JPH07230895A - Electron density measuring device - Google Patents

Electron density measuring device

Info

Publication number
JPH07230895A
JPH07230895A JP6021259A JP2125994A JPH07230895A JP H07230895 A JPH07230895 A JP H07230895A JP 6021259 A JP6021259 A JP 6021259A JP 2125994 A JP2125994 A JP 2125994A JP H07230895 A JPH07230895 A JP H07230895A
Authority
JP
Japan
Prior art keywords
laser beam
plasma
electron density
electron
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6021259A
Other languages
Japanese (ja)
Inventor
Kingo Azuma
欣吾 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6021259A priority Critical patent/JPH07230895A/en
Publication of JPH07230895A publication Critical patent/JPH07230895A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)

Abstract

PURPOSE:To remarkably improve measuring accuracy by making a probe laser beam incident on an observational laser beam in plasma when electron density in the plasma is measured according to an interferential image by a reference beam and observational light passing through the plasma. CONSTITUTION:A laser beam 6 is divided into an observational laser beam 6a and a reference laser beam 6b by a half mirror 4a, and the beam 6a passes through plasma 1, and a phase is changed according to electron density of the plasma 1, and both beams are synthesized together by a half mirror 4b, and an interferential image is formed, and is observed by a camera 7. In this case, a probe laser beam 11 is made incident on the beam 6a passing through the plasma 1 through a variable wave length laser oscillator 10 on a movable stage 12, and an electron plasma wave can be generated only in a position where a conformity condition is satisfied by two different laser beams, and the occurrence of distortion in a secondary interferential image created through the beam 6b is restrained. Thereby, an electron density measuring device whose measuring accuracy is remarkably enhanced is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、核融合炉等のプラズマ
の計測に用いられる電子密度計測装置に関する関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron density measuring device used for measuring plasma in a nuclear fusion reactor or the like.

【0002】[0002]

【従来の技術】電子密度計測装置は、核融合炉等のプラ
ズマの計測に用いられる。従来の電子密度計測装置は、
図2に示すようにレーザ発振器2から放射されたレーザ
ビーム6をビーム拡大器3へ導いて、レーザビーム6の
口径を拡げ、次いでハーフミラー4aへ導いて、観測用
レーザビーム6aと参照用レーザビーム6bとに分け、
観測用レーザビーム6aを全反射ミラー5aにより反射
させて、プラズマ1へ導く。
2. Description of the Related Art An electron density measuring device is used for measuring plasma in a nuclear fusion reactor or the like. The conventional electron density measuring device is
As shown in FIG. 2, a laser beam 6 emitted from a laser oscillator 2 is guided to a beam expander 3 to expand the diameter of the laser beam 6, and then to a half mirror 4a, and an observation laser beam 6a and a reference laser Divided into beam 6b,
The observation laser beam 6a is reflected by the total reflection mirror 5a and guided to the plasma 1.

【0003】プラズマ1は、電子密度に依存した屈折率
をもつので、レーザビーム6aがプラズマ1を通過する
と、電子密度に応じて位相がシフトする。プラズマ1を
通過したレーザビーム6aをハーフミラー4bへ導くと
ともに、参照用レーザビーム6bを全反射ミラー5bを
経てハーフミラー4bへ導き、互いを混合させて、カメ
ラ7へ入射し、その映像から観測用レーザビーム6aの
位相シフト量を読みとって、プラズマ1中の電子密度を
計測していた。
Since the plasma 1 has a refractive index depending on the electron density, when the laser beam 6a passes through the plasma 1, the phase shifts according to the electron density. The laser beam 6a passing through the plasma 1 is guided to the half mirror 4b, and the reference laser beam 6b is guided to the half mirror 4b via the total reflection mirror 5b, mixed with each other, incident on the camera 7, and observed from the image. The electron density in the plasma 1 was measured by reading the phase shift amount of the laser beam 6a for use.

【0004】[0004]

【発明が解決しようとする課題】前記図2に示す従来の
電子密度計測装置では、観測用レーザビーム6aの光路
上で起こる位相シフトが、光路上で積分されてしまうた
め、電子密度が光路上の平均値としてしか現れない。ま
たプラズマ1の形状を精度良く把握していないと、カメ
ラ7で得られた2次元の位相シフト情報を3次元空間へ
展開することが困難になって、プラズマ1中の電子密度
分布の計測精度が悪くなるという問題点があった。
In the conventional electron density measuring apparatus shown in FIG. 2, since the phase shift occurring on the optical path of the observation laser beam 6a is integrated on the optical path, the electron density is measured on the optical path. It appears only as the average value of. Further, if the shape of the plasma 1 is not accurately grasped, it becomes difficult to expand the two-dimensional phase shift information obtained by the camera 7 into the three-dimensional space, and the measurement accuracy of the electron density distribution in the plasma 1 is high. There was a problem that was worse.

【0005】本発明は前記の問題点に鑑み提案するもの
であり、その目的とする処は、電子密度計測の精度を大
幅に改善することができる電子密度計測装置を提供しよ
うとする点にある。
The present invention is proposed in view of the above problems, and an object of the present invention is to provide an electron density measuring apparatus capable of greatly improving the accuracy of electron density measurement. .

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の電子密度計測装置は、ハーフミラーによ
り参照用レーザビームとプラズマ中を通す観測用レーザ
ビームとに分けるレーザビームを放射するレーザ発振器
と、レーザビームを分割・混合するためのハーフミラー
と、参照用レーザビームと観測用レーザビームとを混合
することにより生じる2次元干渉像を撮影するカメラ
と、プラズマを通過している観測用レーザビームの光路
上に設けたプローブレーザビームを入射する可変波長レ
ーザ発振器とを具えている。
In order to achieve the above object, the electron density measuring apparatus of the present invention emits a laser beam divided into a reference laser beam and an observation laser beam passing through plasma by a half mirror. Laser oscillator, a half mirror for splitting / mixing the laser beam, a camera for photographing a two-dimensional interference image generated by mixing the reference laser beam and the observation laser beam, and plasma. A tunable wavelength laser oscillator for injecting a probe laser beam provided on the optical path of the observation laser beam.

【0007】[0007]

【作用】本発明の電子密度計測装置は前記のように構成
されているので、
Since the electron density measuring device of the present invention is constructed as described above,

【0008】[0008]

【数1】 が次の整合条件((1)はエネルギーの保存則、(2)
は運動量の保存則)を満たすと、条件が満たされた領域
に電子プラズマ波が生じる。
[Equation 1] Is the following matching condition ((1) is the conservation law of energy, (2)
Is a conservation law of momentum), an electron plasma wave is generated in the region where the condition is satisfied.

【0009】[0009]

【数2】 [Equation 2]

【0010】[0010]

【数3】 電子プラズマ波は電子密度の分布に濃淡をつくるので、
整合条件を満たす領域の屈折率が変化し、観測用レーザ
ビームの位相がシフトする。この状態の観測用レーザビ
ームを参照用レーザビームと混合し、干渉させると、電
子プラズマ波が生じた領域に相当した部分の2次元干渉
像に歪みが生じる。前記整合条件を満たす周波数の異な
る2本のレーザビームで発生する電子プラズマ波は、共
振現象で生じるため、2本のレーザの周波数を知ること
により電子プラズマ波が発生した位置の電子密度を精度
良く測定することが可能になる。
[Equation 3] Since the electron plasma wave creates shades in the distribution of electron density,
The refractive index of the region satisfying the matching condition changes, and the phase of the observation laser beam shifts. When the observation laser beam in this state is mixed with the reference laser beam and caused to interfere with each other, the two-dimensional interference image of the portion corresponding to the region where the electron plasma wave is generated is distorted. Since electron plasma waves generated by two laser beams having different frequencies satisfying the matching condition are generated by a resonance phenomenon, it is possible to accurately determine the electron density at the position where the electron plasma waves are generated by knowing the frequencies of the two lasers. It becomes possible to measure.

【0011】[0011]

【実施例】次に本発明の電子密度計測装置の一実施例を
図1により説明する。基本的な構成は、前記従来例(図
2参照)と同じであるため、省略する。10が可変波長
レーザ発振器10で、同可変波長レーザ発振器10から
放射されたプローブレーザビーム11が観測用レーザビ
ーム6aに対して垂直になるように可変波長レーザ発振
器10を設置する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of the electron density measuring device of the present invention will be described with reference to FIG. The basic structure is the same as that of the above-mentioned conventional example (see FIG. 2), and will be omitted. Reference numeral 10 denotes a variable wavelength laser oscillator 10, and the variable wavelength laser oscillator 10 is installed so that the probe laser beam 11 emitted from the variable wavelength laser oscillator 10 is perpendicular to the observation laser beam 6a.

【0012】この可変波長レーザ発振器10は、プラズ
マ1への入射位置を変えることができるように可動ステ
ージ12の上に乗せておく。なお可変波長レーザ発振器
10を固定する代わりにミラーなどの光学系を可動ステ
ージ12の上に乗せて、プローブレーザビーム11の入
射位置を変えるようにしてもよい。周波数がω0 の観測
用レーザビーム6aを入射したプラズマ1に、周波数ω
1を持つプローブレーザビーム11を入射すると、前記
整合条件を満たす位置で、電子プラズマ波が発生する。
電子プラズマ波の発生位置は、カメラ7により撮影した
2次元干渉像の歪みの位置と、プローブレーザビーム1
1を入射した位置から決定することができる。
The variable wavelength laser oscillator 10 is placed on the movable stage 12 so that the incident position on the plasma 1 can be changed. Instead of fixing the variable wavelength laser oscillator 10, an optical system such as a mirror may be placed on the movable stage 12 to change the incident position of the probe laser beam 11. The frequency ω is applied to the plasma 1 on which the observation laser beam 6a having the frequency ω 0 is incident.
When the probe laser beam 11 having 1 is incident, an electron plasma wave is generated at a position satisfying the matching condition.
The position where the electron plasma wave is generated is the position of the distortion of the two-dimensional interference image captured by the camera 7 and the probe laser beam 1
1 can be determined from the incident position.

【0013】また電子プラズマ波は、2本のレーザビー
ム6a、11が整合条件(1)を満たす場合にしか発生
しないので、電子密度nとプラズマ周波数ωp との関係
Since the electron plasma wave is generated only when the two laser beams 6a and 11 satisfy the matching condition (1), the relation between the electron density n and the plasma frequency ω p is

【0014】[0014]

【数4】 から、電子密度を次のように決定できる。[Equation 4] From this, the electron density can be determined as follows.

【0015】[0015]

【数5】 可変波長レーザ発振器10の発振周波数を変化させるこ
とにより、任意の電子密度の位置を知ることが可能であ
る。また電子密度を精度良く測定することができるの
で、2次元干渉像をアーベル変換等での3次元化の精度
も向上する。
[Equation 5] By changing the oscillation frequency of the variable wavelength laser oscillator 10, it is possible to know the position of any electron density. Further, since the electron density can be measured with high accuracy, the accuracy of three-dimensionalization of the two-dimensional interference image by Abel transform or the like is also improved.

【0016】[0016]

【発明の効果】本発明の電子密度計測装置は前記のよう
に周波数の異なる2本のレーザにより整合条件が満たさ
れる位置のみで電子プラズマ波を発生させることができ
るので、電子密度計測の精度を大幅に改善することがで
きる。
As described above, the electron density measuring apparatus of the present invention can generate electron plasma waves only at the position where the matching condition is satisfied by the two lasers having different frequencies. Therefore, the electron density measuring accuracy can be improved. Can be greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電子密度計測装置の一実施例を示す系
統図である。
FIG. 1 is a system diagram showing an embodiment of an electron density measuring device of the present invention.

【図2】従来の電子密度計測装置を示す系統図である。FIG. 2 is a system diagram showing a conventional electron density measuring device.

【符号の説明】[Explanation of symbols]

1 プラズマ 2 レーザ発振器 3 ビーム拡大器 4a、4b ハーフミラー 5a、5b 全反射ミラー 6 レーザビーム 6a 観測用レーザビーム 6b 参照用レーザビーム 7 カメラ 10 可変波長レーザ発振器 11 プローブレーザビーム 12 可動ステージ 1 Plasma 2 Laser Oscillator 3 Beam Expander 4a, 4b Half Mirror 5a, 5b Total Reflection Mirror 6 Laser Beam 6a Observation Laser Beam 6b Reference Laser Beam 7 Camera 10 Variable Wavelength Laser Oscillator 11 Probe Laser Beam 12 Movable Stage

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ハーフミラーにより参照用レーザビーム
とプラズマ中を通す観測用レーザビームとに分けるレー
ザビームを放射するレーザ発振器と、レーザビームを分
割・混合するためのハーフミラーと、参照用レーザビー
ムと観測用レーザビームとを混合することにより生じる
2次元干渉像を撮影するカメラと、プラズマを通過して
いる観測用レーザビームの光路上に設けたプローブレー
ザビームを入射する可変波長レーザ発振器とを具えてい
ることを特徴とした電子密度計測装置。
1. A laser oscillator that emits a laser beam that is divided into a reference laser beam and an observation laser beam that passes through plasma by a half mirror, a half mirror that divides and mixes the laser beam, and a reference laser beam. And a tunable laser oscillator for injecting a probe laser beam provided on the optical path of the observing laser beam passing through the plasma. An electron density measuring device characterized by being provided.
JP6021259A 1994-02-18 1994-02-18 Electron density measuring device Withdrawn JPH07230895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6021259A JPH07230895A (en) 1994-02-18 1994-02-18 Electron density measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6021259A JPH07230895A (en) 1994-02-18 1994-02-18 Electron density measuring device

Publications (1)

Publication Number Publication Date
JPH07230895A true JPH07230895A (en) 1995-08-29

Family

ID=12050104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6021259A Withdrawn JPH07230895A (en) 1994-02-18 1994-02-18 Electron density measuring device

Country Status (1)

Country Link
JP (1) JPH07230895A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101357883B1 (en) * 2011-12-30 2014-02-04 한국원자력연구원 Multiple interference device using time resolution
CN105511610A (en) * 2015-11-30 2016-04-20 联想(北京)有限公司 Information processing method and electronic equipment
CN107045139A (en) * 2016-11-16 2017-08-15 西北核技术研究所 The real-time diagnosis method and system of a kind of plasma electron density and energy
CN112857742A (en) * 2020-12-30 2021-05-28 中国科学院合肥物质科学研究院 Device and method for obtaining discharge plasma parameters of excimer laser
CN113329553A (en) * 2021-06-11 2021-08-31 北京环境特性研究所 Detection method and detection device for plasma density distribution

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101357883B1 (en) * 2011-12-30 2014-02-04 한국원자력연구원 Multiple interference device using time resolution
CN105511610A (en) * 2015-11-30 2016-04-20 联想(北京)有限公司 Information processing method and electronic equipment
CN107045139A (en) * 2016-11-16 2017-08-15 西北核技术研究所 The real-time diagnosis method and system of a kind of plasma electron density and energy
CN112857742A (en) * 2020-12-30 2021-05-28 中国科学院合肥物质科学研究院 Device and method for obtaining discharge plasma parameters of excimer laser
CN113329553A (en) * 2021-06-11 2021-08-31 北京环境特性研究所 Detection method and detection device for plasma density distribution

Similar Documents

Publication Publication Date Title
JP3188696B2 (en) Optical device
Lawson et al. Power spectral density specifications for high-power laser systems
US6316764B2 (en) Autoalignment and autofocus mechanism for coupling light between an optical fiber and a physical specimen
JPS58140338A (en) Method and device for determining refractive index profile of optical fiber and mother material
JP2839369B2 (en) Optical carrier generator using stimulated Brillouin scattering
US5068541A (en) Surface roughness measuring method and apparatus utilizing truncated conical lens and objective lens
JP3513432B2 (en) Optical frequency domain reflection measuring device and optical frequency domain reflection measuring method
JPH07230895A (en) Electron density measuring device
US6259530B1 (en) Method and device for measuring the depths of bottoms of craters in a physico-chemical analyzer
EP0876625A1 (en) Radiation field analyzer
EP0586054A1 (en) Spectroscopic imaging system using a pulsed electromagnetic radiation source and an interferometer
Nakano et al. Visualization of 50 MHz surface acoustic wave propagation using stroboscopic phase-shift interferometry
RU2658112C1 (en) Method of measurement of displacement
JPH10232204A (en) Device for measuring refractive index
Ohshima et al. Development of a multi-channel 320 GHz interferometer for high density plasma measurement in Heliotron J
CN112684461A (en) Anti-vibration type area array frequency sweep measuring device and method
US20100195104A1 (en) Microscope and an observation method in the microscope
Mege et al. Interferometry with singlemode waveguide
JP2006084370A (en) Optical fiber probe device
JP2585263B2 (en) Film image reading device
JP2020198999A (en) Optical interference tomographic imaging apparatus
KR100441480B1 (en) Radiation field analyzer
JPH07169589A (en) Electron density measuring device
Zhou et al. Profilometer for measuring superfine surfaces
KR100270365B1 (en) High Speed Scanning Interferometer System

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010508