JPH04220966A - Connecting wire and method and device for manufacturing the same - Google Patents

Connecting wire and method and device for manufacturing the same

Info

Publication number
JPH04220966A
JPH04220966A JP2413207A JP41320790A JPH04220966A JP H04220966 A JPH04220966 A JP H04220966A JP 2413207 A JP2413207 A JP 2413207A JP 41320790 A JP41320790 A JP 41320790A JP H04220966 A JPH04220966 A JP H04220966A
Authority
JP
Japan
Prior art keywords
superconducting
wire
fine powder
alloy
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2413207A
Other languages
Japanese (ja)
Inventor
Yasuhiro Koshimoto
越本 泰弘
Keiichiro Ito
圭一郎 伊藤
Osamu Ishii
修 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2413207A priority Critical patent/JPH04220966A/en
Publication of JPH04220966A publication Critical patent/JPH04220966A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Ceramic Products (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To provide a connecting wire for a superconducting device with less heat intrusion by forming the wire portion below the critical temp. from a superconducting material and the portion over the critical temp. from a good conductive metal, and forming the area between the two portions so that their densities vary gradually. CONSTITUTION:A connecting wire 8 is composed of a portion 8a consisting of a superconduct substance and a portion 8b consisting of an alloy chiefly containing Ag, etc., having a low electric resistance. At the boundary 8c, the two portions 8a, 8b are mixed with gradient, and the dia. of the boundary 8c shall be the same as the other parts. The end of the superconducting portion 8a is connected with a superconducting device, not illustrated, while the end of the alloy portion 8b is connected with a connector, not illustrated. When current flows. a temp. gradient is generated from the alloy portion 8b to the end of the superconducting portion 8a. The specific resistance of alloy portion 8b sinks with a sink of the temp. but the temp. remains higher than the superconducting portion 8b, being lower than in normal conductive state. Accordingly the connecting resistance decreases as a whole, which causes decrease of the heat intrusion.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、低温環境で動作する超
伝導材料を用いた電子回路と常温環境の外部回路とを接
続する接続線及びその製造装置と製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a connection line that connects an electronic circuit using a superconducting material that operates in a low-temperature environment to an external circuit that operates at a normal temperature, and an apparatus and method for manufacturing the same.

【0002】0002

【従来の技術】従来、極低温環境で動作するジョセフソ
ン素子や磁束量子干渉素子(squid)等の、いわゆ
る超伝導デバイスは、半導体デバイスでは達成し得ない
超高速動作や微弱磁場検出を可能とすることから、ごく
一部の限られた分野で使用されてきた。
[Prior Art] Conventionally, so-called superconducting devices such as Josephson devices and magnetic flux quantum interference devices (SQUID), which operate in extremely low-temperature environments, are capable of ultra-high-speed operation and weak magnetic field detection that cannot be achieved with semiconductor devices. Because of this, it has been used in only a few limited fields.

【0003】0003

【発明が解決しようとする課題】ところで、極低温の環
境を維持することは比較的容易であり、例えば、良質の
クライオスタットであれば絶対温度4.2Kの液体ヘリ
ウムを数週間〜数カ月保持することが可能である。これ
は、一端低温環境を形成すれば、その環境に侵入する熱
を遮断することによって低温環境を破壊する原因がなく
なるためである。一方、超伝導デバイスは、その動作が
極低温でしか動作しないことから、素子を極低温環境に
設置する必要がある。然しながら、超伝導デバイスから
の信号を増幅して使用するのは常温状態であることから
、信号線を極低温状態に設定された超伝導デバイスと常
温環境に設置された周辺回路との間を電気的に接続する
必要があった。この接続には、通常、銅等の電気の良導
体が用いられるが、電気の良導体は同時に熱の良導体で
あることから、接続するための電気結線を介して熱の侵
入があった。このときの侵入熱量Qは、温度差をΔt、
熱伝導度をρ、接続線の断面積をS、接続線の長さをl
とすると、
[Problem to be Solved by the Invention] By the way, it is relatively easy to maintain an extremely low temperature environment. For example, a high-quality cryostat can maintain liquid helium at an absolute temperature of 4.2 K for several weeks to several months. is possible. This is because once a low-temperature environment is created, there is no longer a cause for destroying the low-temperature environment by blocking heat from entering the environment. On the other hand, since superconducting devices only operate at extremely low temperatures, it is necessary to install the device in an extremely low temperature environment. However, since the signal from a superconducting device is amplified and used at room temperature, the signal line is electrically connected between the superconducting device set at an extremely low temperature and the peripheral circuitry installed at room temperature. It was necessary to connect. Usually, a good electrical conductor such as copper is used for this connection, but since a good electrical conductor is also a good thermal conductor, heat can enter through the electrical connection. At this time, the amount of invaded heat Q is the temperature difference Δt,
The thermal conductivity is ρ, the cross-sectional area of the connecting wire is S, and the length of the connecting wire is l
Then,

【0004】Q=kΔtSρ/l     kは比定数
[0004] Q=kΔtSρ/l k is a specific constant

【0005】の関係により求められる。そこで、熱の侵
入を防ぐため細い導線を用いたり、熱を通しにくいステ
ンレス等の金属を用いると、今度は電気抵抗が大きくな
り信号損失を生じたり、雑音の発生原因となる欠点があ
った。そのため、侵入熱量を上回る冷凍機を接続して良
導体の電気結線を用いることが通常であり、その結果と
して高価で巨大な冷凍装置を必要とするという新たな問
題が生じた。
It is determined by the relationship: Therefore, if a thin conductor wire is used to prevent heat from entering, or if a metal such as stainless steel is used, which does not allow heat to pass through, the electric resistance increases, resulting in signal loss and noise generation. For this reason, it is common practice to connect a refrigerator that exceeds the amount of heat input and use electrical connections with good conductivity, resulting in a new problem in that an expensive and large refrigeration system is required.

【0006】さらに、近年発見された高温超伝導材料を
用いた超伝導デバイスであっても、動作温度が77K以
上に高くなったとはいえ、状況は同様であり、低温環境
を如何に保持するかが実用化の一つの重要な鍵となって
いた。
Furthermore, even with superconducting devices that use high-temperature superconducting materials discovered in recent years, the operating temperature is now higher than 77 K, but the situation is the same, and it is still difficult to maintain a low-temperature environment. was one of the important keys for practical application.

【0007】[0007]

【発明の目的】本発明は、上記実状に鑑み、超伝導デバ
イスを動作させるに際して、常温部分との電気抵抗が低
く且つ、熱侵入の少ない接続を実現することのできる接
続線及びその製造装置と製造方法を提供することを目的
とする。
OBJECTS OF THE INVENTION In view of the above-mentioned circumstances, the present invention provides a connecting wire and an apparatus for manufacturing the same, which can realize a connection with a room-temperature part with low electrical resistance and little heat intrusion when operating a superconducting device. The purpose is to provide a manufacturing method.

【0008】[0008]

【課題を解決するための手段】その目的を達成するため
、請求項1に記載の本発明は、低温で動作する超伝導デ
バイスと常温近傍で動作する周辺回路とを備え、前記超
伝導デバイスと前記周辺回路とを電気的に接続する接続
線において、前記接続線は、線路の温度環境が超伝導材
料の臨界温度以下である部分の成分が主として超伝導材
料であり、臨界温度以上で前記周辺回路に接続される部
分が主として電気の良導体からなる金属で構成されてい
ると共に、前記両者の接合が臨界温度の直下に相当する
部分で且つ前記線路の長さ方向に前記両者の密度がなだ
らかに変化してなることを要旨とする。
[Means for Solving the Problems] In order to achieve the object, the present invention according to claim 1 includes a superconducting device that operates at a low temperature and a peripheral circuit that operates near room temperature, and the superconducting device and In the connection line that electrically connects the peripheral circuit, the connection line is mainly composed of a superconducting material in a portion where the temperature environment of the line is below the critical temperature of the superconducting material, and where the temperature environment of the line is below the critical temperature of the superconducting material. The part connected to the circuit is mainly composed of metal that is a good conductor of electricity, and the junction of the two is at a part corresponding to just below the critical temperature, and the density of the two is gentle in the length direction of the line. The gist is what has changed.

【0009】また、請求項2に記載の発明は、前記金属
は銀を主体とした合金であり、前記超伝導材料は酸化物
超伝導材料であることを要旨とする。
[0009] Furthermore, the invention as set forth in claim 2 is characterized in that the metal is an alloy mainly containing silver, and the superconducting material is an oxide superconducting material.

【0010】さらに、請求項3に記載の発明は、合金微
粉が収納されるビヒクルタンクと、超伝導微粉が収納さ
れるビヒクルタンクと、前記各ビヒクルタンクの夫々に
パイプを介して連通された混合器と、該混合器の下方に
位置して配設され前記混合器から排出された線材を引き
伸ばすように設定された成形ダイスと、該成形ダイスの
下方に位置して配設され前記成形ダイスにより引き伸ば
された線材を適宜長さに切断するカッタと、該カッタに
隣接して切断後の線材を焼き付けるトンネル電気炉とを
備えたとことを要旨とする。
Furthermore, the invention according to claim 3 provides a vehicle tank in which alloy fine powder is stored, a vehicle tank in which superconducting fine powder is stored, and a mixing tank connected to each of the vehicle tanks through pipes. a forming die disposed below the mixer and configured to stretch the wire discharged from the mixer; The gist of the present invention is to include a cutter that cuts the stretched wire into an appropriate length, and a tunnel electric furnace adjacent to the cutter that burns the cut wire.

【0011】その上、請求項4に記載の発明は、一方の
ビヒクルタンクに合金微粉が収納されると共に、他方の
ビヒクルタンクに超伝導微粉が収納され、前記各ビヒク
ルタンクに収納された各微粉は、その成分比を調節され
ながら混合器から排出され、排出後の線材は所定形状及
び所定長さに成形されて切断された後トンネル電気炉内
で焼き付けられたことを要旨とする。
Furthermore, in the invention according to claim 4, one vehicle tank stores alloy fine powder, and the other vehicle tank stores superconducting fine powder, and each of the fine powders stored in each of the vehicle tanks The gist is that the wire rod is discharged from the mixer while its component ratio is adjusted, and the discharged wire is formed into a predetermined shape and length, cut, and then baked in a tunnel electric furnace.

【0012】0012

【実  施  例】本発明の接続線及びその製造装置の
一実施例を図面に基づいて説明する。
[Embodiment] An embodiment of the connection wire and its manufacturing apparatus of the present invention will be explained based on the drawings.

【0013】図1は本発明の実施例を示す電子機器の外
観を示す斜視図、図2(a)は接続線の部分拡大図、図
2(b)は図2(a)に対応した接続線を構成する成分
の分布を示すグラフ図である。
FIG. 1 is a perspective view showing the external appearance of an electronic device showing an embodiment of the present invention, FIG. 2(a) is a partially enlarged view of connection lines, and FIG. 2(b) is a connection corresponding to FIG. 2(a). FIG. 3 is a graph diagram showing the distribution of components forming a line.

【0014】図1において、1は低温恒温槽で、その内
部1aの下方には超伝導デバイス2が配設されている。 また、低温恒温槽1の外部には冷凍機3がダクト4を介
して低温恒温槽1の内部1aに連通可能となるように配
設されている。更に、低温恒温槽1の外部には周辺回路
5が配設され、この周辺回路5と超伝導デバイス2とが
接続部6を介して接続されている。
In FIG. 1, reference numeral 1 denotes a low-temperature thermostat, and a superconducting device 2 is disposed below the interior 1a. Further, a refrigerator 3 is disposed outside the low-temperature constant temperature bath 1 so as to be able to communicate with the inside 1a of the low-temperature constant temperature bath 1 via a duct 4. Further, a peripheral circuit 5 is provided outside the low-temperature constant temperature chamber 1, and the peripheral circuit 5 and the superconducting device 2 are connected via a connecting portion 6.

【0015】接続部6は、周辺回路5側に取り付けられ
た常温側配線7と超伝導デバイス2側に取り付けられた
接続線8とが低温恒温槽1の上方に取り付けられたコネ
クタ9を介して連結されている。
The connecting portion 6 connects the normal temperature side wiring 7 attached to the peripheral circuit 5 side and the connecting wire 8 attached to the superconducting device 2 side via a connector 9 attached above the low temperature constant temperature oven 1. connected.

【0016】接続線8は、図2(a)乃至図2(b)に
示すように、超伝導成分からなる部分8a(以下超伝導
部と称す)と、電気抵抗の低い銀や金を主体とした合金
成分からなる部分8b(以下合金部と称す)とから構成
され、超伝導部8aと合金部8bとの境界8cでは超伝
導部8aと合金部8bの成分が夫々傾斜的に混合されて
いる。また、接続線8の境界8cにおける物理的な直径
寸法はその他の部分の直径寸法と変わることなく成形さ
れている。さらに、接続線8の超伝導部8a側の端部は
超伝導デバイス2と接続され、接続線8の合金部8bの
端部はコネクタ9と接続されている。
As shown in FIGS. 2(a) and 2(b), the connecting wire 8 includes a portion 8a made of a superconducting component (hereinafter referred to as a superconducting portion) and a portion 8a made mainly of silver or gold having low electrical resistance. The superconducting portion 8a and the alloy portion 8b are composed of a portion 8b (hereinafter referred to as the alloy portion) consisting of an alloy component, and the components of the superconducting portion 8a and the alloy portion 8b are mixed in a gradient manner at the boundary 8c between the superconducting portion 8a and the alloy portion 8b. ing. Further, the physical diameter at the boundary 8c of the connection line 8 is formed without being different from the diameter at other portions. Further, the end of the connecting wire 8 on the superconducting portion 8a side is connected to the superconducting device 2, and the end of the connecting wire 8 on the alloy portion 8b is connected to the connector 9.

【0017】ところで、このような構成の電子装置Aに
使用される接続線8は、超伝導デバイス2の動作する極
低温部と常温に近いコネクタ9とを接続することから、
合金部8bのコネクタ9側の端部から超伝導部8aの超
伝導デバイス2側の端部まで温度勾配が発生する。この
温度勾配にしたがって熱が侵入する。
By the way, since the connecting wire 8 used in the electronic device A having such a configuration connects the operating cryogenic part of the superconducting device 2 to the connector 9 which is close to room temperature,
A temperature gradient occurs from the end of the alloy portion 8b on the connector 9 side to the end of the superconducting portion 8a on the superconducting device 2 side. Heat enters according to this temperature gradient.

【0018】一方、接続線8の合金部8bは温度の低下
と共に比抵抗が下がるが、超伝導部8aの超伝導状態よ
りは温度は高く、常伝導状態よりは低くなる。従って、
接続線8は、超伝導の臨界温度(Tc)以下で超伝導部
8aを用い、臨界温度以上の領域では合金部8bを用い
るようにすれば全体として接続抵抗を低下させることが
でき、且つ、熱侵入も少なくなる。
On the other hand, the specific resistance of the alloy portion 8b of the connecting wire 8 decreases as the temperature decreases, but the temperature is higher than the superconducting state of the superconducting portion 8a and lower than the normal conducting state. Therefore,
For the connection wire 8, if the superconducting portion 8a is used below the critical temperature (Tc) of superconductivity, and the alloy portion 8b is used in the region above the critical temperature, the overall connection resistance can be reduced, and, Heat intrusion is also reduced.

【0019】他方、一般に超伝導デバイス2の動作温度
Tは、T/Tc≦0.8の条件で使用されるが、接続に
用いるだけならば臨界温度のぎりぎりまで超伝導材料を
用いることが可能である。このため、超伝導転移温度以
下となる位置を境界8cとして超伝導部8aと合金部8
bとを接続することが望ましい。然しながら、実際には
高温超伝導材料は、従来の超伝導材料と異なって半田付
けなどの融着ができない。そのうえ、接続線8には、超
伝導部8aと合金部8bとの境界8cにおける互いの接
触する表面積を増やし、且つ、トポジカルに組み合わせ
ることによって機械的な強度を保持する必要がある。
On the other hand, the superconducting device 2 is generally used under the condition that the operating temperature T is T/Tc≦0.8, but if it is only used for connection, it is possible to use superconducting materials up to the very edge of the critical temperature. It is. Therefore, the superconducting part 8a and the alloy part 8 are separated from each other by setting the position below the superconducting transition temperature as the boundary 8c.
It is desirable to connect b. However, in reality, high-temperature superconducting materials cannot be fused by soldering or the like, unlike conventional superconducting materials. Furthermore, it is necessary for the connecting wire 8 to maintain mechanical strength by increasing the surface area where the superconducting portion 8a and the alloy portion 8b come in contact with each other at the boundary 8c, and by combining them topologically.

【0020】このような、条件を踏まえて、本発明の接
続線8には、超伝導部8aと合金部8bの各成分が傾斜
的に混合されているから、合金成分の比率が少ない部分
はあたかも超伝導素材の隙間に合金成分が入り込む形に
、また、これとは逆に、合金成分の比率が多い部分は合
金成分の中に超伝導微粉が入り込む形となり、両成分の
接触面積は圧着等により単純に接着した接合構造に比べ
て、その接合強度は飛躍的に増大する。さらに、両成分
の組織が入り組んだ形となるから、接続線8の機械的強
度は主として超伝導素材の破壊強度で決定され、単なる
圧着に比べて飛躍的に強度改善がなされる。
Based on these conditions, in the connecting wire 8 of the present invention, each component of the superconducting portion 8a and the alloy portion 8b is mixed in a gradient manner, so that the portion where the proportion of the alloy component is small is It is as if the alloy components enter into the gaps in the superconducting material, and conversely, in areas with a high ratio of alloy components, superconducting fine powder enters into the alloy components, and the contact area of both components is compressed. The bonding strength is dramatically increased compared to a bonded structure simply bonded by bonding or the like. Furthermore, since the structure of both components is intricate, the mechanical strength of the connecting wire 8 is mainly determined by the breaking strength of the superconducting material, and the strength is dramatically improved compared to simple crimping.

【0021】従って、本発明の接続線8は、従来の接続
の問題となっていた熱侵入を低減させることができる。 また、図1のような系では接続線8の温度分布はほぼ外
部からの熱侵入で決定され、接続線8を伝わって流れる
熱量のほとんどが保存されると考えると、超伝導部8a
と合金部8bとを接合すべき位置であるコネクタ9から
の距離LSは、超伝導デバイス2とコネクタ9とを接続
する距離をLと、各々の温度をT1,T3、超伝導材料
及び合金材料の熱伝導率をps,paとすると、
Therefore, the connection wire 8 of the present invention can reduce heat intrusion, which has been a problem with conventional connections. Furthermore, in the system shown in FIG. 1, the temperature distribution of the connecting wire 8 is determined almost entirely by heat intrusion from the outside, and considering that most of the amount of heat flowing through the connecting wire 8 is conserved, the superconducting portion 8a
The distance LS from the connector 9, which is the position where the superconducting device 2 and the alloy part 8b should be joined, is defined by the distance L connecting the superconducting device 2 and the connector 9, the respective temperatures T1 and T3, the superconducting material and the alloy material. If the thermal conductivity of is ps, pa,

【00
22】LS>L[pa(T3−Tc)]/[ps(Tc
−T1)+pa(T3−Tc)]
00
22] LS>L[pa(T3-Tc)]/[ps(Tc
−T1)+pa(T3−Tc)]

【0023】の関係に
より求められる。ここで示した超伝導材料の熱伝導率p
sは、一般に良導体である金属の熱伝導率に比べてかな
り悪く、例えば、イットリウム系超伝導酸化物では2〜
2.5(W/m/K)と、銀や銅の熱伝導率400以上
に比べ圧倒的に悪いから、結果的に接続線8の熱抵抗を
大きくすることができ、流入する熱量そのものを減少さ
せることができる。
It is determined by the relationship: Thermal conductivity p of the superconducting material shown here
s is considerably lower than the thermal conductivity of metals, which are generally good conductors; for example, in the case of yttrium-based superconducting oxides,
2.5 (W/m/K), which is overwhelmingly lower than the thermal conductivity of silver or copper, which is over 400. As a result, the thermal resistance of the connecting wire 8 can be increased, and the amount of heat flowing in can be reduced. can be reduced.

【0024】次に、本発明の接続線8の製造装置を図3
に基づいて説明する。
Next, a manufacturing apparatus for the connecting wire 8 of the present invention is shown in FIG.
The explanation will be based on.

【0025】図3において、10,11は合金微粉及び
超伝導微粉が夫々収納されるビヒクルタンクでパイプ1
0a,11aを介して混合器12に連通されている。ま
た、パイプ10a,11aの中途部にはビヒクルタンク
10,11からの各々の微粉流出量を調節する流量調節
器10b,11bが設けられている。
In FIG. 3, 10 and 11 are vehicle tanks in which alloy fine powder and superconducting fine powder are stored, respectively, and pipe 1
It is communicated with the mixer 12 via 0a and 11a. Furthermore, flow rate regulators 10b and 11b are provided in the middle of the pipes 10a and 11a to adjust the amount of fine powder flowing out from the vehicle tanks 10 and 11, respectively.

【0026】混合器12の内部には、図4に示すように
、隔壁12aが設けられ、この隔壁12aによりビヒク
ルタンク10,11の各パイプ10a,11aの端部と
接続された微粉収納室12b,12cが設定されている
。また、混合器12の下面には微粉排出口12dが形成
されている。微粉収納室12b,12cにはビヒクルタ
ンク10,11から送られてきた超伝導微粉a及び合金
微粉bが貯蔵・流出可能となるようにシャッタ12e,
12fが開閉可能に設けられている。このシャッタ12
e,12fは微粉排出口12dよりも所定間隔を存して
上方に位置する用に設定されている。
As shown in FIG. 4, a partition wall 12a is provided inside the mixer 12, and a fine powder storage chamber 12b is connected to the ends of the respective pipes 10a and 11a of the vehicle tanks 10 and 11 through the partition wall 12a. , 12c are set. Further, a fine powder discharge port 12d is formed on the lower surface of the mixer 12. The fine powder storage chambers 12b and 12c are provided with shutters 12e and 12c so that the superconducting fine powder a and the alloy fine powder b sent from the vehicle tanks 10 and 11 can be stored and discharged.
12f is provided so that it can be opened and closed. This shutter 12
e and 12f are set to be located above the fine powder discharge port 12d with a predetermined distance therebetween.

【0027】一方、混合器12の下方には混合器12か
ら排出された線材8’が引き伸ばされる成形ダイス13
が設けられ、成形ダイス13の下方には、成形ダイス1
3により引き伸ばされたグリンワイヤ8”を搬送するた
めの送りローラ14及びグリンワイヤ8”を適宜長さに
切断するカッタ15が夫々配設されている。また、カッ
タ15に隣接して切断後のグリンワイヤ8”を焼き付け
るトンネル電気炉16が配設されている。さらに、流量
調節器10b,11b、混合器12、送りローラ14及
びカッタ15には、微粉の流量、或はグリンワイヤ8”
の断面形状や長さ等を制御可能とするため制御装置17
に接続されている。
On the other hand, below the mixer 12 is a forming die 13 through which the wire 8' discharged from the mixer 12 is stretched.
is provided below the molding die 13.
A feed roller 14 for conveying the green wire 8'' stretched by the green wire 3 and a cutter 15 for cutting the green wire 8'' into appropriate lengths are provided, respectively. Further, a tunnel electric furnace 16 for baking the cut green wire 8'' is arranged adjacent to the cutter 15.Furthermore, the flow rate regulators 10b and 11b, the mixer 12, the feed roller 14, and the cutter 15 are equipped with a fine powder. flow rate, or green wire 8”
A control device 17 is used to control the cross-sectional shape, length, etc.
It is connected to the.

【0028】このように構成された製造装置により接続
線8を製造するには、先ず、ビヒクルタンク10に合金
微粉を収納すると共に、ビヒクルタンク11に予め仮焼
きした超伝導微粉を収納する。この超伝導微粉は、例え
ば、粒径1μm前後のイットリウム系酸化物超伝導粉や
ビヒマス系酸化物超伝導粉などを準備し、この各々を有
機バインダにて混練してビヒクルを作成したものが使用
されている。
In order to manufacture the connecting wire 8 using the manufacturing apparatus constructed as described above, first, alloy fine powder is stored in the vehicle tank 10, and superconducting fine powder calcined in advance is stored in the vehicle tank 11. This superconducting fine powder is, for example, prepared by preparing yttrium-based oxide superconducting powder or behimus-based oxide superconducting powder with a particle size of around 1 μm, and kneading each of these powders with an organic binder to create a vehicle. has been done.

【0029】次に、ビヒクルタンク10,11に収納さ
れた各微粉は、流量調節器10b,11bによりその成
分比を調節されながら混合器12へと送られ、混合器1
2から線材8’が成形ダイス13へと排出される。
Next, each fine powder stored in the vehicle tanks 10 and 11 is sent to the mixer 12 while its component ratio is adjusted by the flow rate regulators 10b and 11b.
2, the wire 8' is discharged to the forming die 13.

【0030】このとき、混合器12に送られてきた各微
粉は、図4(A)に示すように、微粉収納室12c側の
シャッタ12eを閉じて超伝導微粉aのみを微粉排出口
12dから排出し、所定量の超伝導微粉aを排出した後
、図4(B)に示すようにシャッタ12fを閉じて超伝
導微粉aの排出を停止させると同時に、図4(C)に示
すように、シャッタ12eを開放して合金微粉bを微粉
排出口12dから排出させる。すると、シャッタ12e
,12fと微粉排出口12dとの間で超伝導微粉aと合
金微粉bとが混合された状態で排出される。
At this time, as shown in FIG. 4(A), each fine powder sent to the mixer 12 closes the shutter 12e on the side of the fine powder storage chamber 12c and discharges only the superconducting fine powder a from the fine powder outlet 12d. After discharging a predetermined amount of superconducting fine powder a, the shutter 12f is closed to stop discharging the superconducting fine powder a, as shown in FIG. 4(B), and at the same time, as shown in FIG. 4(C), , the shutter 12e is opened to discharge the alloy fine powder b from the fine powder discharge port 12d. Then, the shutter 12e
, 12f and the fine powder discharge port 12d, the superconducting fine powder a and the alloy fine powder b are discharged in a mixed state.

【0031】このように、線材8’の成分比は両者の混
合比を変えるだけで良い。また、この混合比の変え方、
即ち、シャッタ12e,12fの開閉操作は、最終的に
目的とする位置、即ち、接続線8の温度が超伝導材料の
臨界温度直下となる位置で超伝導部8aと合金部8bと
の成分比が傾斜的に変化するように設定されることは言
うまでもない。
[0031] In this manner, the component ratio of the wire rod 8' can be determined by simply changing the mixing ratio of the two. Also, how to change this mixing ratio,
That is, the opening and closing operations of the shutters 12e and 12f are performed at the final target position, that is, at the position where the temperature of the connecting wire 8 is just below the critical temperature of the superconducting material, and the composition ratio of the superconducting part 8a and the alloy part 8b is adjusted. Needless to say, it is set so that it changes in a gradient manner.

【0032】線材8’は、成形ダイス13により断面形
状を適宜形状に成形しつつグリンワイヤ8”として引き
出される。このとき、この引き出されたグリンワイヤ状
態にあっては有機バインダに混練されているから柔軟性
を有しているので、グリンワイヤ8”はカッタ15を介
して制御装置17により所定の寸法に設定された長さに
容易に切断することができる。また、この際、グリンワ
イヤ8”は所定の接続線8としての形状、例えばスパイ
ラル状やコネクタ位置に対応した折り曲げ形状を予め与
えておくことも可能である。
The wire rod 8' is drawn out as a green wire 8'' while being shaped into a suitable cross-sectional shape by the forming die 13. At this time, the drawn out green wire is kneaded with an organic binder, so it is flexible. Therefore, the green wire 8'' can be easily cut to a predetermined length by the control device 17 via the cutter 15. Further, at this time, it is also possible to give the green wire 8'' a predetermined shape as a predetermined connection line 8, for example, a spiral shape or a bent shape corresponding to the connector position.

【0033】この切断後のグリンワイヤ8”は、トンネ
ル電気炉16内で焼き付けされながら通過して接続線8
が成形される。このとき、トンネル電気炉16では酸素
雰囲気下で900度から1050度にてグリンワイヤ8
”を焼成することにより最終目的となる接続線8が成形
される。
The cut green wire 8'' passes through the tunnel electric furnace 16 while being baked and becomes the connecting wire 8.
is formed. At this time, in the tunnel electric furnace 16, the green wire 8 is heated at 900 to 1050 degrees in an oxygen atmosphere.
By firing ", the final target connecting wire 8 is formed.

【0034】ところで、これらの各過程での制御は、材
料の送り監視から一元的に行うことができるので小型の
パソコンで極めて容易に行うことができる。また、グリ
ンワイヤ状態の成形については、予め焼成時の熱収縮を
考慮して成形する必要があるが、これも制御装置17に
登録させて制御させることにより容易に成形することが
できる。さらに、原材料である超伝導微粉は仮焼成した
材料を粉砕して低温での磁場選別後に、フィルターを通
して粒径を揃えられたものが流れがよく、線引きのムラ
がなくて良い。
By the way, since the control of each of these processes can be performed centrally from the monitoring of material feed, it can be performed extremely easily using a small personal computer. Further, regarding the molding of the green wire state, it is necessary to take into consideration heat shrinkage during firing in advance, but this can also be easily molded by registering and controlling it in the control device 17. Furthermore, the superconducting fine powder that is the raw material is a pre-fired material that is pulverized and then passed through a filter after being sorted in a magnetic field at a low temperature so that the particle size is uniform, so that it flows well and there is no unevenness in drawing.

【0035】一方、合金部8bの材料については、酸素
雰囲気下の電気炉で焼成されたときに、バインダの蒸発
と共に合金化し、且つ、酸化劣化や超伝導材料の焼成に
悪影響を与えないものが良い。この目的に合致するもの
としては、上述のように銀もしくは金を主成分としたも
のが良いが、焼成温度が適当であれば純銀や純金でも可
能である。ただ、一般には超伝導材料の特性を生かすた
めにもっとも特性を出し易い焼成温度を設定して、この
設定された焼成温度に融点等が合致するように微量の白
金等を加えて合金組成を決定することが望ましい。また
、超伝導材料の主成分であり、且つ、電気の良導体であ
る銅については、機械的な接合強度は得られるものの、
超伝導材料の組成比を変える性質を持ち合わせているた
め良い結果は得られないようである。
On the other hand, the material for the alloy portion 8b should be one that will form an alloy when the binder evaporates when fired in an electric furnace in an oxygen atmosphere, and will not cause oxidative deterioration or adversely affect the firing of the superconducting material. good. A material that meets this purpose is preferably a material whose main component is silver or gold as described above, but pure silver or pure gold may also be used if the firing temperature is appropriate. However, in general, in order to take advantage of the characteristics of superconducting materials, a firing temperature is set that will most easily bring out the characteristics, and the alloy composition is determined by adding a small amount of platinum etc. so that the melting point etc. matches the set firing temperature. It is desirable to do so. In addition, copper, which is the main component of superconducting materials and is a good conductor of electricity, can provide mechanical bonding strength, but
It seems that good results cannot be obtained because it has the property of changing the composition ratio of superconducting materials.

【0036】以上の説明では、線材として円形状のワイ
ヤを用いたが、成形ダイス13の形により楕円断面やシ
ート状に成形することができることは勿論である。また
、各微粉の混合比の調整に連動してワイヤの送り速度や
ダイス形状を調節すれば、不均一な径を有する線材を成
形することもできるから、例えば、合金部8bの常温側
のコネクタ9に接続する部分を境界8c側の合金部8b
の直径よりも太くして電気抵抗を減らすようにすること
も可能である。
In the above description, a circular wire was used as the wire, but it goes without saying that it can be formed into an elliptical cross section or a sheet shape depending on the shape of the forming die 13. In addition, by adjusting the wire feeding speed and die shape in conjunction with adjusting the mixing ratio of each fine powder, it is possible to form wire rods with non-uniform diameters. 9 is the alloy part 8b on the boundary 8c side.
It is also possible to reduce electrical resistance by making the diameter thicker than the diameter of .

【0037】また、ここでは、超伝導材料の臨界温度直
下に超伝導部8aと合金部8bとの密度傾斜的な接続が
位置するように製造することを述べたが、本発明の接続
線8を製造する方法ではそれ以外にも必要な部分に任意
に合金成分を配置させることができるから、例えば、極
低温で動作する超伝導デバイス2と接続する合金成分を
多く配して半田付けを容易にすることも可能である。
Furthermore, although it has been described here that the connection between the superconducting portion 8a and the alloy portion 8b with a density gradient is located just below the critical temperature of the superconducting material, the connecting wire 8 of the present invention The manufacturing method allows alloy components to be arbitrarily placed in other necessary parts, so for example, many alloy components can be placed to connect to the superconducting device 2, which operates at extremely low temperatures, to facilitate soldering. It is also possible to

【0038】[0038]

【発明の効果】以上説明したように、本発明の接続線に
あっては、線路の温度環境が超伝導材料の臨界温度以下
である部分の成分が主として超伝導材料であり、臨界温
度以上で前記周辺回路に接続される部分が主として電気
の良導体からなる金属で構成されていると共に、前記両
者の接合が臨界温度の直下に相当する部分で且つ前記線
路の長さ方向に前記両者の密度がなだらかに変化してい
ることにより、超伝導デバイスを動作させるに際して、
常温部分との電気抵抗が低く且つ、熱侵入の少ない接続
を実現することができる。
[Effects of the Invention] As explained above, in the connecting wire of the present invention, the component in the portion where the temperature environment of the line is below the critical temperature of the superconducting material is mainly the superconducting material, and the component in the part where the temperature environment of the line is below the critical temperature of the superconducting material; The part connected to the peripheral circuit is mainly made of metal that is a good conductor of electricity, and the junction between the two is located just below the critical temperature, and the density of the two is low in the length direction of the line. Due to the gradual change, when operating a superconducting device,
It is possible to realize a connection with a room-temperature part that has low electrical resistance and little heat intrusion.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例を示す電子機器の外観を示す斜
視図である。
FIG. 1 is a perspective view showing the appearance of an electronic device showing an embodiment of the present invention.

【図2】本発明の接続線を示し、図2(a)は接続線の
部分拡大図、図2(b)は図2(a)に対応した接続線
を構成する成分の分布を示すグラフ図である。
FIG. 2 shows a connection line of the present invention, FIG. 2(a) is a partially enlarged view of the connection line, and FIG. 2(b) is a graph showing the distribution of components forming the connection line corresponding to FIG. 2(a). It is a diagram.

【図3】本発明の接続線を製造する製造装置の概略図で
ある。
FIG. 3 is a schematic diagram of a manufacturing apparatus for manufacturing the connection wire of the present invention.

【図4】混合器の作用を示す概略断面図である。FIG. 4 is a schematic cross-sectional view showing the operation of the mixer.

【符号の説明】[Explanation of symbols]

2…超伝導デバイス 5…周辺回路 8…接続線 8a…超伝導部分 8b…合金部 8c…境界 9…コネクタ 10b,11b…流量調節器 10,11…ビヒクルタンク 10a,11a…パイプ 12…混合器 13…成形ダイス 15…カッタ 16…トンネル電気炉 17…制御装置 2...Superconducting device 5...Peripheral circuit 8...Connection line 8a...Superconducting part 8b...Alloy part 8c...boundary 9...Connector 10b, 11b...Flow rate regulator 10, 11...Vehicle tank 10a, 11a...pipe 12...Mixer 13... Molding die 15...Cutter 16...Tunnel electric furnace 17...Control device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  低温で動作する超伝導デバイスと常温
近傍で動作する周辺回路とを備え、前記超伝導デバイス
と前記周辺回路とを電気的に接続する接続線において、
前記接続線は、線路の温度環境が超伝導材料の臨界温度
以下である部分の成分が主として超伝導材料であり、臨
界温度以上で前記周辺回路に接続される部分が主として
電気の良導体からなる金属で構成されていると共に、前
記両者の接合が臨界温度の直下に相当する部分で且つ前
記線路の長さ方向に前記両者の密度がなだらかに変化し
てなることを特徴とする接続線。
1. A connection line that electrically connects the superconducting device and the peripheral circuit, comprising a superconducting device that operates at a low temperature and a peripheral circuit that operates near room temperature,
The connecting wire is mainly made of superconducting material in the portion where the temperature environment of the line is below the critical temperature of the superconducting material, and the portion connected to the peripheral circuit at the critical temperature or above is made of metal mainly consisting of a good electrical conductor. A connection line characterized in that the junction between the two is at a portion corresponding to just below the critical temperature, and the density of the two changes gently in the length direction of the line.
【請求項2】  前記金属は銀を主体とした合金であり
、前記超伝導材料は酸化物超伝導材料であることを特徴
とする請求項1に記載の接続線。
2. The connecting wire according to claim 1, wherein the metal is an alloy mainly composed of silver, and the superconducting material is an oxide superconducting material.
【請求項3】  合金微粉が収納されるビヒクルタンク
と、超伝導微粉が収納されるビヒクルタンクと、前記各
ビヒクルタンクの夫々にパイプを介して連通された混合
器と、該混合器の下方に位置して配設され前記混合器か
ら排出された線材を引き伸ばすように設定された成形ダ
イスと、該成形ダイスの下方に位置して配設され前記成
形ダイスにより引き伸ばされた線材を適宜長さに切断す
るカッタと、該カッタに隣接して切断後の線材を焼き付
けるトンネル電気炉と、流量調節器と、制御装置と少な
くとも備えたことを特徴とする請求項1に記載の接続線
の製造装置。
3. A vehicle tank in which alloy fine powder is stored, a vehicle tank in which superconducting fine powder is stored, a mixer connected to each of the vehicle tanks through pipes, and a mixer located below the mixer. a forming die that is positioned below the forming die and set to stretch the wire discharged from the mixer; and a forming die that is placed below the forming die and the wire drawn by the forming die is made into an appropriate length. 2. The connecting wire manufacturing apparatus according to claim 1, comprising at least a cutter for cutting, a tunnel electric furnace for baking the cut wire adjacent to the cutter, a flow rate regulator, and a control device.
【請求項4】  一方のビヒクルタンクに合金微粉が収
納されると共に、他方のビヒクルタンクに超伝導微粉が
収納され、前記各ビヒクルタンクに収納された各微粉は
、その成分比を調節されながら混合器から排出され、排
出後の線材は所定形状及び所定長さに成形されて切断さ
れた後トンネル電気炉内で焼き付けられたことを特徴と
する請求項1に記載の接続線の製造方法。
4. One vehicle tank stores alloy fine powder, and the other vehicle tank stores superconducting fine powder, and each fine powder stored in each vehicle tank is mixed with its component ratio adjusted. 2. The method of manufacturing a connecting wire according to claim 1, wherein the wire rod discharged from the container is formed into a predetermined shape and a predetermined length, cut, and then baked in a tunnel electric furnace.
JP2413207A 1990-12-21 1990-12-21 Connecting wire and method and device for manufacturing the same Pending JPH04220966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2413207A JPH04220966A (en) 1990-12-21 1990-12-21 Connecting wire and method and device for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2413207A JPH04220966A (en) 1990-12-21 1990-12-21 Connecting wire and method and device for manufacturing the same

Publications (1)

Publication Number Publication Date
JPH04220966A true JPH04220966A (en) 1992-08-11

Family

ID=18521892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2413207A Pending JPH04220966A (en) 1990-12-21 1990-12-21 Connecting wire and method and device for manufacturing the same

Country Status (1)

Country Link
JP (1) JPH04220966A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63262808A (en) * 1987-04-21 1988-10-31 Fujikura Ltd Joining structure of superconductor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63262808A (en) * 1987-04-21 1988-10-31 Fujikura Ltd Joining structure of superconductor

Similar Documents

Publication Publication Date Title
Rosenbaum et al. Sharp metal-insulator transition in a random solid
JPH04220966A (en) Connecting wire and method and device for manufacturing the same
Redwing et al. Observation of strong to Josephson-coupled crossover in 10 YBa 2 Cu 3 O x bicrystal junctions
US3255335A (en) Superconductive switch comprising carbon
US3076102A (en) Cryogenic electronic gating circuit
Paalanen et al. A criterion for the determination of upper critical fields in highly disordered thin‐film superconductors
JPH01157021A (en) Superconducting thermal switch
Wu Simulations of microwave characteristics of high-temperature superconducting microstrip lines by using an empirical two-fluid model
JPH04278469A (en) Superconductor sensor assembly and its assembling method
JPH01248574A (en) Thermoelectric element
JP2892418B2 (en) Metal-oxide superconductor composite and method for producing the same
Behera et al. DC Electrical Resistivity Study of Granularity in YBa 2 CU 3 O 7/Ag Composites
Zhang et al. Superconducting fluctuation induced conductance corrections near a pair-breaking quantum phase transition in doubly connected ultrathin cylinders of Al
Weijenbergh et al. The ettingshausen effect in superconducting Pb40-In60
Smith et al. Thermal, self-field, and microstructure effects for critical currents in polycrystalline YBa2Cu3O7− δ
Yamamoto et al. Fabrication of high Tc superconductor, Ba2Y1Cu3O7-x· Ag metal composite thick film and their evaluation
Svistunov et al. The contact resistance in the YBaCuO/Ag System
Behera et al. Thermally activated flux creep and percolative conduction in YBa2Cu3O7-y/Ag composite thick films
JPH01243484A (en) Superconducting element
Miiller Microwave properties of high-T, oxide superconductors
JP2680961B2 (en) Superconducting field effect device and method of manufacturing the same
Chuang et al. Recovery of Superconductivity of Formvar-Coated Composite Nb-Ti/Cu from Postquench Conditions
US20050215436A1 (en) High temperature super conductive josephson tunnel junction
Strom et al. Thermal conductivity of Evanohm in the temperature range 0.4–77 K
Secco et al. p, T-dependence of the thermoelectric power of Fe through the alpha⤦ gamma transformation