変換器を通して計算機に取り込み、共鳴角
を求める。屈折率と共鳴角との関係、あるいは膜厚と共
鳴角との関係はあらかじめ理論的に計算してある。試料
10をX−Yパルスステージ9などで移動させ屈折率も
しくは膜厚の2次元的分布を決定することもできる。な
お、試料10は金属薄膜3を介してプリズム2に密着さ
れていることから、試料が移動した際、プリズムは試料
と一体として移動する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIG.
The same elements as those in FIG. 2 are denoted by the same reference numerals, and description of those elements will be omitted. The first lens 5 immediately before the helium-neon laser 1 and the second lens 11 on the downstream side constitute a beam expander.
The third lens 12 on the downstream side of the lens 11 constitutes an objective lens of the microscope. 8 is a photo detecting reflected light.
It is a diode array. The sample 10 is brought into close contact with the prism 2 on which the metal thin film 3 has been deposited. This silver thin film 3 is a sample 10
May be deposited. The laser 1 projects P-polarized light for surface plasmon excitation. The reflected light from the sample surface 10 is detected by a one-dimensional or two-dimensional image sensor 8. The dielectric sample 10 is brought into close contact with the prism 2 via the metal thin film 3, and the immersion oil 4 penetrates between the two to facilitate the adhesion. In this case, it is desirable that the refractive index of the immersion oil be as close as possible to the refractive index of the prism. The light from the laser 1 is once enlarged by a beam expander and then converged on the sample 10, thereby reducing the spot diameter on the sample and obtaining a wide incident angle range. Surface plasmon is excited at the interface between the sample 10 and the metal thin film 3 by the light incidence. The reflected light is received by the image sensor 8 placed on the incident surface as it is or through a lens system. Each light beam constituting the light beam is reflected at one point on the sample surface according to the law of reflection and received by the image sensor 8, and therefore, the position of the spatially incident light beam on the image sensor 8 is incident on the sample surface. Represents a corner. That is, the output from the image sensor 8 directly represents the angular distribution of the reflected light intensity. An output from the image sensor 8 is taken into a computer through an AD converter, and a resonance angle is obtained. The relationship between the refractive index and the resonance angle or the relationship between the film thickness and the resonance angle has been theoretically calculated in advance. The sample 10 can be moved by the XY pulse stage 9 or the like to determine the two-dimensional distribution of the refractive index or the film thickness. Since the sample 10 is in close contact with the prism 2 via the metal thin film 3, when the sample moves, the prism moves integrally with the sample.

【0010】試料表面を金属薄膜に近接させて配置する
と試料表面と金属薄膜との間に薄い空気の層が介在する
こととなる。この空気層の厚み分布を決定することによ
り試料表面の輪郭が決定できる。図3に平坦な試料表面
の屈折率分布の測定例を示す。レーザー光源は直線偏光
のヘリウムネオンレーザーを用いた。励起光の波長が6
33nmのとき金属薄膜は厚さ55nmの銀薄膜が測定
感度の点から最適である。反射光の検出には1024素
子の1次元イメージセンサを用いた。得られた反射率分
布を平滑化微分し、それが0となる位置から共鳴角を求
める。
When the sample surface is arranged close to the metal thin film, a thin air layer is interposed between the sample surface and the metal thin film. By determining the thickness distribution of the air layer, the contour of the sample surface can be determined. FIG. 3 shows a measurement example of the refractive index distribution on the flat sample surface. The laser light source used was a linearly polarized helium neon laser. Excitation light wavelength is 6
When the thickness is 33 nm, a silver thin film having a thickness of 55 nm is optimal for the metal thin film from the viewpoint of measurement sensitivity. A 1024-element one-dimensional image sensor was used for detecting the reflected light. The obtained reflectance distribution is smoothed and differentiated, and a resonance angle is obtained from a position where the reflectance becomes zero.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明の表面プラズモン顕微鏡の原理を
説明する図である。
FIG. 1 is a diagram illustrating the principle of a surface plasmon microscope according to the present invention.

【図2】図2は従来の表面プラズモン顕微鏡の動作を説
明する図である。
FIG. 2 is a diagram illustrating the operation of a conventional surface plasmon microscope.

【図3】図3は本発明の表面プラズモン顕微鏡によって
測定した試料の屈折率分布を示す。
FIG. 3 shows a refractive index distribution of a sample measured by a surface plasmon microscope of the present invention.

【符号の説明】[Explanation of symbols]

1 ヘリウム・ネオン レーザ 2 プリズム 3 金属薄膜 4 イマージョンオイル 5 第1のレンズ 6 レンズ 7 ピンホール 8 光電変換器 9 X−Yパルスステージ 10 誘電体試料 11 第2のレンズ 12 第3のレンズ Reference Signs List 1 helium-neon laser 2 prism 3 metal thin film 4 immersion oil 5 first lens 6 lens 7 pinhole 8 photoelectric converter 9 XY pulse stage 10 dielectric sample 11 second lens 12 third lens

フロントページの続き (56)参考文献 特開 平1−138443(JP,A) 特開 昭61−292045(JP,A) 特開 昭63−271162(JP,A) 特開 平3−48106(JP,A) 特開 平2−187647(JP,A) 特開 平1−151146(JP,A) 特開 平4−232841(JP,A) 特開 平3−115834(JP,A) 特開 平4−504765(JP,A) 特開 平2−79349(JP,A)Continuation of front page (56) References JP-A-1-138443 (JP, A) JP-A-61-292045 (JP, A) JP-A-63-271162 (JP, A) JP-A-3-48106 (JP, A) JP-A-2-187647 (JP, A) JP-A-1-151146 (JP, A) JP-A-4-232841 (JP, A) JP-A-3-115834 (JP, A) 4-504765 (JP, A) JP-A-2-79349 (JP, A)

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属薄膜を介して試料と面接触している
光波結合器、P偏光の光束をビーム・エクスパンダーに
よって拡大するとともに平行な光束とし、この拡大され
た平行光束を収束して前記の光波結合器の面接触域に投
射する光学系、前記の光波結合器の面接触域からの反射
光を空間的に検出する検出器、および、前記の光学系に
よって試料を走査すべく試料と光波結合器を一体として
移動させる手段を備えたことを特徴とする表面プラズモ
ン顕微鏡。
1. A light wave coupler which is in surface contact with a sample via a metal thin film, a P-polarized light beam is expanded by a beam expander into a parallel light beam, and the expanded parallel light beam is converged and converged. An optical system for projecting onto the surface contact area of the light wave coupler, a detector for spatially detecting reflected light from the surface contact area of the light wave coupler, and a sample for scanning the sample with the optical system. A surface plasmon microscope comprising means for integrally moving a light wave coupler.
【請求項2】 請求項1記載の表面プラズモン顕微鏡に
おいて、前記のビーム・エクスパンダーは一対のレンズ
から構成されている顕微鏡。
2. The surface plasmon microscope according to claim 1, wherein said beam expander comprises a pair of lenses.
【請求項3】 請求項1記載の表面プラズモン顕微鏡に
おいて、前記の光波結合器はプリズムである顕微鏡。
3. The surface plasmon microscope according to claim 1, wherein said light wave coupler is a prism.
【請求項4】 請求項1記載の表面プラズモン顕微鏡に
おいて、前記の光波結合器は回折格子である顕微鏡。
4. The microscope according to claim 1, wherein said light wave coupler is a diffraction grating.
【請求項5】 請求項1記載の表面プラズモン顕微鏡に
おいて、前記の検出器はイメージセンサである顕微鏡。
5. The microscope according to claim 1, wherein said detector is an image sensor.
【請求項6】 請求項1記載の表面プラズモン顕微鏡に
おいて、前記の移動させる手段はパルスモータステージ
である顕微鏡。
6. The surface plasmon microscope according to claim 1, wherein said moving means is a pulse motor stage.
JP4363991A 1991-03-08 1991-03-08 Surface plasmon microscope Expired - Lifetime JP2609953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4363991A JP2609953B2 (en) 1991-03-08 1991-03-08 Surface plasmon microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4363991A JP2609953B2 (en) 1991-03-08 1991-03-08 Surface plasmon microscope

Publications (2)

Publication Number Publication Date
JPH05240787A JPH05240787A (en) 1993-09-17
JP2609953B2 true JP2609953B2 (en) 1997-05-14

Family

ID=12669443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4363991A Expired - Lifetime JP2609953B2 (en) 1991-03-08 1991-03-08 Surface plasmon microscope

Country Status (1)

Country Link
JP (1) JP2609953B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004040272A1 (en) * 2002-11-01 2004-05-13 Takuo Tanaka Surface plasmon fluorescence microscope, and method of measuring fluorescence excited by surface plasmon

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5973316A (en) * 1997-07-08 1999-10-26 Nec Research Institute, Inc. Sub-wavelength aperture arrays with enhanced light transmission
JPH1137934A (en) * 1997-07-16 1999-02-12 Fuji Photo Film Co Ltd Surface plasmon sensor and dark-line locator
JP3399836B2 (en) 1998-05-21 2003-04-21 富士写真フイルム株式会社 Surface plasmon sensor
US6040936A (en) * 1998-10-08 2000-03-21 Nec Research Institute, Inc. Optical transmission control apparatus utilizing metal films perforated with subwavelength-diameter holes
US6441298B1 (en) * 2000-08-15 2002-08-27 Nec Research Institute, Inc Surface-plasmon enhanced photovoltaic device
JP3885017B2 (en) * 2002-09-26 2007-02-21 シャープ株式会社 Surface plasmon excitation device and microscope including the same
KR100820235B1 (en) * 2006-05-29 2008-04-11 재단법인서울대학교산학협력재단 Surface plasmon resonance measurements using modified optics for multi-media
JP2010127622A (en) * 2008-11-25 2010-06-10 Kyoto Electron Mfg Co Ltd Refractive index measuring apparatus
JP5483408B2 (en) * 2009-06-26 2014-05-07 四国電力株式会社 Continuous concentration measuring apparatus and method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8509492D0 (en) * 1985-04-12 1985-05-15 Plessey Co Plc Optical assay
IL85137A (en) * 1987-01-21 1992-02-16 Ares Serono Res & Dev Ltd Method of assaying for a ligand using surface plasmon resonance effect
CA1321488C (en) * 1987-08-22 1993-08-24 Martin Francis Finlan Biological sensors
JPH01151146A (en) * 1987-12-08 1989-06-13 Toshiba Corp Scan type electron microscope
JPH0778454B2 (en) * 1989-01-13 1995-08-23 株式会社島津製作所 Fourier transform infrared spectrophotometer
DE3909143A1 (en) * 1989-03-21 1990-09-27 Basf Ag METHOD FOR EXAMINING SURFACE STRUCTURES

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004040272A1 (en) * 2002-11-01 2004-05-13 Takuo Tanaka Surface plasmon fluorescence microscope, and method of measuring fluorescence excited by surface plasmon

Also Published As

Publication number Publication date
JPH05240787A (en) 1993-09-17

Similar Documents

Publication Publication Date Title
Rothenhäusler et al. Surface–plasmon microscopy
US3885875A (en) Noncontact surface profilometer
EP0397388B1 (en) Method and apparatus for measuring thickness of thin films
US5386119A (en) Apparatus and method for thick wafer measurement
US5923423A (en) Heterodyne scatterometer for detecting and analyzing wafer surface defects
US20070279635A1 (en) Measuring apparatus and method using surface plasmon resonance
CN109916909A (en) The detection method and its device of optical element surface pattern and subsurface defect information
JPH0511883B2 (en)
JP2609953B2 (en) Surface plasmon microscope
JP3343086B2 (en) Surface plasmon sensor
US20080285007A1 (en) System and method for measurement of thickness of thin films
EP0575132A1 (en) Optical measuring device
US4954722A (en) Scanning scattering microscope with hemispherical mirror and microfocused beam
US4425041A (en) Measuring apparatus
JPS5979104A (en) Optical device
US6697158B2 (en) Measuring apparatus utilizing attenuated total reflection
TWI575219B (en) Measurement method and measuring device of phase - type omni - directional angle deviation microscope
KR100288613B1 (en) Non-contact surface roughness measuring device and method
JP3325078B2 (en) Non-contact three-dimensional shape measuring device
JPH07208937A (en) Equipment and method for measuring film thickness and permittivity
JP5239049B2 (en) Roughness measuring method and roughness measuring apparatus
JP3276577B2 (en) Optical surface roughness measuring device
Alayli et al. Optical fiber profilometer with submicronic accuracy
JP2000258144A (en) Flatness and thickness measurement device for wafer
JP3761080B2 (en) Measuring method and measuring apparatus using total reflection attenuation