JP2680961B2 - Superconducting field effect device and method of manufacturing the same - Google Patents

Superconducting field effect device and method of manufacturing the same

Info

Publication number
JP2680961B2
JP2680961B2 JP3351023A JP35102391A JP2680961B2 JP 2680961 B2 JP2680961 B2 JP 2680961B2 JP 3351023 A JP3351023 A JP 3351023A JP 35102391 A JP35102391 A JP 35102391A JP 2680961 B2 JP2680961 B2 JP 2680961B2
Authority
JP
Japan
Prior art keywords
superconducting
channel
thin film
field effect
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3351023A
Other languages
Japanese (ja)
Other versions
JPH05167117A (en
Inventor
孝夫 中村
道朝 飯山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3351023A priority Critical patent/JP2680961B2/en
Publication of JPH05167117A publication Critical patent/JPH05167117A/en
Application granted granted Critical
Publication of JP2680961B2 publication Critical patent/JP2680961B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、超電導電界効果型素子
およびその作製方法に関する。より詳細には、超電導チ
ャネル、超電導ソース領域および超電導ドレイン領域が
一体の酸化物超電導薄膜で構成され、良好な特性を有す
る超電導電界効果型素子およびその作製方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting field effect element and a method for manufacturing the same. More specifically, the present invention relates to a superconducting field effect device having a superconducting channel, a superconducting source region, and a superconducting drain region which are integrally formed of an oxide superconducting thin film, and having excellent characteristics, and a method for producing the same.

【0002】[0002]

【従来の技術】超電導現象を利用した素子は、従来の半
導体素子に比較して高速であり、消費電力も小さく、飛
躍的に高性能化することができると考えられている。特
に近年研究が進んでいる酸化物超電導体を使用すること
により、比較的高い温度で動作する超電導素子を作製す
ることが可能である。超電導素子としては、ジョセフソ
ン素子がよく知られているが、ジョセフソン素子は2端
子の素子であるので論理回路を構成しようとすると、回
路が複雑になる。そのため、3端子の超電導素子が実用
上有利である。
2. Description of the Related Art It is considered that a device utilizing the superconductivity phenomenon has a higher speed, consumes less power, and can achieve a dramatic improvement in performance as compared with a conventional semiconductor device. In particular, by using an oxide superconductor, which has been studied in recent years, it is possible to manufacture a superconducting element that operates at a relatively high temperature. As a superconducting element, a Josephson element is well known, but since the Josephson element is a two-terminal element, the circuit becomes complicated when trying to configure a logic circuit. Therefore, a three-terminal superconducting element is practically advantageous.

【0003】3端子の超電導素子には、近接させて配置
した超電導領域間の半導体に超電導電流を流す超電導近
接効果を利用したものと、超電導チャネルに流れる超電
導電流をゲート電極で制御するものとが代表的である。
どちらの素子も入出力の分離が可能であり、電圧制御型
の素子であって、信号の増幅作用があるという点では共
通している。しかしながら、超電導近接効果を得るため
には、超電導領域をその超電導体のコヒーレンス長の数
倍(酸化物超電導体の場合数nm)以内の距離に配置しな
ければならない。従って、非常に精密な加工が要求され
る。それに対し、チャネルが超電導チャネルになってい
る超電導素子は、電流密度が大きく、製造上も超電導
を近接させて配置するという微細加工を必要としな
い。
[0003] Three-terminal superconducting elements include those utilizing a superconducting proximity effect in which a superconducting current flows through a semiconductor between superconducting regions arranged close to each other, and those controlling a superconducting current flowing in a superconducting channel by a gate electrode. Representative.
Both elements can separate input and output, are voltage-controlled elements, and have a common point in that they have a signal amplifying action. However, in order to obtain the superconducting proximity effect, the superconducting region must be arranged at a distance within several times the coherence length of the superconductor (several nm in the case of an oxide superconductor). Therefore, very precise processing is required. In contrast, a superconducting device channel is superconducting channel, the current density is large, even the manufacturing superconducting territory
There is no need for fine processing of arranging the regions close to each other.

【0004】図2に、超電導チャネルを有する超電導電
界効果型素子の一例の概略図を示す。図2の超電導電界
効果型素子は、基板5上に配置された酸化物超電導体に
よる超電導チャネル10と、超電導チャネル10の両端付近
にそれぞれ配置された超電導ソース領域2および超電導
ドレイン領域3と、超電導チャネル10上にゲート絶縁層
7を介して配置されたゲート電極4とを具備する。ま
た、超電導ソース領域2および超電導ドレイン領域3上
にはそれぞれソース電極12およびドレイン電極13が形成
されている。この超電導電界効果型素子は、ソース電極
12およびドレイン電極13から供給され、超電導ソース領
域2および超電導ドレイン電極3間の超電導チャネル10
を流れる超電導電流をゲート電極4に印加する電圧で制
御する。
FIG. 2 is a schematic view showing an example of a superconducting field effect element having a superconducting channel. 2 includes a superconducting channel 10 made of an oxide superconductor disposed on a substrate 5, a superconducting source region 2 and a superconducting drain region 3 disposed near both ends of the superconducting channel 10, respectively. A gate electrode 4 disposed on the channel 10 with a gate insulating layer 7 interposed therebetween. A source electrode 12 and a drain electrode 13 are formed on the superconducting source region 2 and the superconducting drain region 3, respectively. This superconducting field effect element has a source electrode
12 and a superconducting channel 10 between the superconducting source region 2 and the superconducting drain electrode 3.
Is controlled by the voltage applied to the gate electrode 4.

【0005】上記の超電導電界効果型素子では、超電導
チャネル10を流れる電流をゲート電極4に印加する電圧
で制御する。そのため、超電導チャネル10のゲート部分
の厚さは5nm程度にしなければならず、また、ゲート絶
縁層7の厚さも10〜15nmにしなければならない。一方、
この極薄の超電導チャネルは、結晶性がよく、特性が優
れた酸化物超電導薄膜で構成されていなければならな
い。
In the above superconducting field effect element, the current flowing through superconducting channel 10 is controlled by the voltage applied to gate electrode 4. Therefore, the thickness of the gate portion of the superconducting channel 10 must be about 5 nm, and the thickness of the gate insulating layer 7 must be 10 to 15 nm. on the other hand,
This ultrathin superconducting channel must be composed of an oxide superconducting thin film having good crystallinity and excellent characteristics.

【0006】また、上記の超電導電界効果型素子では、
超電導チャネルの超電導電流は水平方向に流れ、超電導
ソース領域および超電導ドレイン領域の超電導電流は垂
直方向に流れる。酸化物超電導体は、結晶のc軸に垂直
な方向の臨界電流密度が大きい。従って、超電導チャネ
ルは、水平方向に大きな電流を流すことができるc軸配
向の酸化物超電導薄膜で構成されていることが好まし
く、超電導ソース領域および超電導ドレイン領域は、垂
直方向に大きな電流を流すことができるa軸配向の酸化
物超電導薄膜で構成されていることが好ましい。
In the above superconducting field effect element,
The superconducting current in the superconducting channel flows in the horizontal direction, and the superconducting current in the superconducting source region and the superconducting drain region flows in the vertical direction. The oxide superconductor has a large critical current density in the direction perpendicular to the c-axis of the crystal. Therefore, it is preferable that the superconducting channel is formed of a c-axis oriented oxide superconducting thin film capable of passing a large current in the horizontal direction, and that the superconducting source region and the superconducting drain region pass a large current in the vertical direction. It is preferable to be composed of an a-axis oriented oxide superconducting thin film.

【0007】そのため、従来は、a軸配向、c軸配向ど
ちらか一方の酸化物超電導薄膜を最初に成膜した後、不
要な部分をエッチングし、他方の酸化物超電導薄膜を再
び成膜していた。
Therefore, conventionally, after the oxide superconducting thin film having either the a-axis orientation or the c-axis orientation is first formed, an unnecessary portion is etched and the other oxide superconducting thin film is formed again. It was

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記従
来の超電導電界効果型素子では、a軸配向の酸化物超電
導薄膜のc軸の方向は特に制御されていなかった。その
ため、a軸配向の酸化物超電導薄膜のc軸の方向によ
り、素子の特性が大きく異なることがあった。図3を参
照して、これを説明する。
However, in the above conventional superconducting field effect device, the direction of the c-axis of the a-axis oriented oxide superconducting thin film has not been particularly controlled. Therefore, the characteristics of the device may vary greatly depending on the c-axis direction of the a-axis oriented oxide superconducting thin film. This will be described with reference to FIG.

【0009】図3は、図2に示した超電導電界効果型素
子の超電導ソース領域2および超電導チャネル10の近傍
を拡大して図示した一部拡大図である。図3の超電導電
界効果型素子では、ソース電極12から超電導ソース領域
2の中途までは、超電導電流がほぼ垂直方向に流れると
考えられる。しかしながら、超電導ソース領域2の下側
では超電導電流は超電導チャネル10の方に曲がり、超電
導チャネル10を水平に流れた超電導電流は超電導ドレイ
ン領域3に到達する。
FIG. 3 is a partially enlarged view showing the vicinity of the superconducting source region 2 and the superconducting channel 10 of the superconducting field effect device shown in FIG. 2 in an enlarged manner. In the superconducting field effect device of FIG. 3, it is considered that the superconducting current flows from the source electrode 12 to the middle of the superconducting source region 2 in a substantially vertical direction. However, below the superconducting source region 2, the superconducting current bends toward the superconducting channel 10, and the superconducting current flowing horizontally in the superconducting channel 10 reaches the superconducting drain region 3.

【0010】超電導ソース領域2がa軸配向の酸化物超
電導薄膜で構成されている場合、超電導電流が垂直方向
に流れることに関しては問題がない。しかしながら、超
電導ソース領域2を構成するa軸配向の酸化物超電導薄
膜のc軸が図3の矢印Xに平行な場合、超電導ソース領
域2から超電導チャネル10へ流れ込む超電導電流は、酸
化物超電導体の臨界電流密度が小さい方向に流れること
になり、超電導電流の大きさはこの部分で制限されてし
まう。即ち、超電導ソース領域2および超電導ドレイン
領域3は、c軸が図3の矢印Yに平行な方向に配向して
いるa軸配向の酸化物超電導薄膜で構成されていること
が好ましい。
When the superconducting source region 2 is composed of an a-axis oriented oxide superconducting thin film, there is no problem with the superconducting current flowing in the vertical direction. However, when the c-axis of the a-axis oriented oxide superconducting thin film forming the superconducting source region 2 is parallel to the arrow X in FIG. 3, the superconducting current flowing from the superconducting source region 2 into the superconducting channel 10 is The critical current density will flow in the smaller direction, and the size of the superconducting current will be limited in this part. That is, the superconducting source region 2 and the superconducting drain region 3 are preferably composed of an a-axis oriented oxide superconducting thin film in which the c-axis is oriented in the direction parallel to the arrow Y in FIG.

【0011】そこで本発明の目的は、上記従来技術の問
題点を解決した超電導電界効果型素子およびその作製方
法を提供することにある。
Therefore, an object of the present invention is to provide a superconducting field effect element and a method for manufacturing the same, which solves the problems of the prior art.

【0012】[0012]

【課題を解決するための手段】本発明に従うと、基板
と、該基板上に形成された酸化物超電導体で構成された
超電導ソース領域および超電導ドレイン領域と、前記基
板上で該超電導ソース領域および超電導ドレイン領域間
に配置され、酸化物超電導体で構成された超電導チャネ
ルと、該超電導チャネル上にゲート絶縁層を介して配置
され、該超電導チャネルを流れる電流を制御するための
ゲート電圧が印加される常電導体で構成されたゲート電
極とを備える超電導電界効果型素子において、前記超電
導チャネルがc軸配向で、前記超電導ソース領域および
前記超電導ドレイン領域が、前記基板成膜面に対しa軸
が垂直に、且つ前記超電導チャネルに流れる超電導電流
の方向に対しc軸が垂直に配向している酸化物超電導薄
膜で構成されていることを特徴とする超電導電界効果型
素子が提供される。
According to the present invention, a substrate, a superconducting source region and a superconducting drain region formed of an oxide superconductor formed on the substrate, a superconducting source region on the substrate, and a superconducting source region A superconducting channel arranged between the superconducting drain regions and formed of an oxide superconductor, and a gate insulating layer disposed on the superconducting channel via a gate insulating layer, and a gate voltage for controlling a current flowing through the superconducting channel is applied. In a superconducting field effect device including a gate electrode composed of a normal conductor, the superconducting channel has a c-axis orientation, and the superconducting source region and the superconducting drain region have an a-axis with respect to the substrate deposition surface. It is composed of an oxide superconducting thin film in which the c-axis is oriented vertically and perpendicular to the direction of the superconducting current flowing in the superconducting channel. Super-FET, wherein the door is provided.

【0013】また、本発明においては、上記本発明の超
電導電界効果型素子を作製する方法として、a軸配向の
酸化物超電導薄膜のc軸の方向を制御可能な材料で構成
された基板上の、前記超電導チャネルとする部分にc軸
配向の酸化物超電導薄膜が成長する材料の層を形成して
酸化物超電導薄膜を成膜する工程を含むことを特徴とす
る方法が提供される。
Further, in the present invention, as a method for producing the superconducting field effect element of the present invention, a substrate formed of a material capable of controlling the c-axis direction of an a-axis oriented oxide superconducting thin film is used. And a step of forming a layer of a material in which a c-axis oriented oxide superconducting thin film grows in a portion to be the superconducting channel to form an oxide superconducting thin film.

【0014】[0014]

【作用】本発明の超電導電界効果型素子は、中間がc軸
配向で、両端がa軸配向で且つ超電導チャネルの超電導
電流の方向に対しc軸が垂直に配向している一体の酸化
物超電導薄膜で超電導チャネル、超電導ソース領域およ
び超電導ドレイン領域が構成されている。従って、超電
導チャネルと、超電導ソース領域および超電導ドレイン
領域との間に抵抗成分や不要なジョセフソン接合が存在
しない。また、酸化物超電導体の臨界電流密度の大きい
方向のみに超電導電流が流れるので、電流容量が大き
い。
The superconducting field effect device according to the present invention is an integrated oxide superconducting device having a c-axis orientation in the middle, a-axis orientation at both ends, and a c-axis orientation perpendicular to the direction of superconducting current in a superconducting channel. The thin film constitutes a superconducting channel, a superconducting source region and a superconducting drain region. Therefore, there is no resistance component or unnecessary Josephson junction between the superconducting channel and the superconducting source region and the superconducting drain region. Moreover, since the superconducting current flows only in the direction in which the critical current density of the oxide superconductor is large, the current capacity is large.

【0015】本発明の方法では、基板にa軸配向の酸化
物超電導薄膜のc軸の方向を制御可能な材料を使用し、
この基板上の超電導チャネルとする部分にc軸配向の酸
化物超電導薄膜が成長する材料の層を形成する。この
後、超電導チャネルとする部分にc軸配向の酸化物超電
導薄膜が成長する条件で酸化物超電導薄膜を成膜する。
他の部分には、c軸が超電導チャネルに対し垂直に配向
しているa軸配向の酸化物超電導薄膜が成長する。従っ
て、本発明の方法では、超電導チャネルと、超電導ソー
ス領域および超電導ドレイン領域との間に抵抗成分や不
要なジョセフソン接合が存在しない超電導素子が作製可
能である。
In the method of the present invention, a material that can control the direction of the c-axis of an a-axis oriented oxide superconducting thin film is used for the substrate,
A layer of a material on which a c-axis oriented oxide superconducting thin film grows is formed on a portion of the substrate to be a superconducting channel. After that, the oxide superconducting thin film is formed under the condition that the c-axis oriented oxide superconducting thin film grows in the portion to be the superconducting channel.
In the other part, an a-axis oriented oxide superconducting thin film in which the c-axis is oriented perpendicular to the superconducting channel grows. Therefore, according to the method of the present invention, it is possible to manufacture a superconducting element in which there is no resistance component or unnecessary Josephson junction between the superconducting channel and the superconducting source region and the superconducting drain region.

【0016】本発明の方法では、基板に例えばSrTiO
3(110)の5°オフセットした基板を使用することが
好ましい。SrTiO3(110)5°オフセット基板とは、
成膜面が(110)面に対して5°の傾斜している面に
なっているSrTiO3単結晶基板である。また、超電導チ
ャネルとする部分に形成する層は、MgOを使用すること
が好ましい。MgO上にc軸配向の酸化物超電導薄膜が成
長する条件で成膜した場合、SrTiO3(110)5°オフ
セット基板上には、c軸が一定の方向に配向したa軸配
向の酸化物超電導薄膜が成長する。また、SrTiO3は、
酸化物超電導体に対してMgO以上に悪影響を与えない。
In the method of the present invention, the substrate is made of, for example, SrTiO 3.
It is preferable to use a substrate offset by 5 ° of 3 (110). What is a SrTiO 3 (110) 5 ° offset substrate?
The SrTiO 3 single crystal substrate has a film-forming surface inclined by 5 ° with respect to the (110) surface. Further, it is preferable to use MgO for the layer formed in the portion to be the superconducting channel. When a film is formed on MgO under the condition that a c-axis oriented oxide superconducting thin film grows, on an SrTiO 3 (110) 5 ° offset substrate, an a-axis oriented oxide superconducting substance in which the c-axis is oriented in a fixed direction is formed. The thin film grows. In addition, SrTiO 3 is
It does not adversely affect the oxide superconductor more than MgO.

【0017】本発明の超電導電界効果型素子には、任意
の酸化物超電導体が使用できるが、Y1Ba2Cu37-X系酸
化物超電導体は安定的に高品質の結晶性のよい薄膜が得
られるので好ましい。また、Bi2Sr2Ca2Cu3x 系酸化物
超電導体は、特にその超電導臨界温度Tc が高いので好
ましい。
Although any oxide superconductor can be used for the superconducting field effect element of the present invention, the Y 1 Ba 2 Cu 3 O 7 -X- based oxide superconductor is stable and has high crystallinity. It is preferable because a good thin film can be obtained. In addition, Bi 2 Sr 2 Ca 2 Cu 3 O x -based oxide superconductor is particularly preferable because its superconducting critical temperature Tc is high.

【0018】以下、本発明を実施例によりさらに詳しく
説明するが、以下の開示は本発明の単なる実施例に過ぎ
ず、本発明の技術的範囲をなんら制限するものではな
い。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the following disclosure is merely an example of the present invention, and does not limit the technical scope of the present invention.

【0019】[0019]

【実施例】本発明の方法により、本発明の超電導電界効
果型素子を作製した。図1を参照して、その工程を説明
する。まず、図1(a)に示すようなSrTiO3(110)5
°オフセット基板5上に図1(b)に示すよう厚さ50〜100
nmのMgO膜20を成膜する。成膜方法としては、各種のス
パッタリング法、CVD法等任意の方法が使用可能であ
る。
EXAMPLES The superconducting field effect element of the present invention was manufactured by the method of the present invention. The process will be described with reference to FIG. First, SrTiO 3 (110) 5 as shown in FIG.
° The thickness on the offset substrate 5 is 50-100 as shown in Fig. 1 (b).
An MgO film 20 of nm is formed. As a film forming method, various methods such as various sputtering methods and CVD methods can be used.

【0020】次に、このMgO膜20を、中央部を除いて、
塩素系のエッチングガスを使用した反応性イオンエッチ
ング、Arイオンミリング、集束イオンビームエッチング
等で除去し、図1(c)に示すよう作製する超電導電界効
果型素子の超電導チャネルとなる部分の下に(100)
方向の帯状のMgO膜21が残るようにする。MgO膜20が除
去された部分には基板5が露出している。基板5の露出
した部分を清浄にするため、基板5を圧力1×10-10Tor
r以下の超高真空中で350〜400℃に加熱し、5分間保持
する。この後、図1(d)に示すよう、基板5上にオフア
クシススパッタリング法で約300nmのY1Ba2Cu37-X
化物超電導薄膜を成膜する。主な成膜条件を以下に示
す。 基板温度 700℃ スパッタリングガス Ar 90 % O2 10 % 圧力 10 Pa 膜厚 300nm
Next, the MgO film 20 is removed except for the central part.
It is removed by reactive ion etching using a chlorine-based etching gas, Ar ion milling, focused ion beam etching, etc., and underneath the portion that will become the superconducting channel of the superconducting field effect element manufactured as shown in Fig. 1 (c). (100)
The strip-shaped MgO film 21 in the direction is left. The substrate 5 is exposed at the portion where the MgO film 20 is removed. In order to clean the exposed part of the substrate 5, the substrate 5 is pressed at a pressure of 1 × 10 −10 Tor.
Heat to 350-400 ° C in an ultrahigh vacuum of r or less and hold for 5 minutes. Thereafter, as shown in FIG. 1D, a Y 1 Ba 2 Cu 3 O 7 -X oxide superconducting thin film having a thickness of about 300 nm is formed on the substrate 5 by off-axis sputtering. The main film forming conditions are shown below. Substrate temperature 700 ℃ Sputtering gas Ar 90% O 2 10% Pressure 10 Pa Film thickness 300nm

【0021】上記のY1Ba2Cu37-X酸化物超電導薄膜
の、MgO膜21上の部分はc軸配向の酸化物超電導薄膜で
構成された超電導チャネル10となり、超電導チャネル10
の両側は、a軸配向の酸化物超電導薄膜で構成された超
電導ソース領域2および超電導ドレイン領域3になって
いる。また、超電導ソース領域2および超電導ドレイン
領域3を構成する酸化物超電導薄膜のc軸は、紙面に対
して概略垂直になっている。さらに、超電導チャネル10
と、超電導ソース領域2および超電導ドレイン領域3と
は、結晶面が連続している。
The portion of the Y 1 Ba 2 Cu 3 O 7-X oxide superconducting thin film on the MgO film 21 becomes a superconducting channel 10 composed of a c-axis oriented oxide superconducting thin film.
On both sides thereof are a superconducting source region 2 and a superconducting drain region 3 which are composed of an a-axis oriented oxide superconducting thin film. Further, the c-axis of the oxide superconducting thin film forming the superconducting source region 2 and the superconducting drain region 3 is substantially perpendicular to the paper surface. Furthermore, superconducting channel 10
The crystal planes of the superconducting source region 2 and the superconducting drain region 3 are continuous.

【0022】次に、超電導ソース領域2および超電導ド
レイン領域3上にAu等を蒸着して図1(e)に示すよう、
それぞれソース電極12およびドレイン電極13を形成す
る。最後に、図1(f)に示すよう、必要に応じてゲート
領域の下の部分をリセスエッチングした後、超電導チャ
ネル10上にMgO、窒化シリコン等でゲート絶縁層7を形
成し、ゲート絶縁層7上にやはりAuでゲート電極4を形
成して本発明の超電導電界効果型素子が完成する。
Next, Au or the like is vapor-deposited on the superconducting source region 2 and the superconducting drain region 3, as shown in FIG. 1 (e).
A source electrode 12 and a drain electrode 13 are formed respectively. Finally, as shown in FIG. 1 (f), a portion under the gate region is recess-etched if necessary, and then the gate insulating layer 7 is formed on the superconducting channel 10 with MgO, silicon nitride or the like. The gate electrode 4 is also formed on Au by 7 to complete the superconducting field effect device of the present invention.

【0023】以上のように、本発明の方法で作製された
本発明の超電導電界効果型素子は、超電導チャネル10の
部分がc軸配向で、超電導ソース領域2および超電導ド
レイン領域3の部分が、a軸配向で且つc軸が超電導チ
ャネルの超電導電流の方向に垂直に配向している一体の
酸化物超電導薄膜で構成されている。従って、超電導チ
ャネル10と、超電導ソース領域2および超電導ドレイン
領域3との間に抵抗成分や不要なジョセフソン接合が存
在しない。また、超電導ソース領域2および超電導ドレ
イン領域3から、超電導チャネル10に流出入する超電導
電流が効果的に超電導チャネルに絞り込まれ、良好な電
流−電圧特性を示す。
As described above, in the superconducting field effect element of the present invention manufactured by the method of the present invention, the superconducting channel 10 is c-axis oriented, and the superconducting source region 2 and the superconducting drain region 3 are: It is composed of an integral oxide superconducting thin film in which the a-axis is oriented and the c-axis is oriented perpendicular to the direction of the superconducting current in the superconducting channel. Therefore, there is no resistance component or unnecessary Josephson junction between the superconducting channel 10 and the superconducting source region 2 and the superconducting drain region 3. In addition, the superconducting current flowing from the superconducting source region 2 and the superconducting drain region 3 into and out of the superconducting channel 10 is effectively narrowed down to the superconducting channel, and excellent current-voltage characteristics are exhibited.

【0024】[0024]

【発明の効果】以上説明したように、本発明に従えば、
新規な構成の超電導電界効果型素子およびその作製方法
が提供される。本発明の方法で作製された本発明の超電
導電界効果型素子は、超電導チャネルと、超電導ソース
領域および超電導ドレイン領域との間に抵抗成分や不要
なジョセフソン接合が存在しないので、従来の超電導電
界効果型素子よりも優れた特性を示す。
As described above, according to the present invention,
A superconducting field effect device having a novel structure and a method for manufacturing the same are provided. The superconducting field effect element of the present invention produced by the method of the present invention has no resistance component or unnecessary Josephson junctions between the superconducting channel and the superconducting source region and the superconducting drain region. It exhibits better characteristics than the effect element.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法で本発明の超電導電界効果型素子
を作製する工程を説明する図である。
FIG. 1 is a diagram illustrating a step of producing a superconducting field effect element of the present invention by a method of the present invention.

【図2】超電導電界効果型素子の構成を説明する図であ
る。
FIG. 2 is a diagram illustrating a configuration of a superconducting field effect element.

【図3】従来の超電導電界効果型素子の問題点を説明す
る図である。
FIG. 3 is a diagram illustrating a problem of a conventional superconducting field effect device.

【符号の説明】[Explanation of symbols]

2 超電導ソース領域 3 超電導ドレイン領域 4 ゲート電極 5 基板 7 ゲート絶縁層 10 超電導チャネル 2 superconducting source region 3 superconducting drain region 4 gate electrode 5 substrate 7 gate insulating layer 10 superconducting channel

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板と、該基板上に形成された酸化物超
電導体で構成された超電導ソース領域および超電導ドレ
イン領域と、前記基板上で該超電導ソース領域および超
電導ドレイン領域間に配置され、酸化物超電導体で構成
された超電導チャネルと、該超電導チャネル上にゲート
絶縁層を介して配置され、該超電導チャネルを流れる電
流を制御するためのゲート電圧が印加される常電導体で
構成されたゲート電極とを備える超電導電界効果型素子
において、前記超電導チャネルがc軸配向で、前記超電
導ソース領域および前記超電導ドレイン領域が、前記基
板成膜面に対しa軸が垂直に、且つ前記超電導チャネル
に流れる超電導電流の方向に対しc軸が垂直に配向して
いる酸化物超電導薄膜で構成されていることを特徴とす
る超電導電界効果型素子。
1. A substrate, a superconducting source region and a superconducting drain region formed of an oxide superconductor formed on the substrate, and a substrate disposed between the superconducting source region and the superconducting drain region, and being oxidized. A superconducting channel composed of a superconducting material and a normal conductor arranged on the superconducting channel via a gate insulating layer and to which a gate voltage is applied to control a current flowing through the superconducting channel. In a superconducting field effect device including an electrode, the superconducting channel is c-axis oriented, and the superconducting source region and the superconducting drain region flow in the superconducting channel with the a-axis perpendicular to the substrate film formation surface. Superconducting field effect type characterized by being composed of an oxide superconducting thin film whose c-axis is oriented perpendicular to the direction of superconducting current. element.
【請求項2】 請求項1に記載の超電導電界効果型素子
を作製する方法において、a軸配向の酸化物超電導薄膜
のc軸の方向を制御可能な材料で構成された基板上の、
前記超電導チャネルとする部分にc軸配向の酸化物超電
導薄膜が成長する材料の層を形成して酸化物超電導薄膜
を成膜する工程を含むことを特徴とする方法。
2. The method for producing a superconducting field effect element according to claim 1, wherein a substrate made of a material capable of controlling the c-axis direction of an a-axis oriented oxide superconducting thin film is used.
A method comprising: forming a layer of a material on which a c-axis oriented oxide superconducting thin film grows in a portion to be the superconducting channel to form an oxide superconducting thin film.
JP3351023A 1991-12-11 1991-12-11 Superconducting field effect device and method of manufacturing the same Expired - Lifetime JP2680961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3351023A JP2680961B2 (en) 1991-12-11 1991-12-11 Superconducting field effect device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3351023A JP2680961B2 (en) 1991-12-11 1991-12-11 Superconducting field effect device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH05167117A JPH05167117A (en) 1993-07-02
JP2680961B2 true JP2680961B2 (en) 1997-11-19

Family

ID=18414519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3351023A Expired - Lifetime JP2680961B2 (en) 1991-12-11 1991-12-11 Superconducting field effect device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2680961B2 (en)

Also Published As

Publication number Publication date
JPH05167117A (en) 1993-07-02

Similar Documents

Publication Publication Date Title
US5494891A (en) Method for manufacturing three-terminal oxide superconducting devices
EP0798790A1 (en) Method for manufacturing a superconducting device having an extremely thin superconducting channel
US5447907A (en) Superconducting device with c-axis channel and a-axis source and drain having a continuous crystal structure
JPH05251777A (en) Superconducting field-effect type element and manufacture thereof
JP2680961B2 (en) Superconducting field effect device and method of manufacturing the same
US5430013A (en) Superconducting thin film formed of oxide superconductor material, superconducting current path and superconducting device utilizing the superconducting thin film
JP2730368B2 (en) Superconducting field effect element and method for producing the same
US5861361A (en) Superconducting field effect device having a superconducting channel and method for manufacturing the same
JP2680960B2 (en) Superconducting field effect device and method of manufacturing the same
US5552374A (en) Oxide superconducting a transistor in crank-shaped configuration
JP2680949B2 (en) Method for manufacturing superconducting field effect device
JP2680954B2 (en) Superconducting field effect element
JP2773503B2 (en) Superconducting field effect element and method for producing the same
JP2680959B2 (en) Superconducting field effect device and method of manufacturing the same
JPH05251775A (en) Superconducting field-effect type element and manufacture thereof
JP2641976B2 (en) Superconducting element and fabrication method
JP2737499B2 (en) Superconducting field effect element and method for producing the same
JP2614939B2 (en) Superconducting element and fabrication method
JPH0555648A (en) Superconducting element
JPH0878743A (en) Superconductive field effect type element
JP2647251B2 (en) Superconducting element and fabrication method
JPH0537033A (en) Superconductive device
JP2597743B2 (en) Superconducting element fabrication method
JPH05251769A (en) Connection structure of superconducting current path
EP0565452A1 (en) Superconducting device having a superconducting channel formed of oxide superconductor material

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970715