JPS63262808A - Joining structure of superconductor - Google Patents

Joining structure of superconductor

Info

Publication number
JPS63262808A
JPS63262808A JP9788487A JP9788487A JPS63262808A JP S63262808 A JPS63262808 A JP S63262808A JP 9788487 A JP9788487 A JP 9788487A JP 9788487 A JP9788487 A JP 9788487A JP S63262808 A JPS63262808 A JP S63262808A
Authority
JP
Japan
Prior art keywords
layer
superconductor
base tube
superconducting
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9788487A
Other languages
Japanese (ja)
Other versions
JPH0719688B2 (en
Inventor
Masayuki Tan
丹 正之
Michio Takaoka
道雄 高岡
Tsuneaki Motai
恒明 馬渡
Shotaro Yoshida
昭太郎 吉田
Shoichi Hasegawa
正一 長谷川
Hiroshi Yamanouchi
山之内 宏
Shigekazu Yokoyama
横山 繁嘉寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP9788487A priority Critical patent/JPH0719688B2/en
Publication of JPS63262808A publication Critical patent/JPS63262808A/en
Publication of JPH0719688B2 publication Critical patent/JPH0719688B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the joining of a normal conductor with an oxide conductor by removing drastic changes due to the difference of the coefficient of expansion by raising the constitutional element concentration of a substrate within a grading layer consisting of the constitutional element of the substrate provided between substrate and superconductive layer and the constitutional element of the oxide superconductor at the substrate side while lowering it at the conductive layer side. CONSTITUTION:A round tubular base tube 2 is arranged on a superconductor magnetic coil 1 and a spiral superconductive circuit 3 is formed on the base 2. A grading layer 4 is formed between the base tube 2 and the circuit 3. The grading layer 4 formed between the circuit 3 and the periphery of the base tube 2 is constituted by laminating a number of thin film single layers such as 4a, 4b..., and these single layers 4a, 4b... include the elements constituting an oxide superconductor to be the circuit 3 and the elements constituting the base tube 2. By differentiating each concentration of the constitutional elements in the manner that, at the base tube 2 side the concentration is made high while it is lowered at the superconductive layer side to eliminate the drastic changes due to the difference of the coefficient of expansion.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、基体上に酸化物系超電導体からなる超電導
層を形成する超電導体の接合構造に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a superconductor bonding structure in which a superconducting layer made of an oxide-based superconductor is formed on a substrate.

「従来の技術」 従来より、超電導マグネットコイル等の83電導体の接
合構造として、例えばN b −’I” +合金などの
合金系超電導材料からなる細線を常電導体からなる基体
上に巻き付けた構造や、あるいはNb3Snなどの化合
物系超電導材を基体上に半田付けした後、この化合物系
超電導材を機械的に切削してコイル状に加工する構造が
知られている。
``Prior art'' Traditionally, as a bonding structure for 83 electrical conductors such as superconducting magnet coils, thin wires made of alloy-based superconducting materials such as Nb-'I''+ alloys are wound around a base made of a normal conductor. A structure is known in which a compound-based superconducting material such as Nb3Sn is soldered onto a substrate, and then this compound-based superconducting material is mechanically cut to form a coil shape.

ところで近時、臨界温度が50°に以上のLa−Ba−
Cu−0系、Y −B a−Cu−0系などの一般に化
学式AxByCuzOs(A:Sc、Y、La=−の周
期律表第111A族金属元素、B :Ba、S r、B
e・・・のアルカリ土類金属)で表されるペロブスガイ
ト型の酸化物系超電導体が次々と見い出されつつある。
By the way, recently, La-Ba-
Generally, Cu-0 series, Y-Ba-Cu-0 series, etc. have the chemical formula AxByCuzOs (A: Sc, Y, La = - metal element of group 111A of the periodic table, B: Ba, S r, B
Perovskite-type oxide superconductors represented by alkaline earth metals such as e... are being discovered one after another.

これら酸化物系超電導体は、上記の合金系あるいは化合
物系超電導体に比べて臨界温度が高く、液体窒素温度以
上で超電導材料とされるなどの優れた特性を有すること
から、超電導マグネットコイルなどへの適用、実用化が
期待されている。
These oxide-based superconductors have superior properties such as a higher critical temperature than the alloy-based or compound-based superconductors mentioned above, and can be used as superconducting materials at temperatures above liquid nitrogen temperature, so they are used in superconducting magnet coils, etc. is expected to be applied and put into practical use.

「発明が解決しようとする問題点」 しかしながら、上記の酸化物系超電導体では、該酸化物
系超電導体が酸化物であることから銅などの金属からな
る常電導体との接合が悪いなどの問題がある。
"Problems to be Solved by the Invention" However, since the oxide superconductor is an oxide, there are problems such as poor bonding with a normal conductor made of metal such as copper. There's a problem.

「問題点を解決するための手段」 そこでこの発明の超電導体の接合構造では、常電導体か
らなる基体と酸化物系超電導体からなる超電導層との間
に、上記基体の構成元素と上記酸化物系超電導体の構成
元素からなるクレーディング層を形成し、このクレーデ
ィング層中における上記基体の構成元素濃度を基体側で
高く、超電導層側で低くしたことにより上記問題点を解
決した。
"Means for Solving the Problem" Therefore, in the superconductor bonding structure of the present invention, the constituent elements of the base and the oxidized The above problem was solved by forming a cladding layer consisting of the constituent elements of a physical superconductor, and making the concentration of the constituent elements of the base in the cladding layer higher on the base side and lower on the superconducting layer side.

「実施例」 第1図はこの発明の超電導体の接合構造を超電導体マグ
ネットコイルに適用した場合の一実施例を示す図であっ
て、図中符号lは超電導マグネットコイルである。この
超電導マグネットコイルlは、円管状の基管2と、この
基管2の上に形成された螺旋状の超電導回路3と、これ
ら基管2および超電導回路3の間に形成されたクレーデ
ィング層4とからなっている。
Embodiment FIG. 1 is a diagram showing an embodiment in which the superconductor joining structure of the present invention is applied to a superconductor magnet coil, and reference numeral 1 in the figure indicates the superconductor magnet coil. This superconducting magnet coil l includes a circular base tube 2, a spiral superconducting circuit 3 formed on the base tube 2, and a cladding layer formed between the base tube 2 and the superconducting circuit 3. It consists of 4.

基管2は常電導体からなるものであり、常電導体として
は銅が好適に用いられる。超電導回路3は、基管2の外
周面上に後述するクレーディング層4を介して形成され
た酸化物系超電導体からなるものである。ここで、酸化
物系超電導体としては化学式A XB yCUZO3で
表されるペロブスガイト型のらのが用いられる。このベ
ロブスガイト型のものは、周期律表第1I[A族金属元
素(上記化学式中A)の酸化物粉末とアルカリ土類金属
(上記化学式中B)の炭酸塩粉末と酸化銅粉末とが適宜
な比率で配合され、焼成されて形成された乙のであり、
これらの粉末の混合比は、求める酸化物系超電導体によ
って異なるが、例えば上記化学式中(こおいて(K+y
= 1 、z= 1  )、(X十y= 2 、z= 
1)、(x+y=2.z=1.25  )、を満足する
ような配合とされる。
The base pipe 2 is made of a normal conductor, and copper is suitably used as the normal conductor. The superconducting circuit 3 is made of an oxide superconductor formed on the outer peripheral surface of the base tube 2 via a cladding layer 4, which will be described later. Here, as the oxide-based superconductor, a perovskite-type radish represented by the chemical formula A XB yCUZO3 is used. This belobusgate-type material is produced by using an oxide powder of a group I metal element (A in the above chemical formula) of the periodic table, a carbonate powder of an alkaline earth metal (B in the above chemical formula), and a copper oxide powder as appropriate. It is formed by mixing the proportions and firing,
The mixing ratio of these powders varies depending on the desired oxide superconductor, but for example, in the above chemical formula (where (K+y
= 1, z= 1), (X y= 2, z=
1), (x+y=2.z=1.25).

クレーディング層4は、基管2の外周面と超電導回路3
との間に形成された螺旋状のもので、第2図に示すよう
に複数の薄厚の単層4a、4b・・が積層されてなるも
のである。単層4a、4b・・は、上記超電導回路3と
なる酸化物系超電導体を構成する元素(すなわちスカン
ジウム(Sc)、イツトリウム(Y)、ランタン(La
)などのランタニドを包含する周期律表第1I[A族金
属元素とバリウム(Ba)。
The cladding layer 4 is formed between the outer peripheral surface of the base tube 2 and the superconducting circuit 3.
As shown in FIG. 2, a plurality of thin single layers 4a, 4b, etc. are laminated. The single layers 4a, 4b, .
) of the periodic table including lanthanides such as Group I metal elements and barium (Ba).

ストロンチウム(Sr)、カルシウム(Ca)、ベリリ
ウム(Be)などのアルカリ土類金属と銅と酸素)に基
管2を構成する元素、すなわち本実施例では銅元素を加
えた組成を有するもので、それぞれこの銅元素の濃度が
異なって形成されたものである。
It has a composition of alkaline earth metals such as strontium (Sr), calcium (Ca), and beryllium (Be), copper, and oxygen), plus the elements constituting the base tube 2, that is, copper element in this example, Each layer is formed with a different concentration of this copper element.

基管2に接する単層4aは、銅元素の占める割合が大き
く、上述の酸化物系超電導体を構成する元素と銅元素と
の重量比が1;4 程度とされる。また、単層4aの上
に形成された単層4bはその重量比が2・3程度、この
上に形成された単層4cは3:2 程度、そして単層4
cの上に形成された超電導回路3に接する単層4dは酸
化物系超電導体を構成する元素からなる材料の割合が大
きく、その重量比が4二1 程度とされる。このような
単層4a、4−b・・の配列により、クレーディング層
4はその銅元素の濃度を基管2側で高く、また超電導回
路3側で低くした濃度勾配を有したものとされる。
The single layer 4a in contact with the base tube 2 has a large proportion of the copper element, and the weight ratio of the elements constituting the above-mentioned oxide-based superconductor to the copper element is about 1:4. Furthermore, the weight ratio of the single layer 4b formed on the single layer 4a is about 2.3, the weight ratio of the single layer 4c formed thereon is about 3:2, and the weight ratio of the single layer 4b formed on the single layer 4a is about 3:2.
The single layer 4d formed on the superconducting circuit 3 and in contact with the superconducting circuit 3 has a large proportion of material made of elements constituting the oxide superconductor, and the weight ratio thereof is about 421. Due to the arrangement of the single layers 4a, 4-b, etc., the cladding layer 4 has a concentration gradient in which the concentration of the copper element is high on the base tube 2 side and low on the superconducting circuit 3 side. Ru.

このような構造の超電導マグネットコイル1を作製する
には、第3図に示すようにまず基管2外周面上に焼成、
スパッタリング、真空蒸着などの手段によって単層4a
に対応する円筒状の単層体5aを形成し、さらに単層体
5bq  5c、5dを順次形成する。ここで、単層体
5aを形成する場合に例えば焼成で行うには、上記単層
4aを構成する材料の粉末、すなわち周期律表第mA族
金属元素の酸化物粉末とアルカリ土類金属の炭酸塩粉末
と酸化銅粉末と金属銅の粉末などを、焼成されて成形さ
れた際に化学式A XB yCuzo sで表される酸
化物系超電導体と銅との重量比が1;4 となるように
配合し、これに水、バインダー等を適宜加えてペースト
状とし、このペースト状のものを基管2上に固着して加
熱焼成する。この場合、単層体5+1は基管2を構成す
る銅元素の割合が上述したように高く、よって基管2に
近い性状を有するため、基管2に強固に接合されろ。ま
た、単層体5b、5c、5dを形成するにも、同様にし
て各単層体に対応する単層に応じて配合されかつペース
ト状に調整されたものを順次積層し焼成する。この場合
にも、それぞれの単層体5b、5c、5dはその下層と
なる単層体に近い組成を有することから、これら下層の
単層体に強固に接合される。また、焼成する場合、焼成
は各単層体毎に行ってもよく、また予めそれぞれの単層
体に対応したペースト状の材料を順次積層して一度に焼
成を行ってもよい− 次いで、最外周側に形成された単層体5dの上に、超電
導回路3に対応する酸化物系超電導体の材料のペースト
状に調整したものを固着し、焼成1、て円筒状の超電導
体6とする。この場合にも、超電導体6はその下層の単
層体5dに近い組成を有することから、該単層体5dに
強固に接合される。また、焼成する場合、上記単層体と
なるペースト状の材料と同時に焼成して単層体と同時に
超電導体6を形成してもよい。
To manufacture the superconducting magnet coil 1 having such a structure, first, as shown in FIG.
A single layer 4a is formed by sputtering, vacuum deposition, etc.
A cylindrical single-layer body 5a corresponding to the above is formed, and further single-layer bodies 5bq, 5c, and 5d are sequentially formed. Here, when forming the single layer body 5a, for example, by firing, the powder of the materials constituting the single layer 4a, that is, the oxide powder of the mA group metal element of the periodic table and the carbonate of an alkaline earth metal. Salt powder, copper oxide powder, metallic copper powder, etc. are fired and shaped so that the weight ratio of the oxide superconductor represented by the chemical formula A x B y Cuzos and copper is 1:4. The mixture is mixed with water, a binder, etc. as appropriate to form a paste, and this paste is fixed on the base tube 2 and heated and fired. In this case, the monolayer body 5+1 has a high proportion of the copper element constituting the base tube 2 as described above, and therefore has properties similar to those of the base tube 2, so it should be firmly joined to the base tube 2. Further, to form the monolayer bodies 5b, 5c, and 5d, similarly, materials mixed according to the monolayer corresponding to each monolayer body and adjusted to a paste-like state are sequentially laminated and fired. In this case as well, since each of the single layer bodies 5b, 5c, and 5d has a composition close to that of the single layer body below it, it is firmly bonded to the single layer body below it. In addition, when firing, firing may be performed for each single layer, or paste materials corresponding to each single layer may be sequentially laminated in advance and fired at once. A paste-like material of an oxide-based superconductor corresponding to the superconducting circuit 3 is fixed onto the single-layer body 5d formed on the outer circumferential side, and is fired to form a cylindrical superconductor 6. . In this case as well, since the superconductor 6 has a composition close to that of the single-layer body 5d underlying it, it is firmly bonded to the single-layer body 5d. In addition, when firing, the superconductor 6 may be formed at the same time as the paste material forming the single layer by firing at the same time as the paste material forming the single layer.

その後、この超電導6および上記単層体5a。After that, this superconductor 6 and the monolayer body 5a.

5b、5c、5dに切削加工等の周知の機賊的手段、あ
るいはエツチング等の周知の化学的手段などを施してそ
の一部を除去し、第1図に示すように螺旋状の超電導回
路3を形成しかつこの超電導回路3と基管2との間に単
層4a、4b、4c、4dからなるクレーディング層4
を形成し、これにより超電導マグネットコイル1を得る
5b, 5c, and 5d are subjected to well-known mechanical means such as cutting, or well-known chemical means such as etching to remove a part of them, and form a spiral superconducting circuit 3 as shown in FIG. A cladding layer 4 consisting of single layers 4a, 4b, 4c, and 4d is formed between the superconducting circuit 3 and the base tube 2.
is formed, thereby obtaining a superconducting magnet coil 1.

このような構造の超電導マグネットコイル1にあっては
、基管2と超電導回路3との間にクレーディング層4を
形成したので、このクレーディング層4が基管2側では
該基管2にまた超電導回路3側では該超電導回路に近い
組成を有していることから、例えば膨張係数などの特性
が基管2と超電導回路3との間で急激に変化することな
くクレーディング層4によってこれらの特性の差が段階
的に変化し、したがって上記膨張係数なとの特性の差に
起因するヒートンヨックなどの不都合か防止される。ま
た、超電導回路3と基管2との接合を直接でなくそれぞ
れに組成の近いクレーディング層4を介して間接的に行
うため、性状の異なる超電導回路3と基管2との接合が
容易に行える。
In the superconducting magnet coil 1 having such a structure, since the cladding layer 4 is formed between the base tube 2 and the superconducting circuit 3, this cladding layer 4 is attached to the base tube 2 on the base tube 2 side. In addition, since the superconducting circuit 3 side has a composition similar to that of the superconducting circuit, the properties such as the expansion coefficient do not change rapidly between the base pipe 2 and the superconducting circuit 3, and the cladding layer 4 The difference in properties between the two changes stepwise, and therefore, disadvantages such as heat-on-yoke caused by the difference in properties such as the expansion coefficient are prevented. In addition, since the superconducting circuit 3 and the base tube 2 are not directly joined, but indirectly through the cladding layer 4, which has a similar composition to each other, it is easy to join the superconducting circuit 3 and the base tube 2, which have different properties. I can do it.

なお、上記実施例においては、クレーディング層4を複
数の単層により形成したが、銅元素の濃度勾配を有した
単一の層により形成してもよく、その場合にこの単一の
層を形成するには、例えば酸化物系超電導体からなる管
体を形成し、次にこの管体の内部孔に円柱状の銅を挿入
し、次いでこれら管体および銅を適宜な手段により加熱
溶融して銅を管体中に拡散せしめ、その後円柱状の銅を
除いて銅の濃度勾配を有する管状の単一層を得る。
In the above embodiment, the cladding layer 4 is formed of a plurality of single layers, but it may also be formed of a single layer having a concentration gradient of the copper element. To form a superconductor, for example, a tube made of an oxide superconductor is formed, a cylindrical copper is inserted into the internal hole of the tube, and then the tube and the copper are heated and melted by an appropriate means. The copper is diffused into the tube, after which the cylindrical copper is removed to obtain a tubular monolayer with a copper concentration gradient.

また、上記実施例では円管状の超電導マグネットコイル
を示したが、他に例えば第4図に示すように円板状の基
体7の上に螺旋状の超電導回路8を形成11、これら基
体7と超電導回路8との間にクレーディング層9を形成
した超電導マグネットコイルでもよい、 ゛ さらに、本発明を第5図に示すような超電導線10
に適用してもよい。この超電導線lOは、銅、アルミニ
ウム、硫化スズなどの常電導体からなる基線11上にク
レーディング層12を介して酸化物系超電導体からなる
超電導層13を形成(、たものである。ここで、クレー
ディング層12は、超電導層I3を構成する元素に基線
11を構成する元素を加えた組成を有するもので、基線
11を構成する元素の濃度が基線ll側で高く、超電導
層13側で低くなるように構成されたものである。
Further, although the above embodiment shows a superconducting magnet coil having a circular tube shape, in addition, for example, as shown in FIG. A superconducting magnet coil having a cladding layer 9 formed between it and a superconducting circuit 8 may also be used. Furthermore, the present invention can be applied to a superconducting wire 10 as shown in FIG.
May be applied to This superconducting wire 1O has a superconducting layer 13 made of an oxide-based superconductor formed on a base line 11 made of a normal conductor such as copper, aluminum, or tin sulfide via a cladding layer 12. The cladding layer 12 has a composition in which the elements constituting the base line 11 are added to the elements constituting the superconducting layer I3, and the concentration of the elements constituting the base line 11 is high on the side of the base line 11, and the concentration of the elements constituting the base line 11 is high on the side of the superconducting layer 13. It is designed so that it is low.

「発明の効果」 以上説明したように、この発明の超電導体の接合構造は
、常電導体からなる基体と酸化物系超電導体からなる超
電導層との間に、上記基体の構成元素と上記酸化物系超
電導体の構成元素からなるクレーディング層を形成し、
このクレーディング層中における上記基体の構成元素濃
度を基体側で高く、超電導層側で低くしたものであるか
ら、例えば膨張係数などの特性が基体と超電導層との間
で急激に変化することなくクレーディング層によってこ
れらの特性の差が徐々に変化し、したがって上記膨張係
数などの特性の差に起因するヒートンヨックなどを防止
することができ、よって温度変化による熱歪み等の不都
合を防止することができる。
"Effects of the Invention" As explained above, in the superconductor bonding structure of the present invention, the constituent elements of the base and the oxidized Forming a cladding layer consisting of the constituent elements of a physical superconductor,
Since the concentration of the constituent elements of the substrate in this cladding layer is high on the substrate side and low on the superconducting layer side, properties such as the coefficient of expansion do not change suddenly between the substrate and the superconducting layer. The difference in these properties gradually changes depending on the cladding layer, and therefore it is possible to prevent heat-on yoke caused by the difference in properties such as the above-mentioned expansion coefficient, thereby preventing disadvantages such as thermal distortion due to temperature changes. Can be done.

ま1こ、超電導層と基体との接合を直接でなくそれぞれ
に組成の近いクレーディング層を介して間接的に行うた
め、性状の異なる超電導層と基体との接合を容易に行う
ことができる。
First, since the superconducting layer and the substrate are bonded not directly but indirectly through cladding layers having similar compositions, it is possible to easily bond the superconducting layer and the substrate, which have different properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図はこの発明の超′電導体の接合構造
を超電導マグネットコイルに適用した場合の一実施例を
示す図であって、第1図は超電導マグネットコイルを示
す部分断面図、第2図は要部拡大断面図、第3図はこの
超電導マグネットコイルの製造方法を説明するための要
部拡大断面図、第4図はこの発明を超電導マグネットコ
イルに適用し1こ場合の他の実施例を示す図であって、
超電導マグネットコイルの該略構成図、第5図はこの発
明を超電導線に適用した場合の一実施例を示す図であっ
て、超電導線の概略構成図である。 1・・・・・・超電導マグネットコイル、2・・・・・
・基管、3.8・・・・・・超電導回路、 4.9.12・・・・クレーディング層、7・・・・・
・基体、10・・・・・・超電導線、11・・・・・・
基線、13・・・・・・超電導層。
1 to 3 are diagrams showing an embodiment in which the superconductor joining structure of the present invention is applied to a superconducting magnet coil, and FIG. 1 is a partial sectional view showing the superconducting magnet coil; FIG. 2 is an enlarged cross-sectional view of the main part, FIG. 3 is an enlarged cross-sectional view of the main part for explaining the manufacturing method of this superconducting magnet coil, and FIG. It is a figure showing an example of
FIG. 5 is a schematic configuration diagram of a superconducting magnet coil, and is a diagram showing an embodiment of the present invention applied to a superconducting wire, and is a schematic configuration diagram of a superconducting wire. 1...Superconducting magnet coil, 2...
・Base tube, 3.8...Superconducting circuit, 4.9.12...Clading layer, 7...
・Substrate, 10...Superconducting wire, 11...
Base line, 13... superconducting layer.

Claims (1)

【特許請求の範囲】  常電導体からなる基体上に酸化物系超電導体からなる
超電導層を形成する超電導体の接合構造であって、 上記基体と超電導層との間に、上記基体の構成元素と上
記酸化物系超電導体の構成元素からなるクレーディング
層を形成し、このクレーディング層中における上記基体
の構成元素濃度を基体側で高く、超電導層側で低くした
ことを特徴とする超電導体の接合構造。
[Scope of Claims] A superconductor bonding structure in which a superconducting layer made of an oxide-based superconductor is formed on a substrate made of a normal conductor, wherein constituent elements of the substrate are disposed between the substrate and the superconducting layer. and a cladding layer consisting of the constituent elements of the oxide superconductor, and the concentration of the constituent elements of the base in the cladding layer is high on the base side and low on the superconducting layer side. joint structure.
JP9788487A 1987-04-21 1987-04-21 Superconductor junction structure Expired - Lifetime JPH0719688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9788487A JPH0719688B2 (en) 1987-04-21 1987-04-21 Superconductor junction structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9788487A JPH0719688B2 (en) 1987-04-21 1987-04-21 Superconductor junction structure

Publications (2)

Publication Number Publication Date
JPS63262808A true JPS63262808A (en) 1988-10-31
JPH0719688B2 JPH0719688B2 (en) 1995-03-06

Family

ID=14204176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9788487A Expired - Lifetime JPH0719688B2 (en) 1987-04-21 1987-04-21 Superconductor junction structure

Country Status (1)

Country Link
JP (1) JPH0719688B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03242387A (en) * 1989-12-11 1991-10-29 Ngk Insulators Ltd Bismuth-based superconducting layer-metal composite body
JPH04220966A (en) * 1990-12-21 1992-08-11 Nippon Telegr & Teleph Corp <Ntt> Connecting wire and method and device for manufacturing the same
US5168259A (en) * 1989-09-19 1992-12-01 Semiconductor Energy Laboratory Co., Ltd. Superconducting coil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5168259A (en) * 1989-09-19 1992-12-01 Semiconductor Energy Laboratory Co., Ltd. Superconducting coil
JPH03242387A (en) * 1989-12-11 1991-10-29 Ngk Insulators Ltd Bismuth-based superconducting layer-metal composite body
JPH04220966A (en) * 1990-12-21 1992-08-11 Nippon Telegr & Teleph Corp <Ntt> Connecting wire and method and device for manufacturing the same

Also Published As

Publication number Publication date
JPH0719688B2 (en) 1995-03-06

Similar Documents

Publication Publication Date Title
EP0401461B1 (en) Oxide superconductor and method of manufacturing the same
US5358929A (en) Method of joining superconducting wire using oxide high-temperature superconductor
AU2006275564B2 (en) Architecture for high temperature superconductor wire
US5173678A (en) Formed-to-shape superconducting coil
US5079222A (en) Superconducting ceramic circuits and manufacturing method for the same
JP3521612B2 (en) Connection structure of superconducting conductor
US8304372B2 (en) Process for joining oxide superconducting tubes with a superconducting joint
JPH05283138A (en) Superconductive joint for superconductive oxide tape
JPS63262808A (en) Joining structure of superconductor
JPH04291702A (en) High temperature superconductive coil
JP2012164859A (en) High temperature superconducting coil
KR20210026613A (en) High temperature superconducting wire with multi-superconducting layer
JP3831307B2 (en) Low resistance conductor and method of manufacturing the same
JPH05234741A (en) Superconducting magnet structure
JPH03108704A (en) Manufacture of oxide superconducting coil
JPS63262807A (en) Joining method for superconductor
WO2019172432A1 (en) Connection structure for superconducting wire rod, and method for manufacturing connection structure for superconducting wire rod
JPH0315116A (en) Oxide superconductor wire and its manufacture
JPS63241826A (en) Manufacture of superconducting wire
JPH04188706A (en) Superconducting coil
JPH04269471A (en) Joint part of superconducting wire
JP2532986B2 (en) Oxide superconducting wire and coil using the same
JPH0582329A (en) Manufacture of oxide series superconductor coil
JPH10178220A (en) Tunnel-type superconducting junction element
JPH07192837A (en) Connecting method for oxide superconducting wire material