JPH0555648A - Superconducting element - Google Patents

Superconducting element

Info

Publication number
JPH0555648A
JPH0555648A JP3238690A JP23869091A JPH0555648A JP H0555648 A JPH0555648 A JP H0555648A JP 3238690 A JP3238690 A JP 3238690A JP 23869091 A JP23869091 A JP 23869091A JP H0555648 A JPH0555648 A JP H0555648A
Authority
JP
Japan
Prior art keywords
superconducting
channel
layer
oxide
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3238690A
Other languages
Japanese (ja)
Inventor
Satoshi Tanaka
聡 田中
Michitomo Iiyama
道朝 飯山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3238690A priority Critical patent/JPH0555648A/en
Priority to DE69210150T priority patent/DE69210150T2/en
Priority to CA 2076913 priority patent/CA2076913A1/en
Priority to EP92402344A priority patent/EP0533519B1/en
Publication of JPH0555648A publication Critical patent/JPH0555648A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the crystalline state of a Y1Ba2Cu3O7-x oxide superconducting thin film by a Pr1Ba2Cu3O7-y layer and to increase a substantial current capacity of a superconducting channel. CONSTITUTION:The superconducting element comprises a Pr1Ba2Cu3O7-y layer 6 formed on an MgO board 10, a superconducting channel 20 disposed near the center of a Y1Ba2Cu3O7-x oxide superconducting thin film 2 formed on the layer 6, a gate electrode 6 disposed on the channel 20 through a gate insulating layer 9, and a superconducting source electrode 3 and a superconducting drain electrode 4 formed of Y1Ba2Cu3O7-x oxide superconductor disposed at both sides of the channel 20.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超電導素子に関する。
より詳細には、チャネルが酸化物超電導体で構成されて
いる超電導電界効果型三端子素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting device.
More specifically, the present invention relates to a superconducting field effect type three-terminal element whose channel is composed of an oxide superconductor.

【0002】[0002]

【従来の技術】超電導現象を利用した素子は、従来の半
導体素子に比較して高速であり、消費電力も小さく、飛
躍的に高性能化することができると考えられている。特
に近年研究が進んでいる酸化物超電導体を使用すること
により、比較的高い温度で動作する超電導素子を作製す
ることが可能である。超電導素子としては、ジョセフソ
ン素子がよく知られているが、ジョセフソン素子は2端
子の素子であるので論理回路を構成しようとすると、回
路が複雑になる。そのため、3端子の超電導素子が実用
上有利である。
2. Description of the Related Art It is considered that an element utilizing the superconducting phenomenon is faster than a conventional semiconductor element, consumes less power, and can be dramatically improved in performance. In particular, by using an oxide superconductor, which has been studied in recent years, it is possible to manufacture a superconducting element that operates at a relatively high temperature. As a superconducting element, a Josephson element is well known. However, since the Josephson element is a two-terminal element, the circuit becomes complicated when trying to configure a logic circuit. Therefore, a three-terminal superconducting element is practically advantageous.

【0003】3端子の超電導素子には、近接させて配置
した超電導電極間の半導体に超電導電流を流す超電導近
接効果を利用したものと、超電導チャネルに流れる超電
導電流をゲート電極で制御する超電導電界効果型素子と
が代表的である。どちらの素子も入出力の分離が可能で
あり、電圧制御型の素子であって、信号の増幅作用があ
るという点では共通している。しかしながら、超電導近
接効果を得るためには、超電導体電極をその超電導体の
コヒーレンス長の数倍(酸化物超電導体の場合数nm)以
内の距離に配置しなければならない。従って、非常に精
密な加工が要求される。それに対し、チャネルが超電導
チャネルになっている超電導素子は、電流容量が大き
く、製造上も超電導電極を近接させて配置するという微
細加工を必要としない。
The three-terminal superconducting element utilizes a superconducting proximity effect that causes a superconducting current to flow in a semiconductor between superconducting electrodes that are arranged close to each other, and a superconducting field effect that controls the superconducting current flowing in a superconducting channel with a gate electrode. Mold elements are typical. Both elements are capable of separating input and output, are voltage-controlled elements, and have a common point in that they have a signal amplifying action. However, in order to obtain the superconducting proximity effect, the superconductor electrode must be arranged within a distance of several times the coherence length of the superconductor (several nm in the case of an oxide superconductor). Therefore, very precise processing is required. On the other hand, a superconducting element whose channel is a superconducting channel has a large current capacity and does not require microfabrication in which the superconducting conductive electrodes are arranged close to each other in manufacturing.

【0004】図2に、超電導チャネルを有する超電導電
界効果型素子の一例の概略図を示す。図2の超電導電界
効果型素子1は、基板10上に配置された酸化物超電導薄
膜2の中央部付近に配置された超電導チャネル20と、超
電導チャネル20の両端付近にそれぞれ配置された酸化物
超電導体で構成された超電導ソース電極3および超電導
ドレイン電極4と、超電導チャネル20上にゲート絶縁層
9を介して配置されたゲート電極5とを具備する。この
超電導電界効果型素子は、超電導ソース電極3および超
電導ドレイン電極4間の超電導チャネル20を流れる超電
導電流をゲート電極5に印加する電圧で制御する。
FIG. 2 shows a schematic view of an example of a superconducting field effect device having a superconducting channel. The superconducting field effect device 1 of FIG. 2 is composed of a superconducting channel 20 arranged near the central portion of the oxide superconducting thin film 2 arranged on the substrate 10 and an oxide superconducting member arranged near both ends of the superconducting channel 20. It comprises a superconducting source electrode 3 and a superconducting drain electrode 4 formed of a body, and a gate electrode 5 arranged on the superconducting channel 20 via a gate insulating layer 9. In this superconducting field effect device, the superconducting current flowing through the superconducting channel 20 between the superconducting source electrode 3 and the superconducting drain electrode 4 is controlled by the voltage applied to the gate electrode 5.

【0005】[0005]

【発明が解決しようとする課題】上記の超電導電界効果
型素子は、超電導チャネル20に流れる超電導電流をゲー
ト電極5に印加された電圧で制御するため、超電導チャ
ネル20およびゲート絶縁層9の厚さは極めて小さいもの
としなければならない。具体的には、超電導チャネル20
の厚さは5nm以下で、酸化物超電導体結晶の単位胞5個
分程度であることが好ましく、ゲート絶縁層9の厚さは
十分薄く、且つトンネル電流が流れない10nm程度である
ことが好ましい。しかしながら、実際に超電導チャネル
20を酸化物超電導体結晶の単位胞5個分の厚さの酸化物
超電導薄膜で形成すると、上部および下部の1〜2単位
胞分の厚さの部分は超電導性を示さない場合があり、超
電導チャネル20に流すことができる電流値は制限されて
いた。
In the above superconducting field effect element, since the superconducting current flowing in the superconducting channel 20 is controlled by the voltage applied to the gate electrode 5, the superconducting channel 20 and the gate insulating layer 9 have different thicknesses. Must be extremely small. Specifically, the superconducting channel 20
Is preferably 5 nm or less, about 5 unit cells of the oxide superconductor crystal, and the thickness of the gate insulating layer 9 is preferably sufficiently thin and about 10 nm at which tunnel current does not flow. .. However, in practice superconducting channels
When 20 is formed of an oxide superconducting thin film having a thickness of 5 unit cells of an oxide superconductor crystal, the upper and lower portions having a thickness of 1 to 2 unit cells may not show superconductivity, The current value that can be passed through the superconducting channel 20 was limited.

【0006】超電導チャネル20の下部の1〜2単位胞分
の厚さの部分が超電導性を示さないのは、基板材料と酸
化物超電導薄膜を構成する酸化物超電導体とで熱膨張率
が異なるので、成膜後室温に至ると応力を受けて薄膜下
部の結晶が歪むからである。また、基板を構成する原子
が酸化物超電導体結晶中に拡散することが原因となって
いることもある。
The reason why the lower portion of the superconducting channel 20 having a thickness of 1 to 2 unit cells does not exhibit superconductivity is that the substrate material and the oxide superconductor constituting the oxide superconducting thin film have different thermal expansion coefficients. Therefore, when the temperature reaches room temperature after the film formation, the crystal under the thin film is distorted. Further, it may be caused by the atoms constituting the substrate diffusing into the oxide superconductor crystal.

【0007】そこで、本発明の目的は、上記の超電導チ
ャネルを構成する酸化物超電導薄膜の非超電導部分を減
らした超電導電界効果型素子を提供することにある。
Therefore, an object of the present invention is to provide a superconducting field effect element in which the non-superconducting portion of the oxide superconducting thin film forming the above-mentioned superconducting channel is reduced.

【0008】[0008]

【課題を解決するための手段】本発明に従うと、基板上
に配置された酸化物超電導体で構成された超電導ソース
領域および超電導ドレイン領域と、該超電導ソース領域
および超電導ドレイン領域間に配置された酸化物超電導
体で構成された超電導チャネルと、該超電導チャネル上
にゲート絶縁体層を介して配置され、該超電導チャネル
を流れる電流を制御するためのゲート電圧が印加される
常電導体で構成されたゲート電極とを備える超電導電界
効果型素子において、前記超電導チャネルと前記基板と
の間に、前記超電導チャネルとほぼ等しい厚さのPr1Ba2
Cu37-y層を具備することを特徴とする超電導素子が提
供される。
According to the present invention, a superconducting source region and a superconducting drain region formed of an oxide superconductor disposed on a substrate and disposed between the superconducting source region and the superconducting drain region. A superconducting channel composed of an oxide superconductor, and a normal conductor arranged on the superconducting channel via a gate insulator layer and to which a gate voltage is applied to control a current flowing through the superconducting channel. In a superconducting field effect device including a gate electrode, a Pr 1 Ba 2 film having a thickness substantially equal to that of the superconducting channel is provided between the superconducting channel and the substrate.
A superconducting device comprising a Cu 3 O 7-y layer is provided.

【0009】[0009]

【作用】本発明の超電導素子は、基板と超電導チャネル
との間に超電導チャネルとほぼ等しい厚さのPr1Ba2Cu3
7-yで構成されたバッファ層を具備するところにその
主要な特徴がある。Pr1Ba2Cu37-y層上に形成された超
電導チャネルは、超電導チャネルを構成する酸化物超電
導薄膜の結晶状態が改善され、酸化物超電導薄膜の最下
部の結晶単位胞も超電導状態になる。これは、Pr1Ba2Cu
37-y結晶が酸化物超電導体結晶と同様な層状の構造を
有し、且つ酸化物超電導体結晶との格子整合性が良好な
のでPr1Ba2Cu37-y層上に酸化物超電導薄膜を形成する
と、酸化物超電導薄膜下部の酸化物超電導体結晶の不完
全な部分を補うからと考えられている。また、基板との
熱膨張率の差による歪みもPr1Ba2Cu37-y層で吸収さ
れ、基板からの原子の拡散もPr1Ba2Cu37-y層内だけで
止まる。このため、本発明の超電導素子では、Pr1Ba2Cu
37-y層は、超電導チャネルとほぼ等しい厚さが必要で
あり、それよりも薄い場合には効果が十分ではない。ま
た、超電導チャネルよりも厚くしてもその効果に変わり
がない。
The superconducting device of the present invention is provided with a Pr 1 Ba 2 Cu 3 layer having a thickness approximately equal to that of the superconducting channel between the substrate and the superconducting channel.
Its main feature is that it has a buffer layer composed of O 7-y . The superconducting channel formed on the Pr 1 Ba 2 Cu 3 O 7-y layer improves the crystalline state of the oxide superconducting thin film that constitutes the superconducting channel, and the crystalline unit cell at the bottom of the oxide superconducting thin film is also in the superconducting state. become. This is Pr 1 Ba 2 Cu
Since the 3 O 7-y crystal has a layered structure similar to that of the oxide superconductor crystal and has good lattice matching with the oxide superconductor crystal, it is oxidized on the Pr 1 Ba 2 Cu 3 O 7-y layer. It is believed that the formation of the superconducting thin film supplements the incomplete portion of the oxide superconductor crystal under the oxide superconducting thin film. Further, the strain due to the difference in the coefficient of thermal expansion from the substrate is also absorbed by the Pr 1 Ba 2 Cu 3 O 7-y layer, and the diffusion of atoms from the substrate also stops only within the Pr 1 Ba 2 Cu 3 O 7-y layer. .. Therefore, in the superconducting device of the present invention, Pr 1 Ba 2 Cu
The 3 O 7-y layer needs to have a thickness almost equal to that of the superconducting channel, and if it is thinner than that, the effect is not sufficient. Further, even if it is thicker than the superconducting channel, its effect remains the same.

【0010】本発明の超電導素子においては、Pr1Ba2Cu
37-y層の結晶状態は良好でなければならない。結晶状
態が良好で且つ極薄のPr1Ba2Cu37-y層を形成するに
は、MBE法を使用することが好ましい。特に、RHE
ED(反射高速電子線回折)により、モニターしながら
MBE法によりPr1Ba2Cu37-y層を成長させると、正確
に単分子層単位で膜厚が制御できるので好ましい。ま
た、超電導チャネルを構成する酸化物超電導薄膜もMB
E法で成膜する場合には、Pr1Ba2Cu37-y層を成膜後連
続して酸化物超電導薄膜を成膜することが可能である。
In the superconducting device of the present invention, Pr 1 Ba 2 Cu is used.
The crystalline state of the 3 O 7-y layer must be good. The MBE method is preferably used to form an extremely thin Pr 1 Ba 2 Cu 3 O 7-y layer having a good crystal state. Especially RHE
It is preferable to grow the Pr 1 Ba 2 Cu 3 O 7-y layer by the MBE method while monitoring it by ED (reflection high-energy electron diffraction) because the film thickness can be accurately controlled in a unit of monolayer. The oxide superconducting thin film that constitutes the superconducting channel is also MB
When the film is formed by the E method, it is possible to continuously form the oxide superconducting thin film after forming the Pr 1 Ba 2 Cu 3 O 7-y layer.

【0011】本発明は、任意の酸化物超電導体に適用で
きるが、Y1Ba2Cu37-X系酸化物超電導体は安定的に高
品質の結晶性のよい薄膜が得られるので好ましい。ま
た、Bi2Sr2Ca2Cu3x 系酸化物超電導体は、特にその超
電導臨界温度Tc が高いので好ましい。
The present invention can be applied to any oxide superconductor, but the Y 1 Ba 2 Cu 3 O 7 -X oxide superconductor is preferred because it can stably obtain a high quality thin film with good crystallinity. .. Further, the Bi 2 Sr 2 Ca 2 Cu 3 O x oxide superconductor is particularly preferable because its superconducting critical temperature Tc is high.

【0012】以下、本発明を実施例によりさらに詳しく
説明するが、以下の開示は本発明の単なる実施例に過ぎ
ず、本発明の技術的範囲をなんら制限するものではな
い。
Hereinafter, the present invention will be described in more detail with reference to examples, but the following disclosure is merely examples of the present invention and does not limit the technical scope of the present invention.

【0013】[0013]

【実施例】図1に本発明の超電導素子の一例の概略断面
図を示す。図1に示した本発明の超電導素子は、MgO基
板10上に形成されたPr1Ba2Cu37-y層6と、Pr1Ba2Cu3
7-y層6上に形成されたY1Ba2Cu37-X酸化物超電導
薄膜2の中央部付近に配置された超電導チャネル20と、
超電導チャネル20上にゲート絶縁層9を介して配置され
たゲート電極5と、超電導チャネル20の両側にそれぞれ
配置されたY1Ba2Cu37-X酸化物超電導体で構成された
超電導ソース電極3および超電導ドレイン電極4とを具
備する。
1 is a schematic sectional view showing an example of a superconducting element of the present invention. Superconductive elements of the present invention shown in FIG. 1, the Pr 1 Ba 2 Cu 3 O 7 -y layer 6 formed on the MgO substrate 10, Pr 1 Ba 2 Cu 3
A superconducting channel 20 arranged near the center of the Y 1 Ba 2 Cu 3 O 7-X oxide superconducting thin film 2 formed on the O 7-y layer 6;
A superconducting source composed of a gate electrode 5 arranged on the superconducting channel 20 via a gate insulating layer 9 and Y 1 Ba 2 Cu 3 O 7-X oxide superconductors arranged on both sides of the superconducting channel 20. An electrode 3 and a superconducting drain electrode 4 are provided.

【0014】上記本発明の超電導素子では、Pr1Ba2Cu3
7-y層6は、c軸配向のPr1Ba2Cu37-y結晶5単位胞
の薄膜で構成され、その厚さは約5nmである。超電導チ
ャネル20はc軸配向のY1Ba2Cu37-X酸化物超電導体結
晶が5単位胞積層された酸化物超電導薄膜2により構成
され、その厚さは約5nmであった。一方、ゲート絶縁層
9はMgOで構成され、その厚さは約10nmである。
In the above superconducting device of the present invention, Pr 1 Ba 2 Cu 3 is used.
The O 7-y layer 6 is composed of a thin film of 5 unit cells of Pr 1 Ba 2 Cu 3 O 7-y crystal with c-axis orientation, and its thickness is about 5 nm. The superconducting channel 20 was composed of an oxide superconducting thin film 2 in which 5 units of c-axis oriented Y 1 Ba 2 Cu 3 O 7-X oxide superconducting crystals were laminated, and the thickness thereof was about 5 nm. On the other hand, the gate insulating layer 9 is made of MgO and has a thickness of about 10 nm.

【0015】上記本発明の超電導素子を作製する方法を
以下に説明する。まず、MgO基板10上に5単位胞のc軸
配向のPr1Ba2Cu37-y結晶をRHEEDでモニターしな
がらMBE法で積層してPr1Ba2Cu37-y層6を成膜す
る。連続して、5単位胞のc軸配向のY1Ba2Cu37-X
化物超電導体結晶をPr1Ba2Cu37-y層6上に積層し、Y
1Ba2Cu37-X酸化物超電導薄膜2を形成する。Y1Ba2Cu
37-X酸化物超電導薄膜2の中央部にMgOでゲート絶縁
膜9を形成し、ゲート絶縁膜9上にAuでゲート電極5を
形成する。その後、Y1Ba2Cu37-X酸化物超電導薄膜2
の両端にa軸配向のY1Ba2Cu37-X酸化物超電導薄膜を
積層して、超電導ソース電極3および超電導ドレイン電
極4を形成して本発明の超電導素子が完成する。
A method for producing the superconducting element of the present invention will be described below. First, a Pr 1 Ba 2 Cu 3 O 7-y crystal with 5 units of c-axis orientation was laminated on the MgO substrate 10 by the MBE method while monitoring by RHEED, and the Pr 1 Ba 2 Cu 3 O 7-y layer 6 was formed. To form a film. Sequentially stacking 5 unit cells of c-axis oriented Y 1 Ba 2 Cu 3 O 7-X oxide superconductor crystal on the Pr 1 Ba 2 Cu 3 O 7-y layer 6,
1 Ba 2 Cu 3 O 7-X oxide superconducting thin film 2 is formed. Y 1 Ba 2 Cu
The gate insulating film 9 is formed of MgO at the center of the 3 O 7 -X oxide superconducting thin film 2, and the gate electrode 5 is formed of Au on the gate insulating film 9. After that, Y 1 Ba 2 Cu 3 O 7-X oxide superconducting thin film 2
A Y-axis oriented Y 1 Ba 2 Cu 3 O 7-X oxide superconducting thin film is laminated on both ends of the superconducting source electrode 3 and the superconducting drain electrode 4 to complete the superconducting device of the present invention.

【0016】上記のように作製した本発明の超電導素子
は、Y1Ba2Cu37-X酸化物超電導薄膜2の下面から少な
くとも3単位胞分の結晶層は超電導電導性を示した。従
って、従来の超電導素子に較べて実質的に超電導チャネ
ルの断面積が大きく、電流容量も大きい。
In the superconducting element of the present invention produced as described above, the crystal layer of at least 3 unit cells from the lower surface of the Y 1 Ba 2 Cu 3 O 7 -X oxide superconducting thin film 2 showed superconducting property. Therefore, the cross-sectional area of the superconducting channel is substantially larger and the current capacity is larger than that of the conventional superconducting element.

【0017】[0017]

【発明の効果】以上説明したように、本発明に従えば、
従来よりも高性能な超電導3端子素子が提供される。本
発明を超電導回路、電子機器の作製に応用することによ
り、電子装置の大幅な性能向上が可能である。
As described above, according to the present invention,
A superconducting three-terminal element having higher performance than ever before is provided. By applying the present invention to the production of superconducting circuits and electronic devices, it is possible to greatly improve the performance of electronic devices.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の超電導電界効果型素子の概略断面図で
ある。
FIG. 1 is a schematic sectional view of a superconducting field effect element of the present invention.

【図2】従来の超電導電界効果型素子の概略断面図であ
る。
FIG. 2 is a schematic cross-sectional view of a conventional superconducting field effect element.

【符号の説明】[Explanation of symbols]

1 超電導電界効果型素子 2 酸化物超電導薄膜 3 超電導ソース電極 4 超電導ドレイン電極 5 ゲート電極 1 superconducting field effect device 2 oxide superconducting thin film 3 superconducting source electrode 4 superconducting drain electrode 5 gate electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板上に配置された酸化物超電導体で構
成された超電導ソース領域および超電導ドレイン領域
と、該超電導ソース領域および超電導ドレイン領域間に
配置された酸化物超電導体で構成された超電導チャネル
と、該超電導チャネル上にゲート絶縁体層を介して配置
され、該超電導チャネルを流れる電流を制御するための
ゲート電圧が印加される常電導体で構成されたゲート電
極とを備える超電導電界効果型素子において、前記超電
導チャネルと前記基板との間に、前記超電導チャネルと
ほぼ等しい厚さのPr1Ba2Cu37-y層を具備することを特
徴とする超電導素子。
1. A superconducting source region and a superconducting drain region formed of an oxide superconductor arranged on a substrate, and a superconducting oxide superconductor arranged between the superconducting source region and the superconducting drain region. A superconducting field effect comprising a channel and a gate electrode formed on the superconducting channel via a gate insulator layer and composed of a normal conductor to which a gate voltage is applied to control a current flowing through the superconducting channel. A mold element, comprising a Pr 1 Ba 2 Cu 3 O 7-y layer having a thickness substantially equal to that of the superconducting channel between the superconducting channel and the substrate.
JP3238690A 1991-08-26 1991-08-26 Superconducting element Pending JPH0555648A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3238690A JPH0555648A (en) 1991-08-26 1991-08-26 Superconducting element
DE69210150T DE69210150T2 (en) 1991-08-26 1992-08-26 Superconducting device with extremely thin superconducting channel made of oxide superconducting material and process for its production
CA 2076913 CA2076913A1 (en) 1991-08-26 1992-08-26 Superconducting device having an extremely thin superconducting channel formed of oxide superconductor material and method for manufacturing the same
EP92402344A EP0533519B1 (en) 1991-08-26 1992-08-26 Superconducting device having an extremely thin superconducting channel formed of oxide superconductor material and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3238690A JPH0555648A (en) 1991-08-26 1991-08-26 Superconducting element

Publications (1)

Publication Number Publication Date
JPH0555648A true JPH0555648A (en) 1993-03-05

Family

ID=17033853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3238690A Pending JPH0555648A (en) 1991-08-26 1991-08-26 Superconducting element

Country Status (1)

Country Link
JP (1) JPH0555648A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07240541A (en) * 1994-03-02 1995-09-12 Hitachi Ltd Superconductive three-terminal element
US10125808B2 (en) 2008-02-20 2018-11-13 NejiLaw inc. Double-end threaded body and internally-threaded body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6430117A (en) * 1987-07-24 1989-02-01 Furukawa Electric Co Ltd Formation of ceramic superconductor membrane
JPS6453474A (en) * 1987-08-24 1989-03-01 Nippon Sheet Glass Co Ltd Superconducting transistor
JPH01145397A (en) * 1987-12-01 1989-06-07 Nippon Telegr & Teleph Corp <Ntt> Production of oxide superconducting thin film
JPH0237785A (en) * 1988-07-27 1990-02-07 Sanyo Electric Co Ltd Laminated type semiconductor element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6430117A (en) * 1987-07-24 1989-02-01 Furukawa Electric Co Ltd Formation of ceramic superconductor membrane
JPS6453474A (en) * 1987-08-24 1989-03-01 Nippon Sheet Glass Co Ltd Superconducting transistor
JPH01145397A (en) * 1987-12-01 1989-06-07 Nippon Telegr & Teleph Corp <Ntt> Production of oxide superconducting thin film
JPH0237785A (en) * 1988-07-27 1990-02-07 Sanyo Electric Co Ltd Laminated type semiconductor element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07240541A (en) * 1994-03-02 1995-09-12 Hitachi Ltd Superconductive three-terminal element
US10125808B2 (en) 2008-02-20 2018-11-13 NejiLaw inc. Double-end threaded body and internally-threaded body

Similar Documents

Publication Publication Date Title
US5430011A (en) Crystal compensated superconducting thin film formed of oxide superconductor material
US5494891A (en) Method for manufacturing three-terminal oxide superconducting devices
US5539215A (en) Superconducting device having an extremely thin superconducting channel formed of oxide superconductor material
US5509183A (en) Method for manufacturing a superconducting device having an extremely thin superconducting channel formed of oxide superconductor material
JPH05251777A (en) Superconducting field-effect type element and manufacture thereof
US5408108A (en) Superconducting device having an extremely thin superconducting channel formed of oxide superconductor material
US5430013A (en) Superconducting thin film formed of oxide superconductor material, superconducting current path and superconducting device utilizing the superconducting thin film
JPH0555648A (en) Superconducting element
EP0533519B1 (en) Superconducting device having an extremely thin superconducting channel formed of oxide superconductor material and method for manufacturing the same
US5861361A (en) Superconducting field effect device having a superconducting channel and method for manufacturing the same
US5552374A (en) Oxide superconducting a transistor in crank-shaped configuration
EP0546959B1 (en) Superconducting device having an extremely thin superconducting channel formed of oxide superconductor material
JP2680960B2 (en) Superconducting field effect device and method of manufacturing the same
JPH05211353A (en) Superconducting field-effect element
JP2680959B2 (en) Superconducting field effect device and method of manufacturing the same
JP2647251B2 (en) Superconducting element and fabrication method
JP2599500B2 (en) Superconducting element and fabrication method
JP2730368B2 (en) Superconducting field effect element and method for producing the same
JP2680954B2 (en) Superconducting field effect element
JP2680961B2 (en) Superconducting field effect device and method of manufacturing the same
JP2641976B2 (en) Superconducting element and fabrication method
JP2691065B2 (en) Superconducting element and fabrication method
JPH0555649A (en) Manufacture of superconducting electric field effect element
JPH0585705A (en) Oxide superconductive thin film
JPH05152628A (en) Superconducting field effect element and its manufacture